yari-r emann man foldunun l ghtl ke sotrop k altman foldu lightlike
Transkript
yari-r emann man foldunun l ghtl ke sotrop k altman foldu lightlike
Yar - Riemann Manifoldunun Lightlike sotropik Altmanifoldu C.B.Ü. Fen Bilimleri Dergisi 2.2 (2006) 123 128 ISSN 1305-1385 C.B.U. Journal of Science 2.2 (2006) 123 128 YARI-R EMANN MAN FOLDUNUN L GHTL KE SOTROP K ALTMAN FOLDU Erol YA AR1 Mu la Üniversitesi, Ula Ali Koçman M.Y.O., 48600 Ula-Mu la, Türkiye. Özet: Bu makalede, yar -Riemann manifoldunun isotropic altmanifoldu çal ld . Lightlike isotropic altmanifoldun denklem yap lar verildi. Sonra ise M isotropic altmanifoldu total geodezik yapan artlar elde edildi. LIGHTLIKE ISOTROPIC SUBMANIFOLD OF SEMI-RIEMANNIAN MANIFOLD Abstract: In this paper, we study isotropic submanifold of semi-Riemannian manifold. We give the structure equations of lightlike isotropic submanifold. Then we obtain that the condition on M lightlike isotropic submanifold is totally geodesic. Key Words and Phrases : Lightlike isotropic submanifolds, Totally geodesic, Gauss and Codazzi equations. MOS Clasification : 53B15 53B30 53C05 --------------------------------------------------------------------------------------------------------1 Sorumlu Yazar [email protected] C.B.Ü. Fen Bil. Dergisi (2006)123 128, 2006 /Erol YA AR 1. Introduction The theory of submanifolds of a Riemannian or semi-Riemannian manifold is one of the most important topics in differential geometry. It is well known that the primary difference between theory of lightlike submanifold and semi-Riemannian submanifold arises due to the fact that in the first case, a part of the normal vector bundle TM lies in the tangent bundle TM of the ~ submanifold M of M , whereas in the second case TM TM ={0}. In 1992, Duggal and Bejancu [3] introduced a half lightlike submanifold M, of codimension 2 and found geometric conditions for the induced connection on M to be metric connection. In 2004, Erol K l ç and Bayram ahin [5] studied coisotropic submanifold of a semi-Riemannian manifold. In this study they investigated the integrability condition of the screen distribution and gave a necessary and sufficient condition on Ricci tensor of a coisotropic submanifold to be symmetric. In the present paper, we have proved that the connection induced from semi-Riemannian manifold of codimension (m+n) on lightlike isotropic submanifold is metric. Besides we obtain the structure equations of lightlike isotropic submanifold and proved the theorem on M in semi-Riemannian manifold of constant curvature, of codimension (m+n). 2. Preliminaries Let ( M , g ) be a real (2m+n)-dimensional semi-Riemannian manifold of constant index q such as m 1,1 q 2m, and M be an mdimensional submanifold of M . In case g is degenerate on the tangent bundle TM of M. We say that M is a lightlike submanifold of ~ M [2]. Throughout this paper we denote the algebra of smooth function on M by F(M) and the F(M) module of smooth section of a vector bundle E over M by (E). The following range of induced is used : 124 i, j , k 1,..., r and , , r 1,..., n . For a degenerate tensor field g on M, there exists a locally vector field (TM ) , 0 such as g ( X , ) 0 for any X (TM ) . Then each tangent space Tx M we have Tx M u Tx M g u, v 0, v Tx M which is degenerate (m+1)-dimensional subspace of Tx M . The radical (null) subspace of Tx M , denoted by RadTx M , is defined by Tx M Tx M x g x , Xx 0, X x Tx M . The dimension of RadTx M depends on x M. The submanifold M of M is said to be r-lightlike submanifold if the mapping RadTM : x M RadTxM define a smooth distribution on M of rank r>0, where RadTM is called the radical (null) distribution on M [2]. In this paper, we study lightlike isotropic submanifold where RadTM {0} and 1 r m . Therefore, S (TM ) {0} . Thus we can write (2.1) TM M TM tr (TM ) (TM ltr (TM ) S (TM ). According to the decomposition (2.1), we choose the field of frames { 1 ,..., m } and {N1 ,..., N m , Wm 1 ,..., Wn } on M and M , respectively. Example 2.1 Suppose that ( M , g ) be a surface of R25 given by equations x3 cos x1 , x 4 sin x1 , x 5 x 2 . We choose a set of vectors { 1 , 2 , u1 , u2 } given by 1 u1 so TM 2 5 , sin x1 that 2 1 sin x1 3 cos x1 4 , , u2 cos x1 1 4 RadTM TM sp{ 1 , 2 } , 1 3 sp{ 1 , u1 , u2 }. Therefore M is an Yar - Riemann Manifoldunun Lightlike sotropik Altmanifoldu isotropic lightlike submanifold. Construct two null vectors N1 12 { 1 5 } and { 1 sin x1 3 cos x1 4 } such as g ( N i , i ) {1, 2} and ij for i, j N2 ltr (TM ) Let W 1 2 cos x1 sin x1 3 4 be a spacelike sp{W } . Thus i ,W Tx M such that g ( i , u ) 0, g (W ,W ) 0, u Tx M . Above relation implies that i TM and hence i RadTx M . Thus, locally there exists a lightlike vector fields on M, it is also denoted by i such as g ( i ,Y ) 0, X (TM ), Y (TM ) Consequently, the m-dimensional radical distribution RadTM of lightlike isotropic submanifld M of M is locally spanned by i . We choose such a non-degenerate distribution on the screen transversal vector bundle S (TM ) of M. Thus we have the following orthogonal direct decomposition (2.2) TM = Rad(TM) S(TM ). Thus we choose W as a unit vector field and put g (W , W ) where 1. Theorem 2.2 Let ( M , g , S (TM )) be an isotropic submanifold of ( M , g ). Suppose that U be a coordinate neighborhood of M and { 1 ,..., m } be a basis of (TM u ) . Then there exist smooth {N1 ,..., N m } of TM M such that g ( N i , j ) ij and g ( N i , N j ) 0, g ( N i ,W ) 0, for any i, j {1,..., m}, {m 1,..., n} and W ( S (TM )) . Suppose that be the Y X h s ( X , Y ), Y (2.4) N s AN X X L N X N, (2.5) s AW X XW for any X , Y (TM ), N and W ( S (TM )) { X Y , AN X , AW X } X { 1 , 2 , N1 , N 2 , W } is a basis of R25 along M. From (2.1), there exist X X sp {N1 , N 2 }. vector such that S (TM ) g( i , X ) ~ Levi-Civita connection on M . According to (2.1) we have (2.3) {h s ( X , Y ), belong L W s X to respectively. W (ltr (TM )) X where and N , s XW , L X N , L XW } (TM ) and (tr (TM )) Here is ~ connection on M but the metric s and are linear connections on M and tr(TM) respectively. Besides, we define the F(M)-bilinear mappings (2.6) L X : (ltr (TM )) (ltr (TM )); L ( LV ) DX L ( LV ), s ( SV ) DX s ( SV ), X (2.7) s X : ( S (TM )) ( S (TM )); X (2.8) D L : (TM ) L D ( X , SV ) ( S (TM )) D L X (ltr (TM )) ( SV ), and (2.9) D s : (TM ) s (ltr (TM )) ( S (TM )) s D ( X , LV ) D X (LV ) for any x (TM ), V (tr (TM )). Since { i , N j } are locally lightlike sections on U M , we define symmetric F ( M ) - bilinear form D s and 1-forms pij , i , and V i on U by Ds ( X ,Y ) g (h s ( X , Y ),W ), Pij ( X ) i L g( X N i , i ), g ( D s ( X , N i ),W ), g( s X W ,W ) 125 C.B.Ü. Fen Bil. Dergisi (2006)123 128, 2006 /Erol YA AR and X ( g (Y , Z )) g ( V i g ( D L ( X ,W ), i ) (TM ). It follows that for any X , Y h s ( X , Y ) D s ( X , Y )W , L X Ni D ( X , Ni ) s X i W D s ( X , Z ) g (W , Y ) m 1 W , ( Hence (2.3), (2.4) and (2.5) become (2.10) n D s ( X , Y )W , g )(Y , Z ) and R the curvature tensor of and respectively. Then by straightforward calculation and using (2.10), (2.11), (2.12), (2.13), (2.14) and (2.15) we obtain (2.17) R( X , Y )Z (2.11) {D s ( X , Y ) AW Y R( X , Y ) Z m 1 m n Ni ANi X n Pij ( X ) N j j 1 i ( X )W , m 1 m n XW AW X ( X )W for any X , Y (TM ). We call D the screen second fundamental form of M with respect to tr(TM). Both ANi and AW are linear operators on (TM ) . We will see by (2.15) that the first one is RadTM-valued, called the shape operations of M. Since i j D )(Y , Z )W X are lightlike vector fields, from (2.10)-(2.12) we obtain (2.13) X W ) s D ( X , Z )( Y W ) s Y D )( X , Z )W } m n {D s (Y , Z )V i ( X ) N i m 1 s D s (Y , Z )( s ( n V i ( X ) Ni i 1 D s (Y , Z ) AW X ( (2.12) i 1 D s ( X , Z )V i (Y ) N i }, m 1 (2.18) m n {R s ( X , Y )W R ( X , Y )W i 1 m 1 s D (Y , AW X )W D s ( X , AW Y )W V i (Y ) V i (X ) ( i ( X )W A)(W , X ) ( Y X i (Y )W A)(W , Y ) V i ( X ) ANi Y V i (Y ) ANi X s D ( X , i ) 0, ( (2.14) X D L )(Y , W ) ( Y D L )( X , W )}, (2.19) D L ( X , i ) 0, m n {R L ( X , Y ) N i R( X , Y ) Ni (2.15) i 1 g ( ANi X , i ) g ( AW X , i ). Further, taking in to account that is a metric connection and by using (2.10) we obtain 0 ( X g)(Y, Z) X(g(Y, Z)) g( XY, Z) g(Y, X Z) i (Y )V i ( X ) N i i (Y ) AW X , m 1 ( X )V i (Y ) N i i (Y ) AW X i ( Y A)( N i , X ) ( ( X D s )(Y , N i ) ( X A)( N i , Y ) Y D s )( X , N i ) D s (Y , ANi X ) D s ( X , ANi Y ) for any X , Y , Z 126 (TM ) . Denote by R n m 1 and X for any X , Y , Z D ( X ,W ) V i Ni . X Z) m 1 W XY X n L XY Y , Z ) g (Y , D s ( X , Y ) g (W , Z ) Pij ( X ) N j , s X n (TM ), Yar - Riemann Manifoldunun Lightlike sotropik Altmanifoldu W ,W Ni ( S (TM )) and m {D s ( X , AW Y )W (ltr (TM )). Consider the Riemannian curvature of type (0,4) of and by using (2.17)-(2.19) and the definition of curvature tensor, we derive the following structure equations : (2.20) m n i 1 m 1 R( X , Y , Z , Ni ) i {g ( R ( X , Y ) Z , N i ) (Y ) D s ( X , Z ) i ( X ) D s (Y , Z )}, n R s ( X , Y )W i 1 m 1 s D (Y , AW X )W V i (X ) V i (Y ) ( ( Y i ( X )W X ( Y D L )(Y , W )}, (2.25) m n { i 1 (2.21) m n i1 (Y )V i ( X ) N i i {g(( Y A)(W , X) m1 ( V i (X)g(ANiY, Ni )}, (2.22) m n R( X , Y , Ni , Ni ' ) {g (( i 1 ' ( ' i (Y ) i A)( N i ' , X ) m 1 ' A)( N i , Y ), N i ) Y X i (X ) i (Y ) ( X )}. Theorem 2.3 Let M be lightlike isotropic submanifold of an (2m+n)-dimensional semiRiemannian manifold of constant curvature ( M (c), g ), and of codimension (m+n). Then the curvature tensor of M and M (c) related to the following equations : (2.23) m n {D s (Y , Z ) AW X R( X , Y ) Z i 1 D s ( X , Z ) AW Y m 1 D s ( X , Z )V i (Y ) N i D s (Y , Z )V i ( X ) N i D s (Y , Z )( ( s X ( XW ) D )(Y , Z )W }, (2.24) D s ( X , Z )( Y W ) s Y D )( X , Z )W i ( X )V i (Y ) N i , m 1 i (Y ) AW X ( X ) AW Y i s A)( N i , Y ) ( Y A)( N i , X ) D ( X , ANi Y ) D (Y , ANi X )} ( Y D s )( X , N i ) ( X s ( X A)(W ,Y), Ni ) V i (Y)g(ANi X, Ni ) A)(W , Y ) D L )( X , W ) R L ( X , Y ) Ni R(X,Y,W , Ni ) (Y )W A)(W , X ) V i (Y ) ANi X V i ( X ) ANi Y ( X i X D s )(Y , N i ) Proof. By using the definition of constant curvature M (c) and (2.17), (2.18) and (2.19) we obtain (2.23), (2.24) and (2.25). Definition 2.4. A lightlike isotropic submanifold (M,g) of a semi-Riemannian manifold ( M , g ) is said to be totally umbilical in M if there is a smooth vector field H s such as (2.26) hs ( X ,Y ) H s g ( X , Y ), X , Y (TM ). Corollary 2.5. Lightlike isotropic submanifold of ( M , g ) is totally geodesic if M is totally umbilical , i.e., h s ( X , Y ) 0, X , Y (TM ). Then we have Theorem 2.6. Let ( M , g ) be a isotropic submanifold of ( M , g ) of codimension (m+n) if M is totally umbilical in M then (2.27) R( X , Y )Z R( X , Y ) Z , X , Y , Z (TM ). Proof. By using (2.17) and Corollary 2.3 we get (2.27). Corollary 2.7. Under the hypothesis of theorem we have 127 C.B.Ü. Fen Bil. Dergisi (2006)123 128, 2006 /Erol YA AR (2.28) R ( X , Y )W s R ( X , Y )W ( X ( Y A)(W , X ) A)(W , Y ), (2.29) R( X , Y ) Ni ( Y A)( N i , X ) ( X A)( N i , Y ). References [1] Bejancu, A., Null Hypersurfaces in SemiEuclidean Space, Saitama Math. J. Vol. 14, 25-40, (1996). [2] Duggal, K., and Bejancu, A., Lightlike Submanifold of Semi-Riemannian Manifold and Applications, Kluver Academic Pub., (1996). Geli Tarihi: 13/10/2005 128 [3] Duggal, K. and Jin, D.H., Half Lightlike Submanifolds of Codimension 2, Math. J. Toyama Uni., 22, 121-161, (1999) [4] Duggal, K.L. and Bejancu A., Lightlike Submanifold of Semi-Riemannian Manifold Applications, Acta Appl. Math 38, 197-215, (1995). [5] K l ç, E., ahin, B., H.B. Karada , Güne , R., Coisotropic Submanifold of a Semi-Riemannian Manifold, Turk J. Math., 28, 335-352, (2004). [6] Katsuno, K., Null Hypersurfaces in Lorentzian Manifolds I, Math. Proc. Camb. Phil. Soc. 88, 175-182, (1980). [7] O Neill, B., Semi-Riemannian Geometry with Applications to Relativity, Academic Press, London, (1983). Kabul Tarihi: 30/01/2006
Benzer belgeler
Özgeçmiş, Erhan Güler - Fen Fakültesi
Güler E., Yaylı Y. Generalized Bour’s theorem. Kuwait Journal of Science, 42-1 (2015) 79-90 (SCI Exp.).
Güler E. A new kind of helicoidal surface of value m. International Electronic Journal of Geo...
general helices and bertrand curves in riemannian space form
of the screen distribution and gave a
necessary and sufficient condition on Ricci
tensor of a coisotropic submanifold to be
symmetric.
In the present paper, we have proved that the
connection induc...