1+1 - Çankaya University Journal of Science and Engineering
Transkript
1+1 - Çankaya University Journal of Science and Engineering
Çankaya University Journal of Science and Engineering Volume 8 (2011), No. 2, 205–223 Generalized Jacobi Elliptic Function Method for Periodic Wave Solutions of SRLW Equation and (1+1)-Dimensional Dispersive Long Wave Equation Yavuz Uğurlu1,∗ , Doğan Kaya2 and İbrahim E. İnan3 1 2 Fırat University, Department of Mathematics, 23119 Elazığ, Turkey İstanbul Ticaret University, Department of Mathematics, İstanbul, Turkey 3 Fırat University, Faculty of Education, 23119 Elazığ, Turkey ∗ Corresponding author: matematikci [email protected] Özet. Biz bu çalışmada SRLW ve (1+1)-boyutlu dispersive uzun dalga denkleminin periyodik dalga çözümlerini elde etmek için genelleştirilmiş Jacobi eliptik fonksiyon metodunu sunarız. Anahtar Kelimeler. SRLW denklemi, (1+1)-boyutlu dispersive uzun dalga denklemi, genelleştirilmiş Jakobi eliptik fonksiyon metot, periyodik çözümler, hareket eden dalga çözümler. Abstract. We implement the generalized Jacobi elliptic function method with symbolic computation to construct periodic solutions for the symmetric regularized long wave (SRLW) equation and (1+1)-dimensional dispersive long wave equation. Keywords. SRLW equation, (1+1)-dimensional dispersive long wave equation, generalized Jacobi elliptic function method, periodic solutions, traveling wave solutions. 1. Introduction The mathematical modeling of events in nature can be explained by differential equations. These equations are mathematical models of complex physical occurrences that arise in engineering, chemistry, biology, mechanics and physics. The theory of nonlinear dispersive wave motion has recently been the subject of much study. The solutions of nonlinear equations play a crucial role in applied mathematics and physics, because; solutions of nonlinear partial differential equations make a very significant contribution to people’s knowledge about the nature of physical phenomenon. Furthermore, when an original nonlinear equation is directly calculated, Received March 24, 2011; accepted October 2, 2011. ISSN 1309 - 6788 © 2011 Çankaya University 206 Uğurlu et al. the solution will preserve the actual physical characters of solutions. Therefore, interest in the solution of nonlinear partial differential equations has never decreased. Because of this interest, many techniques and methods have been developed [1-10]. Recently, there has been intensive study to obtain analytical solutions of nonlinear partial differential equations. Interest has focused on obtaining exact solutions of nonlinear partial differential equations through using symbolical computer programs, such as Maple, Matlab, and Mathematica that facilitate complex and tedious algebraic computations. Various methods are presented which are used by scientists to obtain exact and analytic solutions of nonlinear partial differential equations with help of symbolical computer programs. Most of these methods are based on finding the balance term with balancing of the highest order linear and nonlinear term. These methods can be only applied to nonlinear partial differential equations. In this study, we analyze the generalized Jacobi elliptic function method [11] and we obtain periodic wave solutions of SRLW equations [12] and (1+1)-dimensional dispersive long wave equations [13] by using the generalized Jacobi elliptic function method. Then, we show three-dimensional and two-dimensional periodic wave graphics for the SRLW equation and (1+1)-dimensional dispersive long wave equation by using a solution of these equations. A symmetric regularized long wave equation (SRLWE) utt + uxx + uuxt + ux ut + uxxtt = 0, (1) had been investigated in [14-16]. Eq. (1) is used to describe nonlinear ion-acoustic wave and space-charge waves. This equation is symmetrical with respect to x, and t. It arises in many nonlinear problems of mathematical physics and applied mathematics. Periodic wave solutions of SRLW have been given by using the Exp function method [17] and (G0 /G)-expansion method [18]. The (1+1)-dimensional dispersive long wave equation ut + uux + vx = 0 1 (2) vt + ux v + uvx + uxxx = 0 3 has been studied in [4]. Eq. (2) is one of the basic equations of fluid dynamics. v − 1 shows the height of water wave and u denotes the velocity water’s surface along the x axis. This equation is used to model in the coastal edge waves. CUJSE 8 (2011), No. 2 207 2. An Analysis of the Method and Applications Before starting to give a generalized Jacobi elliptic function method [11], we will give a simple description of the generalized Jacobi elliptic function method. For doing this, it is considered in a two variables general form of nonlinear PDE Q(u, ut , ux , uxx , . . .) = 0, (3) with u(x, t) = u(ξ), ξ = kx + wt. Eq. (3) converts to nonlinear ODE for u(ξ) as follows, where k, w are constants. Q0 (u0 , u00 , u000 , . . .) = 0. (4) The solution of the Eq. (4) is supposed in the form n X u(ξ) = a0 + ai F i (ξ) + bi F −i (ξ) , (5) i=1 where n is a positive integer that can be determined by balancing the highest order derivate and the highest nonlinear terms in equation, k, w, a0 , ai , bi and ξ can be determined. Substituting solution (5) into Eq. (4) yields a set of algebraic equations √ j for F i A + BF 2 + CF 4 , (j = 0, 1) and (i = 0, 1, 2, . . .) then, all coefficients of √ j Fi A + BF 2 + CF 4 have to vanish. After this separated algebraic equation, we can find coefficients and k, w, a0 , ai , bi and ξ. In this work, we study the solution of the SRLW equation and (1+1)-dimensional dispersive long wave equation by using the generalized Jacobi elliptic function method which is introduced by [11]. The fundamental idea of their method is to take full advantage of the elliptic equation and use its solutions F . The desired elliptic equation is given as F 02 = A + BF 2 + CF 4 , (6) dF where F 0 = and A, B, C are constants. Some solutions of Eq. (6) are given in dξ paper [11]. Example 1. Let’s consider SRLW equation, utt + uxx + uuxt + ux ut + uxxtt = 0, (7) with u(x, t) = u(ξ), ξ = kx+wt, and then Eq. (7) converts to an ordinary differential equation as follows w2 u00 + k 2 u00 + kwuu00 + kw(u0 )2 + w2 k 2 u(4) = 0, (8) 208 Uğurlu et al. and integrating (8) yields, we find the following equation w2 u0 + k 2 u0 + kwuu0 + k 2 w2 u000 = 0, (9) where the integration constant is taken as zero. The balance term is obtained as n = 2 by balancing uu0 with u000 in Eq. (9). Therefore, we may choose to give the solution of Eq. (9) as follows b1 b2 + 2. (10) F F Substituting (10) into Eq. (9) yields a set of algebraic equations for a0 , a1 , a2 , b1 , b2 , k, w. The algebraic equation system is obtained as u = a0 + a1 F + a2 F 2 + a1 k 2 + a0 a1 kw + a2 b1 kw + a1 w2 + a1 Bk 2 w2 = 0, −2b22 kB − 24Ab2 k 2 w2 = 0, −3b1 b2 kw − 6Ab1 k 2 w2 − 2b2 k 2 − b21 kw − 2a0 b2 kw − 2b2 w2 − 8Bb2 k 2 w2 = 0, −b1 k 2 − a0 b1 kw − a1 b2 kw − b1 w2 − Bb1 k 2 w2 = 0, (11) 2a2 k 2 + a21 kw + 2a0 a2 kw + 2a2 w2 + 8a2 Bk 2 w2 = 0, 3a1 a2 kw + 6a1 Ck 2 w2 = 0, 2a22 kw + 24a2 Ck 2 w2 = 0. If the system of algebraic equations is solved with the help of Mathematica, we have w k − − 4Bkw, a1 = 0, a2 = −12Ckw, w k b1 = 0, b2 = −12Akw, k 6= 0, w 6= 0. a0 = − (12) Substituting (12) into (10), we have obtained analytic solutions of equation (7) as follows (i) A = 1, B = −(1 + m2 ), C = m2 , k w 1 2 u1 = − − − 4Bkw − 12Ckw sn (kx + wt) − 12Akw . (13) w k sn2 (kx + wt) 2 2 k w cn(kx + wt) dn(kx + wt) u2 = − − − 4Bkw−12Ckw −12Akw . (14) w k dn(kx + wt) cn(kx + wt) (ii) A = 1 − m2 , B = 2m2 − 1, C = −m2 , k w u3 = − − − 4Bkw − 12Ckw cn2 (kx + wt) − 12Akw w k 1 2 cn (kx + wt) . (15) CUJSE 8 (2011), No. 2 209 (iii) A = m2 − 1, B = 2 − m2 , C = −1, k w u4 = − − − 4Bkw − 12Ckw dn2 (kx + wt) − 12Akw w k 1 2 dn (kx + wt) . (16) (iv) A = −m2 (1 − m2 ), B = 2m2 − 1, C = 1, 2 2 k w dn(kx + wt) sn(kx + wt) u5 = − − − 4Bkw − 12Ckw − 12Akw . (17) w k sn(kx + wt) dn(kx + wt) (v) A = 1 − m2 , B = 2 − m2 , C = 1, 2 2 k w cn(kx + wt) sn(kx + wt) u6 = − − − 4Bkw − 12Ckw − 12Akw . (18) w k sn(kx + wt) cn(kx + wt) m2 − 2 m2 1 ,C= , (vi) A = , B = 4 2 4 2 k w sn(kx + wt) u7 = − − − 4Bkw − 12Ckw w k 1 ± dn(kx + wt) 2 1 ± dn(kx + wt) − 12Akw (19) sn(kx + wt) (vii) A = u8 = − m2 m2 − 2 m2 ,B= ,C= , 4 2 4 k w − − 4Bkw − 12Ckw(sn(kx + wt) ± i cn(kx + wt))2 w k 2 1 − 12Akw . (20) sn(kx + wt) ± i cn(kx + wt) 2 w dn(kx + wt) k u9 = − − − 4Bkw − 12Ckw √ w k i 1 − m2 sn(kx + wt) ± cn(kx + wt) √ 2 i 1 − m2 sn(kx + wt) ± cn(kx + wt) − 12Akw . (21) dn(kx + wt) 1 1 − 2m2 1 (viii) A = , B = ,C= , 4 2 4 u10 = − k w − − 4Bkw − 12Ckw(m sn(kx + wt) ± i dn(kx + wt))2 w k 2 1 − 12Akw . (22) m sn(kx + wt) ± i dn(kx + wt) 210 Uğurlu et al. 2 dn(kx + wt) √ m cn(kx + wt) ± i 1 − m2 √ 2 m cn(kx + wt) ± i 1 − m2 . (23) − 12Akw dn(kx + wt) u11 k w = − − − 4Bkw − 12Ckw w k u12 k w = − − − 4Bkw − 12Ckw w k sn(kx + wt) 1 ± cn(kx + wt) 2 − 12Akw u13 1 ± cn(kx + wt) sn(kx + wt) 2 . (24) 2 cn(kx + wt) √ 1 − m2 sn(kx + wt) ± dn(kx + wt) √ 2 1 − m2 sn(kx + wt) ± dn(kx + wt) (25) − 12Akw cn(kx + wt) k w = − − − 4Bkw − 12Ckw w k m2 − 1 m2 + 1 m2 − 1 ,B= ,C= , 4 2 4 2 k w dn(kx + wt) = − − − 4Bkw − 12Ckw w k 1 ± m sn(kx + wt) 2 1 ± m sn(kx + wt) . (26) − 12Akw dn(kx + wt) (ix) A = u14 1 − m2 m2 + 1 1 − m2 (x) A = ,B= ,C= , 4 2 4 2 k w cn(kx + wt) u15 = − − − 4Bkw − 12Ckw w k 1 ± sn(kx + wt) 2 1 ± sn(kx + wt) . (27) − 12Akw cn(kx + wt) (xi) A = − u16 = − (1 − m2 )2 m2 + 1 1 ,B= ,C=− , 4 2 4 k w − − 4Bkw − 12Ckw(m cn(kx + wt) ± dn(kx + wt))2 w k 2 1 − 12Akw . (28) m cn(kx + wt) ± dn(kx + wt) CUJSE 8 (2011), No. 2 211 1 m2 + 1 (1 − m2 )2 (xii) A = , B = ,C= , 4 2 4 2 k w sn(kx + wt) u17 = − − − 4Bkw − 12Ckw w k dn(kx + wt) ± cn(kx + wt) 2 dn(kx + wt) ± cn(kx + wt) . (29) − 12Akw sn(kx + wt) 1 m2 − 2 m2 (xiii) A = , B = ,C= , 4 2 4 u18 k w = − − − 4Bkw − 12Ckw w k 2 cn(kx + wt) √ 1 − m2 ± dn(kx + wt) √ 2 1 − m2 ± dn(kx + wt) − 12Akw . (30) cn(kx + wt) Remark. Here sn(ξ, m), cn(ξ, m), dn(ξ, m) are Jacobi elliptic functions and m shows the modulus of the Jacobi elliptic functions. If m → 1, then sn ξ → tanh ξ, cn ξ → sech ξ, dn ξ → sech ξ. If m → 0, then sn ξ → sin ξ, cn ξ → cos ξ, dn ξ → 1. We can obtain the following periodic solutions of (7) by using solutions (13-30) for m → 0, k w k u(x, t) = − w k u(x, t) = − w k u(x, t) = − w u(x, t) = − w k w − k w − k w − k − 1 , sin (kx + wt) 1 + 4kw − 12kw 2 , cos (kx + wt) + 4kw − 12kw 2 − 8kw − 12kw(cot2 (kx + wt) + tan2 (kx + wt)), sin2 (kx + wt) (1 ± cos(kx + wt))2 − 2kw − 3kw + , (1 ± cos(kx + wt))2 sin2 (kx + wt) k w cos2 (kx + wt) (sin(kx + wt) ± 1)2 u(x, t) = − − − 2kw − 3kw + . w k (sin(kx + wt) ± 1)2 cos2 (kx + wt) (31) (32) (33) (34) (35) In Figure 1 and Figure 2 are shown graphics of periodic wave solutions of the SRLW equation in three and two dimensions, respectively. In Figure 2, the periodic waves move to the left with time. If ξ = kx − wt, the periodic waves move to the right. 212 Uğurlu et al. Figure 1. Periodic wave graphic of the SRLW equation for solution (32) in three dimensions, k = 1, w = 0.5. (a) (b) (c) (d) Figure 2. Periodic wave graphic of the SRLW equation for solution (32) in two dimensions (a) t = 0, (b) t = 0.5, (c) t = 1, (d) t = 2, (k = 1, w = 0.5). CUJSE 8 (2011), No. 2 213 Example 2. Let’s consider (1+1)-dimensional dispersive long wave equation ut + uux + vx = 0, 1 vt + ux v + uvx + uxxx = 0, (36) 3 with u(x, t) = u(ξ), ξ = kx + wt, and then Eq. (36) converts to an ordinary differential equation as follows wu0 + kuu0 + kv 0 = 0, 1 wv 0 + k(uv)0 + k 3 u000 = 0, 3 and integrating (37) yields, we find the following equation (37) k wu + u2 + kv = 0, 2 1 wv + kuv + k 3 u00 = 0, (38) 3 where the integration constant is taken as zero. Balance terms are found as n1 = 1, n2 = 2 respectively, by balancing v with y 2 and uv with u00 in Eq. (38). Therefore, we may choose b u = a0 + a1 F + 1 , F (39) d d v = c0 + c1 F + 1 + c2 F 2 + 2 . F F2 Substituting (39) into Eq. (38) yields a set of algebraic equations for a0 , a1 , b1 , c0 , c1 , c2 , d1 , d2 , k, and w. The algebraic equation system is obtained as b1 d2 k + 2Ab1 k 3 = 0, 3 b1 d1 k + a0 d2 k + d2 w = 0, a1 c1 k + a0 c2 k + c2 w = 0, 2 a1 c2 k + a1 Ck 3 = 0, 3 b21 k + d2 k = 0, 2 a0 a1 k + c1 k + a1 w = 0, where C 6= 0, k 6= 0. a0 c0 k + b1 c1 k + a1 d1 k + c0 w = 0, Bb1 k 3 b1 c0 k + a0 d1 k + a1 d2 k + + d1 w = 0, 3 1 a1 c0 k + a0 c1 k + b1 c2 k + a1 Bk 3 + c1 w = 0, 3 2 a0 k + a1 b1 k + c0 k + a0 w = 0, 2 a0 b1 k + d1 k + b1 w = 0, 1 2 a k + c2 k = 0, 2 1 (40) 214 Uğurlu et al. From the solutions of the above system, we can find √ √ √ √ 2Bk 2 2 Ck 2 Ak a0 = − − − 4 A Ck 2 , a1 = − √ , b1 = √ , 3 3 3 √ √ 1 2Ck 2 c0 = (−Bk 2 − 2 A Ck 2 ), c1 = 0, c2 = − , (41) 3 3 r √ √ 2Ak 2 2Bk 2 d1 = 0, d2 = − , w=k − − 4 A Ck 2 . 3 3 r Substituting (41) into (39), we have obtained analytic solutions of equation (36) as follows r √ √ 2Bk 2 − 4 A Ck 2 t, (i) A = 1, B = −(1 + m2 ), C = m2 , ξ = kx + k − 3 r √ √ 2 √ √ 2Bk 2 Ck Ak 2 1 − 4 A Ck 2 − √ sn(ξ) + √ u1 = − − 3 sn(ξ) 3 3 (42) 2 2 2 √ √ 1 2Ck 2Ak 1 −Bk 2 − 2 A Ck 2 − sn2 (ξ) − v1 = 3 3 3 sn(ξ) r √ √ 2 √ √ Ck Ak 2Bk 2 2 cn(ξ) dn(ξ) − 4 A Ck 2 − √ + √ u2 = − − 3 dn(ξ) cn(ξ) 3 3 (43) 2 2 2 √ √ 1 2Ck cn(ξ) 2Ak dn(ξ) −Bk 2 − 2 A Ck 2 − − v2 = 3 3 dn(ξ) 3 cn(ξ) r √ √ 2Bk 2 − 4 A Ck 2 t, (ii) A = (1 − m2 ), B = 2m2 − 1, C = −m2 , ξ = kx + k − 3 r √ √ √ √ 2Bk 2 2 Ck 2 Ak 1 2 − 4 A Ck − √ cn(ξ) + √ u3 = − − 3 cn(ξ) 3 3 (44) 2 2Ck 2 2 √ √ 2Ak 1 1 −Bk 2 − 2 A Ck 2 − cn2 (ξ) − v3 = 3 3 3 cn(ξ) r √ √ 2Bk 2 (iii) A = (m2 − 1), B = (2 − m2 ), C = −1, ξ = kx + k − − 4 A Ck 2 t, 3 r √ √ 2 √ √ 2Bk 2 Ck 2 Ak 1 − 4 A Ck 2 − √ dn(ξ) + √ u4 = − − 3 dn(ξ) 3 3 (45) 2 2 2 √ √ 1 2Ck 2Ak 1 −Bk 2 − 2 A Ck 2 − dn2 (ξ) − v4 = 3 3 3 dn(ξ) CUJSE 8 (2011), No. 2 215 r √ √ 2Bk 2 (iv) A = −m2 (1 − m2 ), B = 2m2 − 1, C = 1, ξ = kx + k − − 4 A Ck 2 t, 3 r √ √ 2 √ √ dn(ξ) 2 sn(ξ) 2Bk 2 Ck Ak − 4 A Ck 2 − √ + √ u5 = − − 3 sn(ξ) dn(ξ) 3 3 (46) 2 2 2 2 √ √ 1 dn(ξ) 2Ak sn(ξ) 2Ck −Bk 2 − 2 A Ck 2 − − v5 = 3 3 sn(ξ) 3 dn(ξ) r √ √ 2Bk 2 (v) A = (1 − m2 ), B = (2 − m2 ), C = 1, ξ = kx + k − − 4 A Ck 2 t, 3 r √ √ √ √ 2Bk 2 2 Ck cn(ξ) 2 Ak sn(ξ) 2 − 4 A Ck − √ + √ u6 = − − 3 sn(ξ) cn(ξ) 3 3 (47) 2 2 2Ck 2 cn(ξ) 2 √ √ 1 sn(ξ) 2Ak −Bk 2 − 2 A Ck 2 − − v6 = 3 3 sn(ξ) 3 cn(ξ) r √ √ m2 − 2 m2 2Bk 2 1 ,C= , ξ = kx + k − − 4 A Ck 2 t, (vi) A = , B = 4 2 4 3 r √ √ 2 √ √ 2Bk 2 Ck sn(ξ) 2 Ak 1 ± dn(ξ) 2 − 4 A Ck − √ + √ u7 = − − 3 1 ± dn(ξ) sn(ξ) 3 3 2 √ √ 2 1 2Ck 2 sn(ξ) 2Ak 2 1 ± dn(ξ) 2 2 v = A Ck − −Bk − 2 − 7 3 3 1 ± dn(ξ) 3 sn(ξ) m2 m2 − 2 (vii) A = C = ,B= , ξ = kx + k 4 2 r − (48) √ √ 2Bk 2 − 4 A Ck 2 t, 3 r √ 2 √ √ 2Bk 2 Ck u8 = − − − 4 A Ck 2 − √ (sn(ξ) ± i cn(ξ)) 3 3 √ 2 Ak 1 √ + (sn(ξ) ± i cn(ξ)) 3 √ √ 2 2Ck 2 1 2 v = −Bk − 2 A Ck − (sn(ξ) ± i cn(ξ))2 8 3 3 2 2Ak 2 1 − 3 (sn(ξ) ± i cn(ξ)) (49) 216 Uğurlu et al. r √ √ √ 2Bk 2 2 Ck dn(ξ) 2 √ − 4 A Ck − √ u9 = − − 3 3 i 1 − m2 sn(ξ) ± cn(ξ) ! √ √ 2 sn(ξ) ± cn(ξ) 2 Ak i 1 − m + √ dn(ξ) 3 2 √ √ 2 2Ck 2 1 dn(ξ) 2 √ v9 = −Bk − 2 A Ck − 3 3 i 1 − m2 sn(ξ) ± cn(ξ) !2 √ 2 2 sn(ξ) ± cn(ξ) 1 − m i 2Ak − 3 dn(ξ) 1 − 2m2 1 , ξ = kx + k (viii) A = C = , B = 4 2 r − (50) √ √ 2Bk 2 − 4 A Ck 2 t, 3 r √ √ √ 2Bk 2 2 Ck 2 − 4 A Ck − √ (m sn(ξ) ± i dn(ξ)) u10 = − − 3 3 √ 2 Ak 1 + √ (m sn(ξ) ± i dn(ξ)) 3 2 √ √ 2Ck 1 v10 = −Bk 2 − 2 A Ck 2 − (m sn(ξ) ± i dn(ξ))2 3 3 2 2Ak 2 1 − 3 (m sn(ξ) ± i dn(ξ)) (51) r √ √ √ 2Bk 2 2 Ck dn(ξ) 2− √ √ u = − − 4 − A Ck 11 3 3 m cn(ξ) ± i 1 − m2 ! √ √ 2 2 Ak m cn(ξ) ± i 1 − m + √ dn(ξ) 3 2 √ √ 2 2Ck 2 1 dn(ξ) 2 √ v11 = −Bk − 2 A Ck − 3 3 m cn(ξ) ± i 1 − m2 !2 √ 2Ak 2 m cn(ξ) ± i 1 − m2 − 3 dn(ξ) (52) r √ √ 2 √ √ 2Bk 2 Ck sn(ξ) 2 Ak 1 ± cn(ξ) 2 − 4 A Ck − √ + √ u12 = − − 3 1 ± cn(ξ) sn(ξ) 3 3 2 2 2 √ √ 1 2Ck sn(ξ) 2Ak 1 ± cn(ξ) 2 2 2 −Bk − 2 A Ck − − v12 = 3 3 1 ± cn(ξ) 3 sn(ξ) (53) CUJSE 8 (2011), No. 2 217 r √ √ √ 2Bk 2 2 Ck cn(ξ) 2 √ − 4 A Ck − √ u13 = − − 3 3 1 − m2 sn(ξ) ± dn(ξ) ! √ √ 2 sn(ξ) ± dn(ξ) 2 Ak 1 − m + √ cn(ξ) 3 2 √ √ 2 2Ck 2 1 cn(ξ) 2 √ v13 = −Bk − 2 A Ck − 3 3 1 − m2 sn(ξ) ± dn(ξ) !2 √ 2 2 sn(ξ) ± dn(ξ) 1 − m 2Ak − 3 cn(ξ) m2 + 1 m2 − 1 ,B= , ξ = kx + k (ix) A = C = 4 2 r − (54) √ √ 2Bk 2 − 4 A Ck 2 t, 3 r √ √ 2 √ √ 2Bk 2 Ck dn(ξ) 2 Ak 1 ± m sn(ξ) − 4 A Ck 2 − √ + √ u14 = − − 3 1 ± m sn(ξ) dn(ξ) 3 3 2 √ √ 2 2Ck 2 dn(ξ) 1 2Ak 2 1 ± m sn(ξ) 2 2 −Bk − 2 A Ck − − v14 = 3 3 1 ± m sn(ξ) 3 dn(ξ) (55) r (x) A = C = 1 − m2 1 + m2 ,B= , ξ = kx + k 4 2 − √ √ 2Bk 2 − 4 A Ck 2 t, 3 r √ √ √ √ 2Bk 2 2 Ck cn(ξ) 2 Ak 1 ± sn(ξ) 2 − 4 A Ck − √ + √ u15 = − − 3 1 ± sn(ξ) cn(ξ) 3 3 2 2 2 √ √ 1 cn(ξ) 2Ak 1 ± sn(ξ) 2 2Ck 2 2 −Bk − 2 A Ck − − v15 = 3 3 1 ± sn(ξ) 3 cn(ξ) (1 − m2 )2 1 + m2 1 (xi) A = − ,B= , C = − , ξ = kx + k 4 2 4 r − (56) √ √ 2Bk 2 − 4 A Ck 2 t, 3 r √ 2 √ √ 2Bk 2 Ck u16 = − − − 4 A Ck 2 − √ (m cn(ξ) ± dn(ξ)) 3 3 √ 2 Ak 1 √ + (m cn(ξ) ± dn(ξ)) 3 √ √ 2 2Ck 2 1 2 v = −Bk − 2 A Ck − (m cn(ξ) ± dn(ξ))2 16 3 3 2 2Ak 2 1 − 3 (m cn(ξ) ± dn(ξ)) (57) 218 Uğurlu et al. 1 1 + m2 (1 − m2 )2 (xii) A = , B = ,C= , ξ = kx + k 4 2 4 r − √ √ 2Bk 2 − 4 A Ck 2 t, 3 r √ √ √ 2Bk 2 2 Ck sn(ξ) 2 − 4 A Ck − √ u17 = − − 3 dn(ξ) ± cn(ξ) 3 √ 2 Ak dn(ξ) ± cn(ξ) + √ sn(ξ) 3 2 2 √ √ 2Ck sn(ξ) 1 −Bk 2 − 2 A Ck 2 − v17 = 3 3 dn(ξ) ± cn(ξ) 2Ak 2 dn(ξ) ± cn(ξ) 2 − 3 sn(ξ) 1 m2 − 2 m2 (xiii) A = , B = ,C= , ξ = kx + k 4 2 4 r − (58) √ √ 2Bk 2 − 4 A Ck 2 t, 3 r √ √ √ 2Bk 2 2 Ck cn(ξ) 2 √ − 4 A Ck − √ u18 = − − 3 3 1 − m2 ± dn(ξ) ! √ √ 2 ± dn(ξ) Ak 1 − m 2 + √ cn(ξ) 3 2 √ √ 2 2Ck 2 cn(ξ) 1 2 √ −Bk − 2 A Ck − v18 = 3 3 1 − m2 ± dn(ξ) !2 √ 2 2 ± dn(ξ) 1 − m 2Ak − 3 cn(ξ) (59) We can obtain the following periodic solutions of Eq. (36) by using solutions (42-59) for m → 0, r 2k 2 2k 1 u(x, t) = − −√ q 3 2 3 2k sin kx + k t 3 k 2 2k 2 1 v(x, t) = − 2 q 3 3 2 2k sin kx + k t 3 (60) CUJSE 8 (2011), No. 2 ! r r 2 2 16k 2k 16k − √ cot kx + k − t u(x, t) = − − 3 3 3 ! r 2 2k 16k + √ tan kx + k − t 3 3 ! r 2 2k 1 16k 2 2 2 (−4k ) − cot kx + k t v(x, t) = − 3 3 3 ! r 2 2 2k 16k − tan2 kx + k − t 3 3 q 2 4k r sin kx + k − 3 t 4k 2 k −√ u(x, t) = − − q 3 2 3 1 ± cos kx + k − 4k3 t q 2 4k 1 ± cos kx + k − 3 t k +√ q 2 3 4k sin kx + k − 3 t 2 q 4k2 − sin kx + k t 3 1 2 k2 v(x, t) = − (k ) − q 3 6 4k2 1 ± cos kx + k − t 3 2 q 4k2 1 ± cos kx + k − 3 t k2 − q 6 2 4k sin kx + k − 3 t q 2 4k r cos kx + k − 3 t k 4k 2 √ u(x, t) = − − − q 3 2 3 4k 1 ± sin kx + k − 3 t q 2 4k 1 ± sin kx + k − 3 t k √ + q 2 3 4k cos kx + k − 3 t 2 q 2 4k cos kx + k − 3 t 1 2 k2 v(x, t) = − (k ) − q 3 6 4k2 1 ± sin kx + k − t 3 2 q 4k2 1 ± sin kx + k − 3 t k2 − q 6 2 4k cos kx + k − 3 t 219 (61) (62) (63) 220 Uğurlu et al. Figure 3. Periodic wave graphics of the (1+1)-dimensional dispersive long wave equation for u(x, t) and v(x, t) solutions of (60) in three dimensions, respectively (k = 1). (a) (b) (c) (d) Figure 4. Periodic wave graphic of the (1+1)-dimensional dispersive long wave equation for u(x, t) of solution (60) in two dimensions (a) t = 0, (b) t = 0.5, (c) t = 1, (d) t = 2, (k = 1). CUJSE 8 (2011), No. 2 221 (a) (b) (c) (d) Figure 5. Periodic wave graphic of the (1+1)-dimensional dispersive long wave equation for v(x, t) of solution (60) in two dimensions (a) t = 0, (b) t = 0.5, (c) t = 1, (d) t = 2, (k = 1). In Figure 3, Figure 4 and Figure 5, are shown graphics of periodic wave solutions of the (1+1)-dimensional dispersive long wave equation in three and two dimensions, respectively. In Figure 5, the periodic waves move to the left with time. If ξ = kx − wt, the periodic waves move to the right. 3. Conclusions In this paper, we present the generalized Jacobi elliptic function method [11] by using ansatz (5) and, with aid of Mathematica, implement it in a computer algebraic system. An implementation of the method is given by applying it to the SRLW equation and (1+1)-dimensional dispersive long wave equation. We obtain some periodic solutions of these equations at the same time. The method can be used for many other nonlinear equations or coupled ones. In addition, this method is also computerizable, which allows us to perform complicated and tedious algebraic calculations on a computer. 222 Uğurlu et al. References [1] E. J. Parkes and B. R. Duffy, An automated tanh-function method for finding solitary wave solutions to non-linear evolution equations, Computer Physics Communications 98 (1996), 288–300. [2] E. Fan, Extended tanh-function method and its applications to nonlinear equations, Physics Letters A 277 (2000), 212–218. [3] S. A. Elwakil, S. K. El-labany, M. A. Zahran and R. Sabry, Modified extended tanh-function method for solving nonlinear partial differential equations, Physics Letters A 299 (2002), 179–188. [4] X. Zheng, Y. Chen and H. Zhang, Generalized extended tanh-function method and its application to (1+1)-dimensional dispersive long wave equation, Physics Letters A 311 (2003), 145–157. [5] Z. Fu, S. Liu, S. Liu and Q. Zhao, New Jacobi elliptic function expansion and new periodic solutions of nonlinear wave equations, Physics Letters A 290 (2001), 72–76. [6] Y. Chen, Q. Wang and B. Li, Jacobi elliptic function rational expansion method with symbolic computation to construct new doubly periodic solutions of nonlinear evolution equations, Zeitschrift für Naturforschung A 59 (2004), 529–536. [7] Y. Chen and Z. Yan, The Weierstrass elliptic function expansion method and its applications in nonlinear wave equations, Chaos, Solitons & Fractals 29 (2006), 948–964. [8] J. H. He and X. H. Wu, Exp-function method for nonlinear wave equations, Chaos, Solitons & Fractals 30 (2006), 700–708. [9] M. Wang, X. Li and J. Zhang, The (G0 /G)-expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics, Physics Letters A 372 (2008), 417–423. [10] H. L. Lü, X. Q. Liu and L. Niu, A generalized (G0 /G)-expansion method and its applications to nonlinear evolution equations, Applied Mathematics and Computation 215 (2010), 3811-3816. [11] H. T. Chen and Z. Hong-Qing, New double periodic and multiple soliton solutions of the generalized (2 + 1)-dimensional Boussinesq equation, Chaos, Solitons & Fractals 20 (2004), 765–769. [12] Y. Shang and B. Guo, Analysis of Chebyshev pseudospectral method for multi-dimensional generalized SRLW equations, Applied Mathematics and Mechanics 24 (2003), 1168–1183. [13] S. Guo and Y. Zhou, The extended (G0 /G)-expansion method and its applications to the Whitham-Broer-Kaup-Like equations and coupled Hirota-Satsuma KdV equations, Applied Mathematics and Computation 215 (2010), 3214–3221. [14] L. Iskandar and P. C. Jain, Numerical solutions of the improved Boussinesq equation, Proceedings of the Indian Academy of Sciences 89 (1980), 171–181. [15] M. P. Soerensen, P. L. Christainsen and P. S. Lomdahl, Solitary waves on nonlinear elastic rods, Journal of the Acoustical Society of America 76 (1984), 871–879. [16] J. L. Bogolubsky, Some examples of inelastic soliton interaction, Computer Physics Communications 13 (1977), 149–155. CUJSE 8 (2011), No. 2 223 [17] F. Xu, Application of exp-function method to symmetric regularized long wave (SRLW) equation, Physics Letters A 372 (2008), 252–257. [18] A. Bekir and A. C. Cevikel, New exact travelling wave solutions of nonlinear physical models, Chaos, Solitons & Fractals 41 (2009), 1733-1739.
Benzer belgeler
finding the traveling wave solutions of some nonlinear partial
In this study, we present an expansion method by inspiring of (G ′ G ) -expansion
method which is introduced in (Wang et al., 2008) and the other similar methods
(Guo and Zhou, 2010; Fan, 2000). Wh...