TRASCO® ES: “0” Backlash Coupling
Transkript
TRASCO® ES: “0” Backlash Coupling
2_inglese_01_Xp7:1_Giunti di trasm_xp5.qxd 04/08/2010 08:52 Pagina I ® TRASCO ES TRASCO® ES: “0” Backlash Coupling 2_inglese_01_Xp7:1_Giunti di trasm_xp5.qxd 04/08/2010 08:52 Pagina 1 www.sitspa.com TRASCO® ES: “0” backlash coupling The main design function of the TRASCO® ES coupling is to transmit motion while absorbing misalignments and vibrations with absolute precision and without any backlash whatsoever. The very compact design makes it a very rational and functional device. Description The TRASCO® ES consists of two hubs, which are either made of high-strength aluminum (up to the 38/45 size) or steel (from size 42) that are connected with an elastic element. The hubs are obtained by an accurate machining in order to achieve extremely precise dimensional characteristics. The elastic element, which is made of special polyurethane was developed after considerable research and laboratory testing, is press-formed by a process which guarantees a high degree of dimensional accuracy. The element is available in 4 different hardnesses: 80 Sh. A (blue), 92 Sh. A (yellow), 98 Sh. A (red), 64 Sh. D (green). Coupling performance depends on the type of element selected (see “Technical characteristics” ). Other element hardnesses are available upon request to meet special operating conditions, such as high temperatures and/or high torques, and for providing a high degree of vibration dampening capability. Please contact our Engineering Office for help in selecting the appropriate element hardness. Spider TRASCO ES Hub Operation When the polyurethane element is installed in its special seats between the hubs, it becomes precompressed, thereby providing the zero backlash feature which characterizes the transmission performance of this coupling. With zero backlash, the coupling remains torsionally rigid within the range of the precompression load, but does permit the absorption of radial, angular, and axial misalignments as well as undesired vibrations. The significantly wide precompressed area of the flexible element keeps the contact pressure against the elastic element low. Therefore, the element teeth can be overloaded many times without undergoing any wear or taking a permanent set. Trasco® ES couplings (037.05) 1 2_inglese_01_Xp7:1_Giunti di trasm_xp5.qxd 04/08/2010 08:52 Pagina 2 www.sitspa.com Advantages The TRASCO® ES coupling provides the following advantages: • • • • • • “zero-backlash” motion transmission dampening (up to 80%) of vibrations from motor shaft low heat and electrical conductivity easy and fast installation perfect balance (A & AP type) low moment of inertia (due to compact design and types of materials used). Main applications TRASCO® ES couplings are most frequently used with: • • • • • servomotors robotics sliding tables spindle controls for drilling and grinding mandrels ball-bearing screws Operating Temperature Range The operating temperature range for the TRASCO® ES depends on the type of element. For the 92 Sh. A (yellow), the range is between -40 and +90°C, and for the 98 Sh.A (red), the range is between -30 and +90°C. Peak temperatures as high as 120°C can be tolerated for brief instances. High operating temperatures can cause the elastic element to lose a considerable amount of elasticity, thus substantially lowering the capacity as regards torque. Therefore, when selecting a coupling, the operating temperature must be carefully considered (see “Technical characteristics”). ATEX 94/9/EC compliance It is possibile to ask for specific certification for use in hazardous area according to EC standard 94/9/EC. TRASCO® ES couplings are available with specific mounting/operating instruction manual and conformity. For information, please contact our technical office. T [°C] Torsion angle [rad] 2 Trasco® ES couplings (037.05) 2_inglese_01_Xp7:1_Giunti di trasm_xp5.qxd 04/08/2010 08:52 Pagina 3 www.sitspa.com TRASCO® ES executions GES F execution GES M execution Clamping hub execution with single slot without keyway. Up to size 19/24. Backlash free hub design. Transmissible torque depends on bore diameter. Hub execution with finish bore, keyway and stopscrew. Not suitable for backlash free drives with heavy inversions or high start up frequency. GESF GESA - GESA MP Fino a 19/24 GESM GESA - GESAP GEG SFESM Fino a 19/24 Dal 24/28 Clamping hub execution with double slot without keyway. From size 24/28. Backlash free hub design. Transmissible torque depends on bore diameter. GESM GESM Fino a 19/24 GESA - GESAP GESM GES-2M Con chiavetta, dal tipo 24/28Con chiavetta, fino al tipo 19/24 GESM GDEaSlF24/28 GESA - GESA MP GESM Con chiavetta, dal tipo 24/28 GES-2M GESM Con chiavetta, fino al tipo 19/24 GESM Fino a 19/24 Dal 24/28 GES M...C execution GESM GES-2M Con chiavetta, dal tipo 24/28Con chiavetta, fino al tipo 19/24 GESM Split camping hub execution for radial assembly of the coupling Torque depends on bore diameter. Execution “C” with keyway, as option can be delivered for a positive torque transmission with zero backlash. These executions are suitable for double cardanic applications. GESM Con chiavetta, dal tipo 24/28 GES A execution GES-2M GES AP execution Execution with locking ring. This execution is suitable for high speed and high torque. Screws mounting from spider side. Transmissible torque depend on bore diameter. GESA - GESAP GES-2M GES 2M execution GES-2M GESM GESM Con chiavetta, dal tipo 24/28 Dal 24/28 Camping hub execution with double slot and keyway. From size 24/28. The camping pressure eliminate backlash in torque inversions. hiavetta, fino al tipo 19/24 GESM Fino a 19/24 Camping hub execution with single slot and keyway. Up to size 19/24. The camping pressure eliminates backlash in torque inversions. GEG SFESM Fino a 19/24 GESM Dal 24/28 GES M...C execution GES M execution chiavetG taE,SfM ino al tipo 19/24 GESM GESF GESF GESM Fino a 19/24 Execution with locking ring with high machining accuracy: design suitable for application on spindles according to DIN 69002. GESA - GESA GPESM GESF GESM Fino a 19/24 Dal 24/28 Trasco® ES couplings (037.05) 3 TRASCO ES GESA - GESAP 2_inglese_01_Xp7:1_Giunti di trasm_xp5.qxd 04/08/2010 08:52 Pagina 4 www.sitspa.com Standard type located 180° from the key seat - ex. 02 (120° each other - ex. 01). Both the solid hub and bored hub coupling are generally available from stock for quick delivery. L L t C N S M S I W [kg] I nmax J [kgm ] A [mm] G [mm] L [mm] I [mm] M [mm] Fig .5 N [mm] S [mm] P [mm] c t [mm] Fig. 7 3 7 0,003 0,085 x 10 40.000 14 - 22 7 8 6 1,0 6 M3 3,5 1 9 4 9 0,009 0,49 x 10-6 28.000 20 7,2 30 10 10 8 1,0 2 M3 5 1 14 4 15 0,020 2,8 x 10-6 19.000 30 10,5 35 11 13 10 1,5 2 M4 5 2 19/24 6 24 0,066 20,4 x 10-6 14.000 40 18 66 25 16 12 2,0 3,5 M5 10 2 24/28 8 28 0,132 50,8 x 10-6 10.600 55 27 78 30 18 14 2,0 4 M5 10 2 28/38 10 38 0,253 200,3 x 10-6 8.500 65 30 90 35 20 15 2,5 5,2 M6 15 2 38/45 12 45 0,455 400,6 x 10-6 7.100 80 38 114 45 24 18 3,0 5,6 L M8 15 2 -6 L t STEEL HUBS C t t ° C t C L STEEL HUBS t t t C 0 12 2.246 x 10-6 6.000 95 46 126 50 26 20 3,0 5,6 M8 20 48 20 60 2,520 -6 3.786 x 10 5.600 105 51 140 56 28 21 3,5 6 M8 25 55 25 70 4,100 9.986 x 10-6 5.000 120 60 160 7/ 1/ C L 22 65 2102030 4,0 9 M10 65 25 80 5,900 18.352 x 10-6 4.600 135 68 185 75 4,5 8,3 M10 S S Bore tolerance: H7 - JS9 (DIN 6985/1) keyway I M I I Fig .3 N M 35 S S I I 26 N M Fig .5 Fig .4 P Øa P ØA ØG ØG ØF ØA N S P S S I I N M 0° 12 2 2 ØG ØF ØA 2,000 ØF 55 ØA 14 ØG ØF 42 P I ALUMINUM HUBS ALUMINUM HUBS L S Fig. 2 [min-1] 2 N M Fig .4 Hub F max [mm] S I 20 2 20 2 ØA F min [mm] S M Fig. 1 Type N I Fig .3 P ØA ØG P t C ØG ØF S I ØA ØG ØF ØA P t C 0° 12 ØG ØF t L t ØF The hubs of the standard coupling type can be either solid or have a finished bore, the diameter of which corresponds to any one of the standard shaft diameters. The grubscrew(s) is (are) S I Fig .3 Order form TRASCO® ES hub Solid hub Type GES P 24/28 TRASCO® ES hub Bore + keyway + set-screw Type Bore ∅ GES F 24/28 210207/ 1/ C L 210207/ 1 F 20 Spider Type and spider colour AES 4 24/28 R Trasco® ES couplings (037.05) (R = red, G = yellow, etc...) W Weight kg J Moment of inertia nmax Maximum rpm kgm2 min-1 2_inglese_01_Xp7:1_Giunti di trasm_xp5.qxd 04/08/2010 08:52 Pagina 5 www.sitspa.com “M” execution with clamp hubs S I I N M S S N I I I I f f Fig. 2 Fig .7 Fig .8 TRASCO ES Fig .7 Hub F min [mm] F max [mm] f 7 3 7 M2 0,35 0,003 0,085 x 10-6 40.000 Type MS [Nm] W [kg] nmax [min-1] J [kgm ] 2 Keyway position A [mm] G [mm] L [mm] - 14 - 22 7 8 I M N S P t E [mm] [mm] [mm] [mm] [mm] [mm] [mm] Fig. ALUMINUM HUBS ALUMINUM HUBS 6 1,0 6 4 15,0 1 9 4 9 M2,5 0,75 0,007 0,42 x 10 28.000 - 20 7,2 30 10 10 8 1,0 2 5 23,4 1 14 6 15 M3 1,4 0,018 2,6 x 10-6 19.000 180° 30 10,5 35 11 13 10 1,5 2 5,5 32,2 1 19/24 10 20 M6 11 0,071 18,1 x 10-6 14.000 120° 40 18 66 25 16 12 2,0 3,5 12 45,7 1 24/28 10 28 M6 11 0,156 74,9 x 10-6 10.600 90° 55 27 78 30 18 14 2,0 4 12 56,4 2 28/38 14 35 M8 25 0,240 163,9 x 10 8.500 90° 65 30 90 35 20 15 2,5 5,2 13,5 72,6 2 38/45 19 45 M8 25 0,440 465,5 x 10 7.100 90° 80 38 114 45 24 18 3,0 5,6 16 83,3 2 3,0 -6 -6 -6 STEEL HUBS STEEL HUBS 42 25 50 M10 70 2,100 3.095 x 10-6 6.000 - 95 46 5,6 20 78,8 2 48 25 55 M12 120 2,900 5.160 x 10-6 5.600 - 105 21020140 7/ 2/ C L56 51 07/ 2/3,5 CL 28210221 6 21 108,0 2 55 35 70 M12 120 4,000 9.737 x 10-6 5.000 - 120 60 160 65 30 22 4,0 9 26 122,0 2 65 40 80 M14 190 5,800 17.974 x 10 4.600 - 135 68 185 75 35 26 4,5 8,3 27,5 139,0 2 -6 126 50 26 20 From size 7 to 19/24: single slot execution From size 24/28 to 65: double slot execution Using hub execution M without keyway, the maximum transmissible torque is the minor between the clamp-hub transmissible torque and the value stated in the section “Technical characteristics”. MS Screw tightening torque Nm W Weight kg J Coupling moment of inertia nmax Maximum rpm kgm2 min-1 Trasco® ES couplings (037.05) 5 a S N S M E ØG ØG E ØG ØA ØF I I Fig .6 Fig .6 S S f f Fig. 1 N M P M E S P E I N M E M I t P E ØG ØEA ØF ØG E S S E I N P L L t t P ØF ØA ØF ØA S L L t t ØA ØF L L P down the screws (Ms) must be as given in the table. The M coupling type is available with or without keyway. ØE A ØF This type of coupling permits quick, sure fixing, without any shaft-hub backlash. With the keyless coupling type, the torque applied for tightening S 2_inglese_01_Xp7:1_Giunti di trasm_xp5.qxd 04/08/2010 08:53 Pagina 6 www.sitspa.com Recommended M coupling Type Hub Bore Dia. [mm] and Transmissible Torque [Nm], Valid for shaft tolerances k6 ∅ 10 ∅ 11 ∅ 12 ∅ 14 ∅ 15 ∅ 16 ∅ 19 ∅ 20 ∅ 22 ∅ 24 ∅ 25 ∅ 28 ∅ 30 ∅ 32 ∅ 35 ∅ 38 ∅ 40 ∅ 42 ∅ 45 ∅ 48 ∅ 50 ∅ 55 ∅ 60 ∅ 65 ∅ 70 ∅ 75 ∅ 80 L 0,7 0,8 1 1,1 9 1,1 1,4 1,7 1,9 2,2 2,5 2,8 3 2,5 2,9 3,3 3,7 4,1 4,6 5 5,8 6,2 6,6 23 P 23 25 27 32 34 36 43 45 25 27 32 34 36 43 45 50 54 58 62 66 79 83 91 100 104 116 124 133 145 79 83 91 100 104 116 124 133 145 158 166 174 187 217 243 261 S278N 304S 330 348 365 391 417 435 I M I 299 335 359 383 419 455 479 503 539 575 599 659 28/38 38/45 M S I 55 f 65 Fig .6 Fig. 1 GES AES 6 M 24/28 F 20 24/28 R Trasco® ES couplings (037.05) C TRASCO® ES hub “M” execution Type ∅ bore Keyway Spider Type and spider colour (R = red, G = yellow, etc...) S N I M Fig .7 Fig. 2 a S I 356 387 407 428 458 489 509 560 611 662 713 f 558 586 628 670 697 767 837 907 976 1046 1116 210207/ 2/ C L Order form P ØA ØF 63 E P ØG 57 t E I 48 N E S 42 ØA ØF 24/28 ØF ØA 19/24 L t ØG E 14 t E L 7 E ∅4 ∅5 ∅6 ∅7 ∅8 ∅9 ØG Type Fig .8 2_inglese_01_Xp7:1_Giunti di trasm_xp5.qxd 04/08/2010 08:53 Pagina 7 www.sitspa.com “A” type - Shrink disc execution This type of coupling provides excellent kinetic uniformity. Furthermore, the absence of keys or grubscrews makes it a well balanced coupling and greatly facilitates installation and removal. An exact radial/ axial positioning is easy for those applications L which require it. The absence of keyways also avoids fretting corrosion and backlash between the shaft and the hub. This is the ideal type of coupling for applications requiring precision and/or high rotational speeds. L ØF ØA f f ØF ØA ØF ØG ØF ØG P P S N S M I f f I Type F min [mm] F max [mm] N S M I Screws MS per locking [Nm] elements f Hub W [kg] nmax J [kgm2] [min-1] A [mm] ALUMINUM HUBS AND STEEL LOCKING ELEMENT G [mm] 220207/ 1/ C L L [mm] I [mm] M [mm] N [mm] S [mm] P [mm] ALUMINUM HUBS AND STEEL LOCKING ELEMENT 14 6 14 M3 4 1,3 0,049 7 x 10-6 28.000 30 10,5 50 18,5 13 10 1,5 2 19/24 10 20 M4 6 2,9 0,120 30 x 10-6 21.000 40 18 66 25 16 12 2,0 3,5 24/28 15 28 M5 4 6,0 0,280 135 x 10-6 15.500 55 27 78 30 18 14 2,0 4 28/38 19 38 M5 8 6,0 0,450 315 x 10-6 13.200 65 30 90 35 20 15 2,5 5,2 38/45 20 45 M6 8 10,0 0,950 -6 960 2x210 0207/ 1/10.500 CL 80 38 114 45 24 18 3,0 5,6 STEEL HUBS AND LOCKING ELEMENT STEEL HUBS AND LOCKING ELEMENT 42 28 50 M8 4 35,0 2,300 3.150 x 10-6 9.000 95 46 126 50 26 20 3,0 5,6 48 35 60 M8 4 35,0 3,080 5.200 x 10 8.000 105 51 140 56 28 21 3,5 6 55 38 65 M10 4 71,0 4,670 10.300 x 10-6 6.300 120 60 160 65 30 22 4 9 65 40 70 M12 4 120,0 6,700 19.100 x 10-6 5.600 135 68 185 75 35 26 4,5 8,3 -6 Using hub execution A, the shrink-disc maximum transmissible torque is the minor between the value stated in the table below and the value stated in section “Technical characteristics”. Recommended A coupling Type Hub Bore Dia. [mm] and Transmissible Torque [Nm], valid for shaft tolerances k6 Type ∅ 10 ∅ 11 ∅ 14 14 10 12 22 19/24 42 46 60 24/28 ∅ 15 ∅ 16 ∅ 17 65 69 74 79 84 66 72 77 82 87 175 255 28/38 38/45 ∅ 18 ∅ 19 ∅ 20 ∅ 22 ∅ 24 ∅ 25 ∅ 28 ∅ 30 ∅ 32 ∅ 35 ∅ 38 92 102 113 118 135 185 205 225 235 283 312 326 ∅ 40 ∅ 42 ∅ 45 266 287 308 339 373 367 398 427 471 420 460 500 563 557 ∅ 48 ∅ 50 515 545 577 620 627 670 714 612 649 687 986 1112 1531 ∅ 55 ∅ 60 790 850 880 744 801 1140 1185 1284 1580 1772 1840 1960 ∅ 65 ∅ 70 840 932 1033 1412 1420 2049 1652 1680 1691 2438 2495 2590 88 42 48 55 65 Order form GES AES A 24/28 R 24/28 F 20 TRASCO® ES hub Execution (with shrink disc) Type ∅ bore Spider Type and spider colour (R = red, G = yellow, ecc...) MS Screw tightening torque W Weight Nm kg J Coupling moment of inertia nmax Maximum rpm kgm2 min-1 Trasco® ES couplings (037.05) 7 TRASCO ES S I 2_inglese_01_Xp7:1_Giunti di trasm_xp5.qxd 04/08/2010 08:53 Pagina 8 www.sitspa.com “AP” type - Shrink disc execution according to DIN 69002 Precision “zero-backlash” coupling designed for multi spindle devices on machine tools or controls with reduced mass, such as short center spindles, multi-centers primary spindles in work sta- tions, or joined to high speed bearings with limited tolerance range. It is suitable for very high speeds of rotation (up to speeds of 50 m/s). L L Ø F3 Ø F1 Ø F H6 Ø F2 Ø FH6 ØA P Ø F1 Ø F3 Ø F H6 Ø F2 Ø FH6 ØA P I2 S N I S M I Fig .10 I2 S I N S M I Fig .10 220207/ 2/ C L Hub FH6 MS [mm] [Nm] Type W [kg] nmax J [kgm ] 2 [min-1] A [mm] L [mm] I [mm] STEEL HUBS AND LOCKING ELEMENT I2 [mm] M [mm] N [mm] S [mm] P [mm] F1 [mm] F2 [mm] F3 [mm] STEEL HUBS AND LOCKING ELEMENT 14 14 1,89 0,080 11 x 10-6 28.000 32 50 18,5 15,5 13 10 1,5 2 17 17 8,5 19/24 - 37,5 16 3,05 0,160 37 x 10-6 21.000 37,5 66 25 21 16 12 2,0 3,5 20 19 9,5 19/24 19 30,5 0,190 46 x 10-6 220207/ 2/ C L40 21.000 66 25 21 16 12 2,0 3,5 24 22 9,5 24/28-50 24 4,90 0,330 136 x 10-6 15.500 50 78 30 25 18 14 2,0 4 28 29 12,5 24/28 25 8,50 0,440 201 x 10-6 15.500 55 78 30 25 18 14 2,0 4 35 30 12,5 28/38 35 8,50 0,640 438 x 10 13.200 65 90 35 30 20 15 2,5 5,2 40 40 14,5 38/45 40 14,00 1,320 1.325 x 10-6 10.500 80 114 45 40 24 18 3,0 5,6 46 46 16,5 42 42 35,00 2,230 3.003 x 10-6 9.000 92 126 50 45 26 20 3,0 5,6 52 55 18,5 48 45 35,00 3,090 5.043 x 10-6 8.000 105 140 56 50 28 21 3,5 6 52 60 20,5 55 50 69,00 4,740 10.020 x 10-6 6.300 120 160 65 58 30 22 4 9 55 72 22,5 -6 98 Sh. A 64 sh. D Spindle TRASCO® ES size “AP” TKN [Nm] TKmax [Nm] TKN [Nm] TKmax [Nm] 25 x 20 14 12,5 25 16 32 32 x 25 19/24 - 37,5 14 28 17 34 32 x 30 19/24 17 34 21 42 40 x 35 24/28 - 50 43 86 54 108 50 x 45 24/28 60 120 75 150 63 x 55 28/38 160 320 200 400 Order form GES AES 8 AP 24/28 F 20 24/28 R Trasco® ES couplings (037.05) TRASCO® ES hub Execution (with shrink disc DIN 69002) Type ∅ bore Spider Type and spider colour (R = red, G = yellow, ecc...) MS Screw tightening torque Nm W Weight kg J Coupling moment of inertia nmax Maximum rpm kgm2 min-1 2_inglese_01_Xp7:1_Giunti di trasm_xp5.qxd 04/08/2010 08:53 Pagina 9 www.sitspa.com “GESS” double cardanic execution This execution allows higher misalignments. The 2 spiders allow a high vibration dampening providing a decrease in drive noise and longer life of related components (ex. bearings). The intermediate element is made of aluminum alloy and may be used in combination with any type of hub execution. L S N S M S V H N S S M C S M H Fig.1 N S V H N S M C H Fig .2 Fig.2 Fig .1 ØA Ø Fa ØG Ø Fa Ø Fa ØE ØG Ø Fa ØE L GESM... L [mm] V [mm] STEEL HUBS 3 7 14 – 9 4 9 20 – 25 7 S [mm] 1 6 – 0,003 GESM... 10 45 5 10 1 8 – 0,007 11 56 8 13 1,5 10 – 16 2 12 18 2 L L 10 20 40 – 42 25 92 10 24 10 28 55 – 52 30 112 16 28 14 35 65 – 58 35 128 18 20 2,5 38 15 45 80 – 68 45 158 20 24 3 STEEL HUBS 48 25 60 95 75 S 105 85 55 25 70 120 H 110 65 25 75 135 115 N 74 S M 80 V 56 M 88 C 65 102 75 Fig. GESM... 0,00000008 1 1 0,024 0,0000004 L 0,000003 18 0,05 0,000013 1 14 27 0,14 15 30 0,22 18 38 20 46 L 1 0,00006 1 0,00013 1 0,35 0,00035 1 S 0,51 N S 0,0007 S N ALUMINUM GESS S S 174 S 50N ØG 19 ØE ØG Ø Fa 34 ØE – Ø Fa 30 J [kg m2] AR... 8 15 45 GESS... 4 6 20 G AR... W [mm] [kg] 34 14 42 N [mm] ALUMINUM GESS Ø Fa 7 AR... 20 M [mm] N 22S M 192 24 S 26 N V M 28 H280207/ 3/ C LC H 218 28 252 Fig .1 32 S 3 51 0,67 M S S2 N 2 M V 0,001 M 21 30 3,5 H 4 22 H 60 0,97 C 0,002 35 Fig .1 4,5 26 68 1,43 0,004 H GESS... AR.. AR... GESM... GESM... GESM... Order form Spacer element Type 48 W Weight kg J Coupling moment of inertia kgm2 280207/ 3/ C L H AR... AR... AR... S GESM... GESS... GESS... N M 2 Fig .2 AR... GESS... S V C AR... AR... S H2 GESM... GESM... GESM... GESS TRASCO ES GESS... H [mm] ØA Ø G C [mm] Ø Fa A [mm] ØE ØG Ø Fa E [mm] AR... Ø FFaa Ø Type GESM... Fa max [mm] ØE Fa min [mm] 280207/ 3/ C L Trasco® ES couplings (037.05) 9 2_inglese_01_Xp7:1_Giunti di trasm_xp5.qxd 04/08/2010 08:53 Pagina 10 www.sitspa.com “GES LR1” execution with intermediate shaft This zero backlash execution, allows to connect long distance shafts in applications such as lifting screwjacks, gantry robot etc. The intermediate shaft is made of steel but may be of different material for specific need. The presence of 2 spiders, increases the dampening properties and allow high misalignements. L H L2 M S N H S A dR E d Sez A-A L A H L2 LR1 M LZR1 N H S A Dimensions finished bores Type Internal hub E H L M N s L2 [mm] [mm] [mm] [mm] [mm] [mm] [mm] Screws Din912-8.8 M·L Ms [N·m] MT [N·m] dmin [mm] dmax [mm] 14 4 15 M3x12 1,4 6 30 11 35 13 10 19/24 6 24 M6x15 10 35 40 25 66 16 12 24/28 8 28 M6x20 10 46 55 30 78 18 28/38 10 38 M8x25 25 108 65 35 90 38/45 12 45 M8x30 25 125 80 45 114 TRASCO ES internal hub Execution Type LR1 24 280207/1/CL Spider Type Spider colour “R” red, “V” green, etc. AES 10 24/28 R MS Screw tightening torque Nm MT Transmissible torque moment Nm Trasco® ES couplings (037.05) LR1 min [mm] LZR1 [mm] dR x tightening [mm] 71 LR1+22 14 x 2.0 110 LR1+50 20 x 3.0 128 LR1+60 25 x 2.5 145 LR1+70 35 x 4.0 180 LR1+90 40 x 4.0 A Order form GES LR1 [mm] LR1 48 1,5 LZR1 2 82 14 2 96 20 15 2,5 110 24 18 3 138 On request External hub dR E d S 2_inglese_01_Xp7:1_Giunti di trasm_xp5.qxd 04/08/2010 08:53 Pagina 11 www.sitspa.com “GES LR3” execution with intermediate shaft Ideal execution for long distance shaft connections. Torque transmission is zero backlash. It is used in applications such as automatic machines, lifting machines, palletizing machines, and handling machines. Designed for length up to 4 m without t H M L A Ø dR ØE Ø dm a x e Lzw Sez A -A ØD bearing support (depending on rotation speed). The double slot execution, allows spider mounting and replacement without driver/driven machine displacement. All alumnum alloy for a very low inertia. I Lw A 8 20 M6 0,01304 0,340 3003 0,04481 0,0697 6139 CT t H M 25 A 40 17,5 3 L 49 16 28 M6 10 55 30 22 59 18 14 38 M8 25 0,17629 0,1095 1,243 10936 65 35 25 67 20 38 18 45 M8 25 0,50385 0,2572 3,072 27114 80 45 33 83,5 24 0,5523 4,719 41591 95 50 36,5 93 1,1834 9,591 84384 105 56 39,5 103 22 50 M10 49 48 22 55 M12 86 1,87044 Ø dR 10 28 ØE Ø dm a x 24 42 L A Lzw [Nm/rad] 0,07625 1,12166 M E H I L M Lw Lw min Lzw D t e dR [mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm] Hub 1 MS [Nm] J1 ØD 0,02002 10 e 4762-8.8 Hub 2 Shaft J2 J3 Sez A -A t H 2 A 26 28 98 1 113 Lw+35 47 8 14,5 40 Lw+44 57 10,5 20 50 131 Lw+50 73 11,5 25 60 163 Lw+66 84 15,5 30 70 180 I 202 Lw+73 94 18 32 80 36 100 Lw Lw t Lw+79 105 18,5 Lzw M L A 3 2 ∅ 8 ∅ 10 ∅ 11 ∅ 14 ∅ 15 ∅ 16 ∅ 18 ∅ 19 ∅ 20 ∅ 22 ∅ 24 ∅ 25 ∅ 28 ∅ 30 ∅ 32 ∅ 35 ∅ 38 ∅ 40 ∅ 42 ∅ 45 ∅ 46 ∅ 48 1 ∅ 50 ∅ 55 17 24 21 23 30 32 34 38 40 42 21 23 30 32 34 38 40 42 47 51 53 59 54 58 62 70 74 78 86 93 97 109 117 124 136 148 70 74 78 28 38 Ø dR 19 e ØE Ø dm a x Type Sez A -A ØD Bores and torques for friction A with hub without keyway [Nm] H I I 86 93 97 109 117 124 136 148 156 163 Lw175 42 136 149 155 174 186 198 217 235A 248 260 279 285 297 310 48 199 217 226 253 271 290 317 344 362 380 407 416 434 452 498 Order form TRASCO ES external hub Execution Type GES LR3 24 Spider Type Spider colour “R” red, “V” green, etc. AES 24/28 R Intermediate shaft on request. MS Screw tightening torque J Coupling moment of inertia Nm kgm2 CT Torsional rigidity Nm/rad Trasco® ES couplings (037.05) 190107/ 2/ C L 190107/ 2/ C L 11 TRASCO ES 19 Screws DIN e Lzw Sez A -A ØD Ø dR dmin dmax [mm] [mm] Torsional rigidity Length on request Type Moment of inertia 3 2 [10 kgm ] with dmax hub 1 Clamping ØE Ø dm a x Dimensions finished bores 2_inglese_01_Xp7:1_Giunti di trasm_xp5.qxd J m= 04/08/2010 A L TKN = 48,0 Nm < Tcal 08:53 Pagina 12 TKN = 48,0 Nm < Tcal [Nm] JL m= JA = J1 + J2 JA JL m = 1,5 JL = J3 + J2 JA = J1 + J2 Technical data for intermediate shaft couplings (GES 1 LR1 - GES 1 LR3) T =T ⋅ ⋅ S = 22,0 ⋅ ⋅ 1,5 = 13,2 [Nm] TS = TAS ⋅ 1 1 ⋅ S A = 22,0 ⋅ ⋅ 1,5 = 13,2 [Nm] m +1 1,5 + 1 S AS A m +1 1,5 + 1 m = 1,5 TK max = TS ⋅ S Z ⋅ S θ + TK ⋅ S θ ⋅ SD = 13,2 ⋅ 1,6 ⋅ 1,2 + 12,5 ⋅ 1,2 ⋅ 4 = 85,34 [Nm] TK max = TS ⋅ S Z ⋅ S θ + TK ⋅ S θ ⋅ SD = 13,2 ⋅ 1,6 ⋅ 1,2 + 12,5 ⋅ 1,2 ⋅ 4 = 85,34 [Nm] 1,5 = 13,2 [Nm] Misalignment TK max = 85,34 Nm < Tcal Type = 85,Assial T 34 Nm < TAngular K max cal ∆Kw [°] 14 1,0 ∆kr ∆Ka 3,2 ⋅ 1,6 ⋅ 1,2 + 12,5 ⋅ 1,2 ⋅ 4 = 85,34[mm] [Nm] 0,9 19 1,2 0,9 24 1,4 0,9 28 1,5 0,9 38 1,8 0,9 2⋅ 2⋅ 1 + CT spider L intermediate shaft = 1 CT anello + L allunga [Nm / rad] CT allunga Radial misalignment 1 CTot = 1 CTot = ∆Kr = (L z − 2 ⋅ H − M) ⋅ tan (∆ Kw) Angular misalignment = 0,9° per spider(∆ Kw) [Nm / rad] L intermediate shaft L intermediate shaft = [mm] L zw − 2 ⋅ L [ mm] 1000 CT intermediate shaft L zw − 2 ⋅ L [ mm] 1000 with Lzw = total coupling length Selection diagram GES LR3 coupling ES G LR ES ES G LR G ES G 24 19 38 3 LR 28 3 3 3 LR 3000 2500 2000 rpm [min-1] m / rad] m = 1,5 JL = J3 + J2 ∆kw JL = J3 + J2 www.sitspa.com JA m= 1500 1000 500 1000 1500 2000 Lw [mm] 12 Trasco® ES couplings (037.05) 2500 3000 3500 4000 L allunga = L zw − 2 ⋅ L [ mm 1000 2_inglese_01_Xp7:1_Giunti di trasm_xp5.qxd 04/08/2010 08:53 Pagina 13 www.sitspa.com Technical characteristics Type 7 9 14 19/24 24/28 28/38 38/45 42 48 55 65 Even after operating for an extended period with a misalignment, there is still zero backlash because the elastic element is only stressed by pressure loads. When an application causes a high degree of misalignment, a double flexing type coupling can be provided which avoids the formation of reaction forces. Please contact our Engineering Office. Shore TKN [Nm] TKmax [Nm] CT stat. [Nm/rad] CT din. [Nm/rad] Cr [N/mm] ∆Ka [mm] 92 Sh.A (yellow) 1,2 2,4 14,3 43 219 0,6 0,1 1 98 Sh.A (red) 2 4 22,9 69 421 0,6 0,06 0,9 0,8 ∆Kr [mm] ∆Kw [°] 64 Sh.D (green) 2,4 4,8 34,8 103 630 0,6 0,04 92 Sh.A (yellow) 3 6 31,5 95 262 0,8 0,13 1 98 Sh.A (red) 5 10 51,6 155 518 0,8 0,08 0,9 0,8 64 Sh.D (green) 6 12 74,6 224 739 0,8 0,05 92 Sh.A (yellow) 7,5 15 114,6 344 336 1 0,15 1 98 Sh.A (red) 12,5 25 171,9 513 604 1 0,09 0,9 64 Sh.D (green) 16 32 234,2 702 856 1 0,06 0,8 80 Sh.A (blu) 5 10 370 1120 740 1,2 0,15 1,1 92 Sh.A (yellow) 10 20 820 1920 1260 1,2 0,1 1 98 Sh.A (red) 17 34 990 2350 2210 1,2 0,06 0,9 64 Sh.D (green) 21 42 1470 4470 2970 1,2 0,04 0,8 80 Sh.A (blu) 17 34 860 1390 840 1,4 0,18 1,1 92 Sh.A (yellow) 35 70 2300 5130 1900 1,4 0,14 1 98 Sh.A (red) 60 120 3700 8130 2940 1,4 0,1 0,9 64 Sh.D (green) 75 150 4500 11500 4200 1,4 0,07 0,8 80 Sh.A (blu) 46 92 1370 2350 990 1,5 0,2 1,3 92 Sh.A (yellow) 95 190 3800 7270 2100 1,5 0,15 1 98 Sh.A (red) 160 320 4200 10800 3680 1,5 0,11 0,9 0,8 64 Sh.D (green) 200 400 7350 18400 4900 1,5 0,08 92 Sh.A (yellow) 190 380 5600 12000 2900 1,8 0,17 1 98 Sh.A (red) 325 650 8140 21850 5040 1,8 0,12 0,9 0,8 64 Sh.D (green) 405 810 9900 33500 6160 1,8 0,09 92 Sh.A (yellow) 265 530 9800 20500 4100 2 0,19 1 98 Sh.A (red) 450 900 15180 34200 5940 2 0,14 0,9 0,8 64 Sh.D (green) 560 1120 16500 71400 7590 2 0,1 92 Sh.A (yellow) 310 620 12000 22800 4500 2,1 0,23 1 98 Sh.A (red) 525 1050 16600 49400 6820 2,1 0,16 0,9 0,8 64 Sh.D (green) 655 1310 31350 102800 9000 2,1 0,11 92 Sh.A (yellow) 410 820 13000 23100 3200 2,2 0,24 1 98 Sh.A (red) 685 1370 24000 63400 7100 2,2 0,17 0,9 0,8 64 Sh.D (green) 825 1650 42160 111700 9910 2,2 0,12 92 Sh.A (yellow) 900 1800 38500 97200 6410 2,6 0,25 1 98 Sh.A (red) 1040 2080 39800 99500 6620 2,6 0,18 0,9 TRASCO ES The following technical characteristics apply to all types of TRASCO® ES couplings. When using the M, A and AP versions, check the torque values given in the table against the allowable hub transmission values for the respective versions given in the pertinent sections. TRASCO® ES couplings can withstand axial, radial, and angular misalignment. All the technical data in the catalogue are valid for rotation speeds of 1500 rpm and a working temperature of 30 °C. For linear speed over 30 m/s, it is recommended to balance dynamically the couplings. Misalignments Δ Kw Δ Kr Δ Ka Assial A ssia le Angular Disa ssa m e n t o a n g o la re Radial TKN Coupling nominal torque Nm TKmax Coupling maximum torque Nm CT Torsional rigidity Nm/rad Cr Radial stiffness N/mm ∆Ka Maximum axial misalignment mm ∆Kr Maximum radial misalignment mm ∆Kw Maximum angular misalignment ° Disa ssa m e n t o ra d ia le Trasco® ES couplings (037.05) 020307/ 1/ C L 13 2_inglese_01_Xp7:1_Giunti di trasm_xp5.qxd 04/08/2010 08:53 Pagina 14 www.sitspa.com Installation and maintenance 1. Carefully clean the shafts 2. Insert the hubs onto shafts being connected. With the M, A and AP versions, be sure to tighten the screws with the Ms torque value given in the catalogue. Be careful with the A and AP versions to tighten the screws uniformally and crosswise to the recommended torque 3. Position the element in one of the two coupling halves 4. Fit together the two coupling halves, making sure the “s” dimension is properly observed. This must be done to insure proper elastic element function and long service life, as well as to assure the coupling is properly insulated electrically With the A and AP versions, mounting the hubs can be facilitated by lubricating the shaft contact surfaces with an oil, but do not use a molybdenum bisulphide based oils. When mounting the TRASCO® ES coupling an axial thrust is generated which disappears when the mounting has been completed to avoid putting axial loads on the bearings. Note: All rotating parts must be guarded. 14 Trasco® ES couplings (037.05) The elastic element should be lubricated during mounting operations to reduce the axial force required during mounting. 2_inglese_01_Xp7:1_Giunti di trasm_xp5.qxd 04/08/2010 08:53 Pagina 15 www.sitspa.com Selection in according to DIN 740.2 The coupling must be chosen so the applied working loads do not exceed the allowable values whatever the working conditions are. 1. Check the load with respect to the nominal torque The nominal coupling torque must be greater than or equal to the nominal torque of the drive machine for all working temperatures. TKN ≥ TTKKN⋅ S≥θT⋅KS⋅DS θ ⋅ SD TKN ≥ TK ⋅ S θ ⋅ SD TKN ≥ TK≥⋅TS θ⋅⋅SSD⋅ S + T ⋅ S ⋅ S TSK max S Z θ K θ D TK max ≥ TS ⋅ S Z ⋅ S θ + TK ⋅ ST θ K⋅ max D ≥ TS ⋅ S Z ⋅ S θ + TK ⋅ S θ ⋅ SD 1 m 1 m 1 m (1) (1) ⋅ S (1) (1) (1) (1) ≥ TSS⋅=⋅ STZT ⋅S S ≥ T⋅ S ⋅ S Z ⋅⋅ S SSmax Motor-side peaks: TTSK = Driven-side peaks: ⋅⋅ θST+ALS+T ⋅ ⋅S = TLS ⋅⋅ SL + T⋅ S + TL K θ + ⋅T D + TS = TT TAS TKL ⋅ S θT⋅TKT ⋅TT S max D= TT SθA ++ T AS L L + TL L ⋅AS LSS ⋅ L L ≥ TS ⋅ S ⋅ S SZ ⋅= K max AS θ K θ D m + 1 m + 1 m + 1 m + 1 m +1 m + 1 TK max ≥ TS ⋅ S Z1 ⋅ S θ + TK ⋅ S(1θ) ⋅ SD m (1) 1 (1) (1) (1) m (1) = TAS ⋅ 1 T⋅ S⋅=ST + ⋅T T=S T = TLS ⋅m ⋅ S⋅ S+L T +T A T L L TS = TAS ⋅ ⋅ SA + TL TST=S T ⋅ S + T + T ⋅ S LS L L AS ⋅ A L S LS L L m + 1 m + 1 3. Check the load with respect to torque inversions m1+periodic 1 m +1 m +11 mm +1 (1)m (1) (1) (1) 1+ ) T = TAS ⋅max ⋅ m ⋅ SL + TL (1) T+LS ⋅ S⋅DS ≥1TT⋅ S=⋅AθS SLD TST = =TLS ≥TKT T⋅ ⋅KS S TTKSmax= T ≥ASTS⋅ ⋅ S Z ⋅ S⋅ S TKT⋅LS θ T ⋅T S ST LT⋅θ (S A + L θ+⋅T Z+ KDmax S⋅ ⋅ S Z S⋅S⋅ S θ ⋅K θ + = T T ⋅ ⋅ S + T By means of resonance m + 1 m + 1 S AS A L S LS L L 1 +1 m m +1 (m 1) + 1 m + ⋅1SL + TL (1) TS below = TAS ⋅themoperational ⋅ SA + TL interval a few torque TS = T LS ⋅ When the resonance frequency is passed rapidly peaks will be seen. 1⋅ZS⋅ S+θ T m +1 TSK max≥ T ≥ Tm + T⋅KS⋅ S⋅θS⋅ SD TK max loads ≥ TS ⋅ S TK ⋅ ST ⋅SS⋅+ZS Z ⋅ Sbe θ + compared θ K⋅ max D withSthe θ K torque θ D the coupling can support. The generated alternating must maximum m 1 ⋅ S 1+ T ⋅(1S) m⋅ S (1) m 1 (1) (1) (1) ≥ TSS⋅ =⋅ ST SSmax ⋅LITLV⋅R⋅ S + T⋅LS = TLI ⋅⋅ VR + T⋅ LV(1R) + TL ZAI ⋅⋅T θ =+ K θ D⋅ V + T V TS = TT TTSK max = TAI≥ ⋅TS ⋅ S Z⋅⋅VSRθ ++TTLK ⋅ S θT⋅TKT TT D= TT ≥ TS ⋅ S S Rθ + LI S⋅ S L K max AI Z ⋅m K θ DR + 1 m + 1 m + 1 m + 1 m +1 m + 1 TK max ≥ TS ⋅ S1Z ⋅ S θ + TK ⋅ (S ⋅S m 1) θ m D (1) 1 (1) (1) (1) (1) = T⋅AI ⋅ 1 ⋅ V⋅TV+R =T +Driven-side T = T⋅LI ⋅m ⋅ V⋅ V+R T +T Motor-side peaks: TS = TAI ⋅ L⋅ L ⋅ VR + TL TST=S T T ⋅ Vpeaks: TST=S T R + TL AI RS L LI LI R L m + 1 m + 1 m1+ 1 +1 m +11 mm +1 (1) mm (1) (1) (1) =D TT ⋅ V≥ TT⋅ ≥LIS(θT TS = TLI ⋅ m ⋅ VR + TL (1) TKN ⋅ VTRW+ ⋅TSL θ ⋅ STf 0S⋅T,S25 TRVST+KW = ⋅1)⋅WS⋅f S⋅ S ⋅ ⋅VSR f +⋅ STDL 0KN⋅,25 T1KW =T 0T,25 AI S =T AI ⋅= TKW ≥ KN = θ D W+ L = T ⋅ ⋅ T T = T ⋅ + 1 ⋅ VR + T(1L) S AI m1+ 1 R S LI mm m +1 (1L) m + 1 TS = TAIinversions ⋅ m + ⋅1VR + TL TS = TLI ⋅ m + ⋅1VR + TL 4. Check the load with respect to nonperiodic torque m +1 0⋅,S 25 TKN=mT =+T1KW≥ T ≥ TW⋅ S⋅ S⋅θS⋅ S⋅ S f ⋅ SD 0 , 25 T = T ≥ T ⋅ S ⋅ S 0 , 25 T KN to KW W θ torque f Dinversions, To check the load with respect nonperiodic the equations must be satisfied: KN KW W following θ f D ≥ TK ⋅ S θm⋅ SD TKN ≥ T1 S m m 1 T≥KNT 1 K ⋅ S θ ⋅T ,25 = =TKW ⋅ S⋅ θV TAI ⋅W,S TAIT ⋅⋅W≥VWT f ⋅S DV =TKN T TW = TTLIW⋅ = TLI ⋅⋅ Vfi ⋅ Vfi T0W,25 =T Vfi WD ⋅ S θ ⋅ S0T ⋅ ⋅θfiS⋅ S ⋅S KN⋅ = TKW ⋅≥ f0 D W⋅ = 25 TTKN T ⋅ S ⋅ AI fi=WTLI fi KW f D + 1 m +⋅ 1 m +1 m +1 m + 1≥ m m +1 0,25 TKN TKN=≥T1KW T1K ⋅ STθ W⋅ S⋅ DS θ ⋅ Sm f SD 1 mm ⋅ V T = T ⋅ ⋅ V T = T ⋅ TW = TAI ⋅ ⋅V TfiW fi= TLI ⋅ ⋅ S ⋅ S⋅ Vfi+ T ⋅ S T⋅WSW= TLI ⋅LI m +⋅1Vfi fi T W= TAI ⋅AI m +⋅T V TK max m ≥1 T+S1⋅ S Zfi ⋅ S θ + TKW⋅ S θ ⋅ S K θ D mm +1 D m+ 11 1K max ≥ TS m m+Z 1 θ 1 TW = TAI ⋅ ⋅TVWfi =Driven-side TW = TLI ⋅ m ⋅ Vfi Motor-side peaks: TW = TAI ⋅ peaks: 2 ⋅ Vfi 2 ⋅ V 2TLI ⋅ fi T = T ⋅ ⋅ V T = T ⋅ ψ ψ ψ m m + 1 W LI W AI fi m+ 1 ⋅ Vfi 1≥ +T1 ⋅ S1 +⋅ S +mT+ ⋅1S ⋅ S m1++1 1 +⋅SVfi Z θ K θ D TW = TTAIK max ⋅ m TW = TLI ⋅ m + ⋅1Vfi π 2 2π 2 acceleration. m + 1 2π2 2 1 m +1 (1) TL to be added if a torque m (1) V(1) = Vfi = 1 m⋅ 2 + T (1) (1) Vfi = peak occurs2during ψ T= T 2 T 2 Tψ = TS = TLS ⋅ ⋅ SL + TL SA⋅ SL +L TL TS= TAS12⋅+ ψ ⋅ SA +2TL fi 2AS ⋅LS 2⋅ 2 S + 1 S 1 +n 2n ψ ψ + 1 2ψ n m + 1 m + 1 m m + 1 2 1 − 12−π +π 22 + 1 − 2+π m (1) Vfi = nR12+2 ψ 2π VfiV=fi = T = T1n+R22⋅2ψ21n ψR2⋅2SπA2+2T2L (π1) TS = TLS ⋅ ⋅ SL + TL S 2 n1+ ψ Calculation coefficients n2 2π ψ π 2 1 −n2AS m + 1 m + 1 ψ ψ 2 Vfi = 1 − 2 2 + VfiV= = 1− 12+2 2+2+π ≥ 2 ⋅ Sfi ⋅ S ≥nTS2 ⋅S Z ⋅ S D nnn2RT Tπ ⋅ S θ + TK ⋅ S θ ⋅ SD π2 TK max + T 2 π 2 K max S ⋅S 2 π 2 2Z θ K θ nR ψ Vfi = 1− R n22S Torsional rigidity factor Sθ = Temperature factor +D = ψ ψ − 1 + 2 1 −nn22 2 + 2ψπ n 2 2 π TK1max ≥RnT R J + J SJ⋅A+S+ZJ⋅ S J2θ π++ T JK ⋅ S θ ⋅ SD JA 30 J − 30 30 +60 T [°C] – 30 / +30 Positioning and angular L A JAL −1 L +80 2R C nR−1= nR =C min min−1 m = Am = Speed nR+40 CTdin A min = Tooling machines 2mπ = Tdin nRπ Tdin 1 m indicator (1) acceleration ( 1 ) 1 m J J ⋅ J (1) (1) system J J π ⋅ J J J π ⋅ A L L A L L A L TSJ =+TTJAIS ⋅= TLI ⋅ ⋅ VR +⋅TVLR + TL TS = TLI ⋅ ⋅ VR + TL Sθ 1 1,2 TS = TAI1,4 ⋅ ⋅ VR1,8 + TL 30 J − 1 A L A 30 J J + J 30 J J + J m min + A1−1m + 1 m +1 L nR−1= CTdinA m =A nR = CTdinm +A 1 L nmin m = C min m = 10 ≥ 2-5 3-8 R = Tdin 1 m (1) (1) AJ⋅JJ π π ⋅ LVR + TJJLLA−1 TS =JJLTAJLIL ⋅ ⋅ V + TL 30TπS = TAI ⋅JJAAJ⋅+ Sν = Starting frequency factor 30 JJAA +⋅ JJLL JA+ 1 +L LJm JA m + 1 R nR =−1 30 C min m = −1 n C min = m L = Tdin R Tdin TKKN TKSJ⋅DJS=+ ⋅JSD⋅ 1=,210 ⋅=1,248 ⋅ 4,0=[Nm] 48,0 [Nm] m =JJ ⋅ S=C ⋅4 nKN min == TKN = TπK ⋅ S θ ⋅ SD J= 10 ⋅ 1,2 ⋅ 4 T= ,π0T [Nm] θ⋅ 10 θ ⋅Tdin R48 30 LLJ LJ A A ⋅J L L−1≥ T 0-100 101-200 401-800 S/h JA J⋅T TJKW 0,25 201-400 TKN = TKW ≥ TW ⋅nSRθ =⋅ 801-1.600 S f ⋅ πSDCTdin 0A,SA25 L =min L KN W ⋅ S θ ⋅ S f ⋅ SD m = o S = Shock factor L A J J π ⋅ J A = 10 L ⋅ 1,2 ⋅ 4 = 48,0 [Nm] L T = T ⋅ S ⋅ S KN K θ D SZ TKN ⋅ SD = 10 ⋅ 1 ,2 ⋅T4KN==48 0⋅ S [Nm] 1 1,2= TK ⋅ S θ1,4 1,6 TK,1,8 ⋅ S = 10 ⋅ 1,2 ⋅ 4 = 48,0 [Nm] 0,25θ TKND = TKW ≥ T of ⋅ impact S θ ⋅ S f ⋅ SD Type S L o Sa T = <TW T = 48 , 0 Nm TTKN ==48 , 0 Nm < T KN KN cal ⋅ 1,2cal cal T = T ⋅ S ⋅48 SD,<0=TNm 10 ⋅ 41= 48,0 [Nm] TK ⋅ S θ ⋅ SD = 10 ⋅ 1,2 ⋅ 4KN = 48 , 0 [Nm] K θ KN m TKN = TK ⋅ S θ ⋅ SD = 10 ⋅ 1,2 ⋅ 4 = m 48,0 [Nm] 1 =TT ⋅Light ⋅ V,0fi [Nm] TW = TLI ⋅ ⋅ Vfi S f = Frequency factor 1,5 TW = TAI ⋅ ⋅ Vfi TKN = TK ⋅ S θ ⋅ SDT= TLI=⋅ 48 ⋅ Vfi W 10 ⋅W1AI,2= ⋅m 4 T = 48 , 0 Nm < T m +1 + 1 m + 1 m + 1 KN cal TKN = 48,0 Nm < Tcal TKN = 48,0 Nm < Tcal m 1 Medium 1,8 f in Hz >10 ≤10 JA T ⋅ Vfi TW = TLI ⋅ ⋅ Vfi JTAAI<⋅ T AW = J48 ,0== Nm TKN m J = J + J KN cal m J = J + J m = 1 , 5 J = J + J = J = J + J m = 1 , 5 J = J + J m = = 48,0 Nm <JATcal = J1 + J2 Tm m +=11,5 m + 1 2 2 TKN = 48L ,0JNm T L 3 L 2 3 2 1 3 <A 2 cal 1 A Strong 2,2 JL ,0 Nm JL Sf 1 f/10 L <T 2 2 TKN = 48 cal JA JAJA ψ J = J + J ψ m = J = J + J JL = J3J+A J=A2 J1 +1 J2m21=+1,5 JL =L J3 +3 J2 2 m= mm = 1=,51,5 J1A +=J1 +Jm 2 = JL JJLAJL 2π 1 1 1 1 1 1 π 2 2 J A = == = 13,2 [Nm] ⋅ 1+,5 J⋅T ,2J=[Nm] VAS Tm ,0 ⋅mTS= = T 1,SJ5⋅===T13 2 [Nm] ⋅S m = 1,5 J⋅+⋅AfiS J ⋅22 +SJ,02=⋅ =22 1,,520 ⋅ ⋅J1L,J5===J13 JAS,V JAA == J222 A AS fi ⋅ S = T 1 + J2 m m = 1,5 JJA1A2++=11J1ψ+Am + 13J2 3 + 2J2 1,5+2=JJ1AL L m +31 m Jn212,5+ 11,5 L JL m + 1 n2 ψ ψ J 1 1 π 2 m = 1,5 J = J + J m = J = J + J L − 1 + 1 − 2 + factor L 3 2 A 1 2 1 1 1 1 2 = VTfi ==Torque-Amplification =⋅ = 13 T = LTV⋅AS ,0 ⋅ 2⋅ 1,⋅51 ,= 5π13 ,[Nm] 2 [Nm] ⋅ S[Nm] = 22 =13 22,0 fi ,5 A 22 2 2,0 ⋅ n TAS ⋅ ⋅ nSRA = , 2 S , 2 ⋅1 ⋅ = T2⋅Sπ=S TJAS S A R 2 m1+ 1 1,51+ 1 mm 1,51 +11+ 1 n +51+ 1 ψ,1 S −22⋅θAS 1⋅1S,,S 1ZT T⋅K⋅S4⋅DS1 ,+S 0+1,θ⋅2 1S,5,2==⋅ 113 ,⋅,22 ==T13 ⋅2 = T⋅K1 13 ,+612 ,34 [Nm] =613 ⋅22 ⋅ 1,,25 +⋅ 112 ⋅ 4,34 = 85 T S ,613 1,,2[Nm] 2⋅ 1[Nm] ,2 ⋅,54 ⋅=1,285 [Nm] = ⋅ + ⋅ = ⋅13 TT TS⋅ ⋅ S Z ⋅ S⋅ θS+A T=K 22 SST , 1 , 12 , 5 ⋅ S,θ0⋅T ⋅ ⋅ + ⋅ TAS , 5 [Nm] ⋅T = 2T AS max Z θ KDmax S K K max S == ,5 =[Nm] ⋅ 1+ 1 π+=1θ 85⋅,1D34 nRA = 22,01⋅,251 m +1 1,5S +=1TAS m 1⋅ S m 1 , 5 1 + + TS = TAS ⋅ ⋅ S A = 22,0 ⋅ ⋅ 1,5 = 13,2 [Nm] TSK max= 13 S⋅1ZS⋅⋅1S TK,5⋅ S 13 21,⋅61[Nm] ,⋅61,⋅21,+212 4 85 ,34 [Nm] = T,⋅2 +12 = 85 + 12 = 85 m + S ⋅+ θ,1 D1 TK max = TS ⋅ S Z ⋅ S θ + TK ⋅ ST 2⋅,D5S ⋅ 4= = T 13 ,2,,⋅34 ,5 ,⋅51,⋅21,⋅24⋅ = ,34 [Nm] +θ +T θ K⋅ max D S S⋅ 1 Z,6 θ,2 K ⋅S θ⋅ ⋅1S 30 J J + J 30 J J + J − 1 A L − 1 A m = Mass factor m== A nR = Resonance frequency n⋅ 1R,,234 CT⋅,m min =<T 85 Nm Nm T12 TTK max n=R==85 < TcalA ⋅ S LT⋅TS min =T ,34 Tdin max cal⋅= K max cal⋅,S S ,2,34 [Nm] ==TTK85 ⋅ 1,6[Nm] ⋅ 1,2 + 12,5 ⋅ 1,2 ⋅ 4 = 85,34 ,2⋅ ,S 1= 5⋅<S 2 85 ⋅ S ZNm ⋅CSTdin ⋅34 ==13 ST Z,6⋅ S θ +++ KT θ⋅ 1 D4= K max Sπ θ +T D = 13 J J π ⋅ JL S S S 13 , 2 1 , 6 1 , 2 12 , 5 1 , 2 4 85 , 34 [Nm] = ⋅ ⋅ ⋅ ⋅ ⋅ + ⋅ ⋅ = JKA ⋅ JLθ KTmax J L K max S D AL 30⋅ZS +θ T J⋅KAS+ ⋅JθS JA ,34 [Nm] TKTmax =n=TS85 13,2−1⋅ 1,6 ⋅ 1,2 + 12,5 ⋅ 1,2 ⋅m 4 == 85 ⋅S Z Nm θ K θ L D =min C = , 34 < T R ,34 Nm < Tdin K max TK max = 85,34 Nm < Tcal TK max = 85 Tcal cal JA ⋅ JL π JL Trasco ES couplings (037.05) 15 T = 85 , 34 Nm < T TK maxT= 85 , 34 Nm < T KTmax cal cal T = ⋅ S ⋅ S = 10 ⋅ 1 , 2 ⋅ 4 = 48 , 0 [Nm] = 85 , 34 Nm < T = T ⋅ S ⋅ S = 10 ⋅ 1 , 2 ⋅ 4 = 48 , 0 [Nm] KN K θ D K max cal KN K θ D TK max = 85,34 Nm < Tcal TKN = TK ⋅ S θ ⋅ SD = 10 ⋅ 1,2 ⋅ 4 = 48,0 [Nm] [ [ [ [ [] [[ ]] [[ ]] [ ] ] ] ] [ ] [ ] [ ] ] ® TKN = 48,0 Nm < Tcal TKN = 48,0 Nm < Tcal TRASCO ES 2. Check the load with respect to the torque peak TKN ≥values TK ⋅ S θ ⋅ SD TKN ≥ TK ⋅ S θ ⋅ SD TKN ≥T K ⋅ S θ ⋅ SD The maximum coupling torque must be greater than or equal the ⋅ torque occur during operation for all working T S + TSpeaks ⋅DS θ ⋅ Sthat ⋅to TTK max≥≥TTS⋅ S ⋅ S Z⋅ S⋅ S θ + TK ⋅ S θ T ⋅T SKDmax SS⋅θS+Z T D K ⋅θ S θ ⋅ K ≥ T≥ K⋅Tmax SS θ⋅ S ⋅≥SZT KN D KN K θ D temperatures. TKN ≥ KTK ⋅ S θ ⋅ SD 2_inglese_01_Xp7:1_Giunti di trasm_xp5.qxd TKN 04/08/2010 08:53 Pagina 16 T ≥ TT ⋅ S≥ ⋅TS ⋅ S ⋅ ⋅SS TDKN ≥ DTK ⋅ S θ ⋅ SD θ ⋅S ≥ KN TK ⋅ S θK ⋅KNSDθTKNK D≥ TθK T KN ≥ TK ⋅ S θ ⋅ SD ≥ ⋅TSS θ≥ ⋅S ⋅K⋅SS T ≥TT ⋅ S + ZT ⋅S θZ+ S ⋅S θ⋅ ⋅S ≥TSKTD⋅+S⋅TθSK⋅Z⋅⋅SS ⋅DSθ θ+ +TDTK⋅ S ⋅ S θ⋅ S ⋅ SD TK max K≥max TS ⋅ SKZSmax ⋅ STθKZmax + TK ⋅TS ⋅S K max TST θ max D≥ TθS S⋅ S Z K θ K θ D www.sitspa.com Example of selection 1 1 m (1) 1 m (1) (1) (1) (1) 1 (1) TS =(1)(T 1) m TL +1T T = TTLS=⋅⋅STL (1+)⋅ TT⋅Lm S=L +T⋅ S TL⋅ +mm )⋅ T⋅LSA + T = T T1 ⋅ = TSAS=⋅⋅S TTAS ⋅S TL ⋅ SL + T(L1)(1) A (1+ LS S⋅ ⋅ S + T L ⋅T⋅SS= SL + T LS+T L TS = TSAS ⋅ AS S m⋅ TS T ⋅ S==TTAS⋅ A⋅ A L S LS 1T m 1 + T = T ⋅ ⋅ SL + TL L +T LS L +A1+ m m + 1 S m + 1 m + 1 S AS A L S LS m + 1 m + m +1 m +1 m +1 m + 11 ≥ ⋅TSS θ≥ ⋅S ⋅K⋅SS T ≥TT ⋅ S + ZT ⋅S θZ+ S ⋅S θ⋅ ⋅S ≥TSKTD⋅+S⋅TθSK⋅Z⋅⋅SS ⋅DSθ θ+ +TDTK⋅ S ⋅ S θ⋅ S ⋅ SD TK max K≥max TS ⋅ SKZSmax ⋅ STθKZmax + TK ⋅TS ⋅S K max TST θ max D≥ TθS S⋅ S Z K θ K θ D Application 1 (11) m m 1 m (1) (1) (1) (1) (1) m TL⋅ +1T1 (1) ⋅ V + TT TLI ⋅=⋅VT (1+ ) ⋅ T⋅L VR +⋅ V T = T 1T⋅ = TTSAI = ⋅⋅VTRAI(1+)⋅ TT⋅L V mm R=+ L + (1)S = TLIT⋅S = T ⋅ V TL ⋅ VR + T(L1)(1) R LI T TS==TTT R L S TS = TSAI ⋅ AI Sm⋅ V + T T = T ⋅ ⋅ V + T S= T AI⋅ R+S T L LI LI⋅R⋅ 1m ⋅ V T ⋅ VR + TL R1 m L +T R1 m L +1 + m + + 1 m + 1 S AI R L S LI Servomotor driving a recirculating ball screw m + 1 on a machine toolmm++11 m +1 mm++11 TK =0,25 10,0 Shock Type ,25 TW T 0Nm = T0T ⋅0S≥,T25 S≥f ⋅⋅S f θ⋅ S ,KN 25≥=TTT TSθ=D⋅T ⋅SS ⋅≥SDTf W ⋅ S⋅DS θ ⋅ S f ⋅ SD KW WKW θ ⋅S KN 0T,25 T22,0 = KN TNm ⋅=S KN=W KW ,25 TDT T ≥ T KW ≥ TW ⋅ S θ0 f ⋅KW Table Moment Inertia AS = KN KN KW W ⋅ S θ ⋅ Sof f ⋅S D Nominal Torque Peak Torque Rpm Moment of Inertia Temperature n = 3.000 1/min Driven Shaft J1 = 0,0058 kg·m2 Motor Shaft 1 1 1 T =TW+40°C 1 = T ⋅ ⋅ V T⋅ = TT ⋅ ⋅ V Tm 11 ⋅ T ⋅V W = Vfi =TT T = T ⋅ AIW ⋅TVWAI = Tfi AI ⋅ TW fi= T ⋅ LI W AIfi⋅ W Selection AI m +fi1 m +T1Wm = + 1TAI ⋅ m + 1⋅ Vfi W m +1 m +1 LI Light J3 = 0,0038 kg·m2 dc = 20 mm h6 (without keyway) dm = 24 mm h6 (without keyway) m m =TTLI ⋅=⋅VTfi ⋅ T⋅m Vfi ⋅ V mm ⋅ V W==TTLI⋅fi⋅ m⋅ V +Wfi1 mLI+T1m W + 1 LI m + 1⋅ Vfi fi m +1 m +1 2 2 2 2 2 ψ ψ 1ψ+ 1+ 1 + ψ 1 + ψψ 2 1 + element 2π ( 98 24/28 “A” type ES coupling with “Red” elastic Sh. 2π A ) 1+ Vfi = Vfi =V2fiπ= 2 V 2 = 2π 2 22ππ Vfi = Standard 2 2 2 fi 2 = V 2 n2 ψ Tψ2KN222= 60 [Nm] 2 coupling 2fiψ ntorque: n12− n 1−ψ + + nn2 ψψ 2 + − 1 2 2 2 T torque: = 120 [Nm] 1 − Maximum − 1 + + Kmax R 2πn 12−π 22π2 + 2π n 2 nR 2n 2π R nn R = 0,000135 R Hub Moment ofπInertia: [kg·m2] RJ2 Couple Transmitted by taper locking ring: Tcal = { 92 [Nm] per foro 20 [mm] 113 [Nm] per foro 24 [mm] 30 JA30+ JL JA +30 J 30 JA −J1 + −J JJL −+1 Jmin L + J C C 30 J−1A−= m = mA = JA m =JJA A 1 n30= nR =CJnTdin m A+ J 1L 1 A L nmin CTdinJAmin min =−⋅min Tdin nR = R CTdin ARπ =JLπ⋅Tdin m = RJ J JL J m = J n C min = J π J L L L JA ⋅ JLA LR A ππJL A ⋅ JTdin π JL JJA A⋅ J⋅ LJL JL L [ [ ] ][ [ ] ] [[ ]] Load check ⋅S ⋅ ⋅SS ==⋅10 ⋅ 1,48 2 [Nm] T = TT ⋅ S= ⋅TSD= =Tθ10 ⋅D1θ,2 4DT== 0⋅1S [Nm] ,= 2D⋅48 4= ,10 =0 48 S⋅θ,⋅4 ⋅ 1,02 ⋅[Nm] 4 = 48,0 [Nm] TKN = KN TK ⋅ S θK ⋅KNSDθT=KNK10 ⋅ 1K,2T ⋅T 4KN=⋅ S 48 ,K0⋅10 [Nm] KN = TK ⋅ S θ ⋅ SD = 10 ⋅ 1,2 ⋅ 4 = 48,0 [Nm] TKN 48<,=0T48 Nm < Tcal T = 48 ,0 = Nm <48 Tcal cal ,0TNm Nm<<TTcal TKN = KN 48,0 Nm <TTKN TKNKN==48 ,0,0Nm cal cal m= J J JA = A m = mA = JJAA = J1 J+AJ=JA2 AJJ1 += JJ2 + ,5J= 1,5 m = 1,5 + Jm 1,5m = 1m m 23 +=J = A JL =1 JJJL3JJ=2+A=JJ=32JJJ+L1+J+=J2 JJJ2m L3 ==J1 ,5 JLJ2L==J3J3++ J Jm JAL = JJ1 +m m = 1,5 J2 2 2= JL A 1 2 L JL JLJL 1 1 1 1 1 1 1 0 ⋅⋅ 1,,50⋅ S [Nm] ⋅ S,01⋅=⋅ S22 ⋅=1,2522[Nm] =⋅ 113 T = T T1 ⋅ = TSAS=⋅⋅S = 13 ,5 ,=211 13 ,2⋅ 1[Nm] ⋅ T22 A ,= 13 [Nm] ⋅+,,= AS A1 TS = TSAS ⋅ AS S m⋅ T S+A1 =T 22 0 51122 ,⋅21 [Nm] ⋅S=+=AT1T ⋅ =113 AS A= m 1Sm ,⋅5S+ +T 22,0,0⋅ ⋅ ,2,2[Nm] ⋅ ⋅ 1,5,5==13 1 , 5 m +1 1,5 +AS1 mm++11 A1,5 + 1 1,15,5++11 TSKTD⋅+S 13T 1 1 ,52,6⋅+ 12 ,4,+ 52=12 = ⋅TSS θ= ⋅S ⋅K⋅SS ⋅ SS ⋅S ⋅ 11,85 ⋅⋅,⋅4 T ,2 ⋅=1 ,S ,2⋅13 ,1 1⋅,1 2 34 [Nm] =TT ⋅ S + ZT ⋅S =⋅TθS13 ⋅ 1,=2 +,612 θZ+ ,2⋅85 ,5[Nm] ,=2+ 412,=34 ⋅,2 ⋅2 ⋅85 θ⋅ ⋅S ,26 11,2 ,585 1,34 2 ⋅ 4[Nm] +6 ⋅⋅,S = ⋅[Nm] = 85,34 [Nm] θ S⋅ ,S TK max K=max TS ⋅ SKZSmax 2ZK⋅ 1Z⋅⋅,S 6⋅DSθ⋅θ1θ+ ,θ5θ⋅,⋅2S 1 ,⋅34 ⋅ STθKZmax + TK ⋅TS ⋅S =13 K max K⋅ S D⋅ 4 TST TD+K 12 θ max D==T13 K S D = 13,2 ⋅ 1,6 ⋅ 1,2 + 12,5 ⋅ 1,2 ⋅ 4 = 85,34 [Nm] 85,=34 Nm <Nm Tcal< T Nm < T T =T85,34 Nm < Tcal TK=<max ,K34 cal TK max K=max 85,34K max Nm Tcal 85 max = 85,34 cal TT K max = 85,34 Nm < Tcal Coupling nominal torque Nm nR Resonance speed TK Motor-side nominal torque Nm CT Torsional rigidity Nm/rad TKmax Coupling maximum torque Nm MT Transmissible torque moment Nm TS Motor peak torque Nm SA Motor-side shock factor TAS/TAI Driver-side peak torque Nm SL Driven-side shock factor TL Nm SZ Start frequency factor Nm Sθ Temperature factor Sf Frequency factor TW Torque with reversal of the machine Nm TKW Torque with reversal transmissible by the coupling Nm TCal Hub-shaft connecton maximum torque Nm Acceleration delivered torque TLS/TLI Driven-side peak torque 16 min-1 TKN VR Resonance factor Vfi Torque amplification factor m Mass factor JA Motor-side inertia JL Driven-side inertia Ψ Dampening factor Trasco® ES couplings (037.05) (∆ Kw) (∆ Kw) SD(∆ Kw) Torsional rigidity Kw) factor (∆ Kw) (∆(∆Kw) kgm2 kgm2
Benzer belgeler
METALDRIVE® Disc Couplings
Particularly maximum speed must not exceed the permissible value. Dynamic balancing (optional) allows higher speeds.
Permissible speed could be limited by the weight and critical speed of spacers. ...