concrete road desing ekim2015 İndirmek için tıklayınız.
Transkript
concrete road desing ekim2015 İndirmek için tıklayınız.
Concrete Road Design and Application Course Notes Beton yol tasarım ve uygulaması ders notları: Doç.Dr. Muhammet Vefa Akpınar [email protected] K.T.Ü İnşaat Mühendisliği Bölümü Ulaştırma Kürsüsü, Trabzon 1 1.Mevcut yolların performansı • Esnek –Rigit Üstyapı karşılaştırması Muhammet Vefa Akpınar, KTÜ-İnşaat Mühendisliği 2 Betonarme Yollar Yeni Değil Avrupa da ilk beton yollar; Breaslau’da (şimdiki Polonya’da) . M.Vefa Akpınar 1900lerden günümüze betonarme yollar Muhammet Vefa Akpınar, KTÜ-İnşaat Mühendisliği 4 Valilik, Belediye ve Karayolları olarak gelen bütçeyi nereye harcamalı? • Yol Üstyapı Tipleri 1. Esnek Üstyapı Tek Kat Sathi Kaplama Çift Kat Sathi Kaplama BSK Ilık asfalt 2. Rijit Üstyapı Beton ve Betonarme Kaplama 3.Kompozit Üstyapı M.Vefa Akpınar, 2013 Muhammet Vefa Akpınar, KTÜ-İnşaat Mühendisliği 1. Doğu Karedeniz Bölgesi beton yolları uygulamaları: Sathi ve BSK yollar, 6 köy yol bağlantısı (Gümüşhane) M.Vefa Akpınar, 2013 HES çalışmaları ve servis yolları: Giresun. Ağır taşıt yükleri KTÜ-MVA grubu arazi çalışması M.Vefa Akpınar, 2013 Taşıyıcı özelliği yok M.Vefa Akpınar, 2013 Türkiye iklim koşullarına uygun değil. Karadenizde her yıl yenilenir. Belediye yolları, Trabzon Hayali Garaj, Trabzon Sinop Ayancık Maden Köyü heyelan sonrası yol kaplaması. Sıkça karşılaşılan zemin kaymaları Trabzon Sürmene Çamburnu Beldesi. Donatısız beton (dik Asfalt yol ve alttemel (dikyamaç) yamaç) Beton yolun altında kayan toprağa rağmen Trabzon Vakfıkebir, Kirazlık Köyü Dere Mevki Sinop Ayancık Dolay Köyü 2010 yılında inşa edilen rijit kaplama. Köy yolu oldukça dar ve geometrik standartlara uygun değildir. Birçok bölgesinde yamaç akması nedeniyle Her yıl asfalt kaplamada yapılan yol yenileme ve bakım çalışmaları Trabzon Beşikdüzü Aksaklı Köyyolu. Köyümüze yaklaşık 20 sene önce yapılmış ortalama 20 cm kalınlığındaki beton yolumuzun bozulmaya başlamasıyla üzerine yapılan ince sathi kaplama ile hizmet vermeye devam etmektedir. M.Vefa Akpınar, 2014 Rize İyidere Denizgören Köyü, eski bozulmuş rijit kaplama üzerine esnek kaplama. 1995 yılında yapılmıştır) Kompozit Yollar: Araklı Kalecik, Beton üstü ince asfalt kap Trabzon KTÜ kampus yollar betondan. 1955 den beri hizmet ediyor (Mayıs 2013 Çekildi) M.Vefa Akpınar, 2013 KTÜ, Doğru drenaj (projelendirme) uzun ömürlü betonarme kaplama. Doğal gaz için, yol 1 hafta da ancak kırılabildi. Önce kesme makinesi başaramayınca, kato makinesi getirildi. Çok iyi kür yapılmış. Zemin de iyi sıkıştırılmış Muhammet Vefa Akpınar, KTÜ-İnşaat Mühendisliği 24 • • • • Diğer İller, Elazığ Baskil Kaymakamlığı Karadüz Kaymakamlığı Derince Kaymakamlığı TÜRKİYE KÖY YOLLARI ENVANTERİ Muhammet Vefa Akpınar 31.12.2012 İTİBARİYLA İLLERİN KÖY YOLU ENVANTERİ- ALFABETİK Ham S.No Tesviye Stabilize Asfalt Beton Toplam İli Asfalt+ Ham+ Stabilize Beton Tesviye /Toplam (%) /Toplam (%) /Toplam (%) 5.432 25.736 148.148 134.542 6.507 320.366 44,03 46,24 9,73 29 ELAZIĞ 4 177 2.448 1.942 0 4.571 42,49 53,56 3,96 30 ERZİNCAN 0 422 1.571 2.174 0 4.166 52,17 37,70 10,12 31 ERZURUM 0 583 5.162 1.072 0 6.817 15,73 75,72 8,55 32 ESKİŞEHİR 21 86 1.575 2.229 0 3.911 56,99 40,27 2,74 33 GAZİANTEP 13 112 778 1.879 6 2.787 67,63 27,91 4,46 34 GİRESUN 198 1.461 3.577 882 781 6.899 24,10 51,85 24,05 35 GÜMÜŞHANE 101 1.938 1.256 825 4 4.124 20,10 30,46 49,44 36 HAKKARİ 73 273 1.156 358 0 1.860 19,25 62,15 18,60 37 HATAY 48 230 1.260 2.028 531 4.097 62,46 30,75 6,79 38 IĞDIR 0 0 395 451 29 875 54,85 45,15 0,00 39 ISPARTA 0 226 417 1.390 12 2.045 68,51 20,42 11,07 40 İZMİR 205 388 502 3.086 288 4.469 75,50 11,23 13,27 S.No İli Ham Tesviye Stabilize Asfalt 5.432 51 KONYA 25.736 148.148 134.542 Beton Toplam 6.507 320.366 Asfalt+ Ham+ Stabilize Beton Tesviye /Toplam (%) /Toplam (%) /Toplam (%) 44,03 46,24 9,73 465 749 1.732 5.097 0 8.043 63,37 21,53 15,09 52 KÜTAHYA 8 351 1.437 2.116 0 3.912 54,09 36,73 9,18 53 MALATYA 122 1.561 2.681 2.157 0 6.521 33,08 41,12 25,80 54 MANİSA 119 289 1.139 4.053 91 5.691 72,82 20,01 7,18 55 MARDİN 351 826 1.462 1.867 36 4.541 41,90 32,18 25,91 56 MERSİN 0 151 1.691 3.280 0 5.122 64,04 33,01 2,95 57 MUĞLA 9 39 975 3.321 0 4.344 76,45 22,44 1,10 13 408 796 1.535 0 2.751 55,79 28,92 15,30 0 31 217 1.191 0 1.438 82,82 15,06 2,13 73 127 641 1.092 62 1.995 57,84 32,13 10,03 58 MUŞ 59 NEVŞEHİR 60 NİĞDE Ham S.No Tesviye Stabilize Asfalt Beton Toplam İli Asfalt+ Ham+ Stabilize Beton Tesviye /Toplam (%) /Toplam (%) /Toplam (%) 5.432 25.736 148.148 134.542 6.507 320.366 44,03 46,24 9,73 61 ORDU 112 430 7.997 1.538 219 10.296 17,07 77,68 5,26 62 OSMANİYE 0 64 1.644 1.068 59 2.834 39,75 58,01 2,24 63 RİZE 254 453 3.673 319 1.585 6.285 30,30 58,45 11,25 64 SAKARYA 0 0 734 1.975 33 2.742 73,23 26,77 0,00 65 SAMSUN 0 0 5.397 3.234 17 8.648 37,59 62,41 0,00 66 SİİRT 86 4 811 882 4 1.787 49,55 45,42 5,03 67 SİNOP 65 534 3.327 1.122 10 5.058 22,38 65,78 11,84 68 SİVAS 0 676 4.746 2.623 15 8.060 32,73 58,88 8,39 69 ŞANLIURFA 0 6 3.651 3.686 0 7.343 50,20 49,72 0,08 70 ŞIRNAK 171 374 320 1.027 106 1.998 56,72 16,00 27,28 Türkiye yollarında (TCK ve belediyler hariç)=560646 (320.366x0.25x7)m3 beton ihtiyaç var. Ham S.No Tesviye Stabilize Asfalt Beton Toplam İli 5.432 25.736 148.148 134.542 6.507 320.366 Asfalt+ Ham+ Stabilize Beton Tesviye /Toplam (%) /Toplam (%) /Toplam (%) 44,03 46,24 9,73 71 TEKİRDAĞ 6 60 436 1.209 0 1.711 70,66 25,48 3,86 72 TOKAT 0 0 2.230 1.951 102 4.283 47,93 52,07 0,00 12.172 15,98 76,19 7,83 0 953 9.274 1.22 2 723 74 TUNCELİ 431 1.101 1.248 554 2 3.336 16,67 37,41 45,92 75 UŞAK 170 75 1.058 1.361 19 2.683 51,44 39,42 9,13 76 VAN 2 254 3.817 1.685 0 5.758 29,26 66,29 4,45 77 YALOVA 0 0 78 348 0 426 81,69 18,31 0,00 78 YOZGAT ZONGULDA 79 K 0 212 1.551 2.563 0 4.326 59,25 35,85 4,90 10 43 1.098 1.831 110 3.092 62,77 35,52 1,71 73 TRABZON TOPLAM 5.432 25.73 148.1 134. 6.50 320.3 6 48 54 7 66 44,03 46,24 9,73 • Kazakistan’da gerçekleştirilecek olan beton yol projesi Muhammet Vefa Akpınar, KTÜ-İnşaat Mühendisliği 31 Gürcistan İpek Yolu Muhammet Vefa Akpınar, KTÜ-İnşaat Mühendisliği 32 KARAYOLLARI GENEL MÜDÜRLÜĞÜ KARAYOLLARI 1. BÖLGE MÜDÜRLÜĞÜ, İZMİT – YALOVA D-130 DEVLET YOLU GÖLCÜK – ALTINOVA KESİMİ, KARAMÜRSEL ŞEHİR GEÇİŞİ KM: 38+400 – 40+000 BETON YOL UYGULAMASI ÇALIŞMA RAPORU M.Vefa Akpınar Rijid ve Esnek Üstyapılar 4 TON 4 TON Basınç gerilmesi < 7-20 KPA 50-70 KPA M.Vefa Akpınar, 2013 Muhammet Vefa Akpınar, KTÜ-İnşaat Mühendisliği Concrete Pavement Types • Jointed Plain – Undoweled – Doweled • Jointed Reinforced • Continuously Reinforced Plan 8 – 15 ft Profile or Yap-İşlet: Özel sektör betonarme yolu tercih ediyor. (h > 25 cm) Yüksek kapasiteli yollar için (h <20 cm) Gerek yok . Düşük Kapasiteli yollar için Tasarımları ve standartları 25 yıldır Dünyada uygulanmaktadır. mesafe 500 mm 8 adet kayma demiri Ø 25 mm uzunluk 600 mm 4350 mm mesafe 350 mm bağlantı demiri Ø 16 mm uzunluk 800 mm mesafe 1500 mm mesafe 750 mm 4500 mm 4500 mm 4350 mm Muhammet Vefa Akpınar, KTÜ-İnşaat Mühendisliği 41 Load stresses Thickness Curling/Warping stresses Jointing Volume change stresses Higher k-value will lower deflections Load transfer will lower deflections Load Transfer (slabs ability to share its load with neighboring slabs) Dowels Aggregate Interlock Edge Support ◦ ◦ ◦ ◦ Tied curb & gutter Integral curb & gutter Parking lane Tied concrete L= x U= 0 Poor Load Transfer L= x/2 Good Load Transfer U = x/2 L= x U= 0 The slabs ability to share its load with its neighboring slab ◦ Dowels Poor Load Transfer High Traffic Volumes (Pavements > 8 in.) (> 120 Trucks/day) ◦ Aggregate Interlock L= x Good Load Transfer U= x Low Traffic Volumes (Pavements < 7 in.) Load Transfer Efficiency Load Transfer Mechanism LTE, % aggregate interlock stabilized base 30 - 80 50 - 90 dowel bars 80 - 95 Shear between aggregate particles below the initial saw cut Conditions for Pumping Subgrade soil that will go into Suspension Free water between slab and subgrade Frequent heavy wheel loads / large deflections Lengths from 15-18 in. 6.0 in. min. embedment length Diameter ◦ 1.00 - 1.25 in. for SLR Epoxy or other coating used in harsher climates for corrosion protection Dowels recommended when ADTT is greater than or equal to 80: ◦ If pavement thickness is 6” or less dowels not recommended ◦ If pavement thickness is 6.5” to 7.5” use 1” dowels ◦ If pavement thickness is 8” or greater use 1¼“ dowels Faulting Model Faulting, in 0.20 Dense-graded base No dowel 0.15 Permeable base No dowel 0.10 Dense-graded base 1-in dowel 0.05 0.00 Dense-graded base 1.25-in dowel 0 5 10 Traffic, million ESALs 15 20 CRCP (sürekli donatılı güçlendirilmiş betonarme yol) Smoothness ◦ 10-20 ft. Straightedge ◦ Profilograph Index Texture ◦ Speeds less than 40 mph Burlap Drag Astroturf Drag Curing is one of the most important steps in quality concrete construction and one of the most neglected. Effective curing is absolutely essential for surface durability. Durability = resistance to freeze-thaw Curing requires adequate — Moisture Temperature Time If any of these factors are neglected, the desired properties will not develop Evaporation from water surface Partially saturated Curing membrane Saturated Concrete The simplest, most economical and widely used method is a liquid membrane which is sprayed on the surface of a slab as soon as possible after finishing. Apply at manufacture’s rate of coverage. Perform field check to verify application rate. Increased Strength Watertightness Abrasion resistance Freeze-thaw resistance Volume stability Laying technology Laying technology dowel setting machine Sürekli donatılı betonarme yol Araç Cinsi Treyler Kamyon Otobüs Orta Yük. Ticari Taşıt Otomobil Sayı 1.822 2.590 536 1.220 12.131 KARAMÜRSEL ŞEHİR GEÇİŞİ ANAYOL TİP ENKESİTİ ( KM:38+400 - 40+000 ) CL 3.50 3.50 1.00 1.00 1.00 1.00 3.50 3.50 0.50 2.00 0.50 19.00 m 2.00 Telçit %1.5 %2 %2 ÜSTYAPI TABAKA KALINLIKLARI Beton Plak Tabakası = 30 cm. Binder = 6 cm. PMT = 20 cm. %1.5 ÖLÇEK : 1 / 100 Damperli Kamyonlarla Taşınan Betonun Finişerin Önüne Dökülmesi Finişherin Her 4,5 m. de Çakılan Kot Çubuklarından Duyargaları Vasıtası ile Kot Alarak Çalışması Ekskavatör ile Betonun Yayılması Laying technology longitudinal smoother Laying technology transverse „steel-broom line“ Laying technology application curing-agent Field and Laboratuary Tests Modulus of Subgrade Plate-Load Test Reaction, k-value Reaction Plate load on subgrade k = Plate deflection on subgrade 5.0 psi k = 0.5 in = 100 psi / in. Stacked Plates Pressure Gauge Subgrade Plate-load test is rarely performed ◦ time consuming & expensive Estimate k-value by correlation to other tests ◦ e.g. California Bearing Ratio (CBR) or R-value tests Lean concrete subbases increases k-value substantially Muhammet Vefa Akpınar, KTÜ-İnşaat Mühendisliği 81 Correlated k-values for Subgrade Support Historical k-values (pci) California Bearing Ratio (CBR), % Resistance Value (R-value) (ASTM D 1183) (ASTM D 2844) Low 75 - 120 2.5 - 3.5 10 - 22 Sand and sand-gravel with moderate silt/clay Medium 130 - 170 4.5 - 7.5 29 - 41 Sand and sand-gravel with little or no silt/clay High 180 - 220 8.5 - 12 45 - 52 Type Fine-grained with high amounts of silt/clay Amount of Support Design Summary ◦ Need to know if pavement is on: Subgrade (k 25 MPa/m (100 psi/in.)), Granular subbase (k 40 MPa/m (150 psi/in.)), Asphalt treated subbase (k 80 MPa/m (300 psi/in.)) Cement treated/lean concrete subbase (k 125 MPa/m (500 psi/in.)). Muhammet Vefa Akpınar, KTÜ-İnşaat Mühendisliği 83 Plate-load test is rarely performed ◦ time consuming & expensive Estimate k-value by correlation to other tests ◦ e.g. California Bearing Ratio (CBR) or R-value tests Lean concrete subbases increases k-value substantially Correlated k-values for Subgrade Support Type Fine-grained with high amounts of silt/clay Sand and sandgravel with moderate silt/clay Sand and sandgravel with little or no silt/clay Historical k-values (pci) California Bearing Ratio (CBR), % Resistance Value (R-value) (ASTM D 1183) (ASTM D 2844) Low 75 - 120 2.5 - 3.5 10 - 22 Medium 130 - 170 4.5 - 7.5 29 - 41 High 180 - 220 8.5 - 12 45 - 52 Amount of Support Design Summary ◦ Subgrade strength is not a critical element in the thickness design. Has little impact on thickness. ◦ Need to know if pavement is on: Subgrade (k 25 MPa/m (100 psi/in.)), Granular subbase (k 40 MPa/m (150 psi/in.)), Asphalt treated subbase (k 80 MPa/m (300 psi/in.)) Cement treated/lean concrete subbase (k 125 MPa/m (500 psi/in.)). Portland Cement Materials Supplementary Cementitious Materials Aggregates Chemical Admixtures Water Testing Recommended Air Contents for Durable Concrete Maximum size aggregate Total target air content, percent * Severe Exposure Moderate Exposure in. mm 3/8 9.5 7.5 1/2 12.5 7 3/4 19.0 6 5 1 25.0 6 4.5 1½ 37.5 5.5 4.5 2 50.0 5 4 6 Suggest 6.5 5.5 Maximum Permissible Water-Cement Ratio for Durable Concrete Pavement Type of exposure Freezing/thawing with deicing chemicals Severe sulfate exposure [water-soluble sulfate (SO4) in soil > 0.20 % by weight] Moderate sulfate exposure [water-soluble sulfate (SO4) in soil of 0.10 to 0.20 % by weight] Maximum water-cementitious ratio by weight 0.45 INDOT max 0.42 0.45 0.50 C T Muhammet Vefa Akpınar, KTÜ-İnşaat Mühendisliği 92 Street Class Description Two-way Average Daily Traffic (ADT) Two-way Average Daily Truck Traffic (ADTT) Less than 200 2-4 4.0 - 5.0 in. (100-125 mm) 200-1,000 10-50 5.0 - 7.0 in. (125-175 mm) Typical Range of Slab Thickness Light Residential Short streets in subdivisions and similar residential areas – often not throughstreets. Residential Through-streets in subdivisions and similar residential areas that occasionally carry a heavy vehicle (truck or bus). Collector Streets that collect traffic from several residential subdivisions, and that may serve buses and trucks. 1,000-8,000 50-500 5.5 - 9.0 in. (135-225 mm) Business Streets that provide access to shopping and urban central business districts. 11,000-17,000 400-700 6.0 - 9.0 in. (150-225 mm) Industrial Streets that provide access to industrial areas or parks, and typically carry heavier trucks than the business class. 2,000-4,000 300-800 7.0 - 10.5 in. (175-260 mm) Arterial Streets that serve traffic from major expressways and carry traffic through metropolitan areas. Truck and bus routes are primarily on these roads. 4,000-15,000 (minor) 4,000-30,000 (major) 300-600 6.0 - 9.0 in. (150-225 mm) 7.0 - 11.0 in. (175-275 mm) 700-1,500 Muhammet Vefa Akpınar, 2014 100/99 M.Vefa Akpınar, 2013 101/99 5.5” Flexural Strength (Modulus of Rupture, ASTM C 78) Third-point Loading ◦ Avg. 28-day strength in 3rd-point loading Other Factors ◦ Concrete Strength Gain with Age ◦ Fatigue Properties d=L/ 6 L/3 Span Length = L Compressive Strength f’c Head of Testing Machine S’c = 8-10 f’c f’c = Compressive Strength (psi) S’c = Flexural Strength (psi) Cylinder Depth C T Compressive strength: ~4000 psi Flexural strength: ~600 psi Strength Correlations MR = 7.5 x f'c^(0.5) MR = 9 x f'c^(0.5) MR = 10 x f'c^(0.5) 800 750 Flexural Strength, psi 700 650 600 550 500 450 400 350 300 2000 2500 3000 3500 4000 4500 Compressive Strength, psi 5000 5500 6000 Percentage of 28-day Strength 160 If specify minimum flexural strength at 28-day of 550 psi & allow 10% of beams to fall below minimum: 140 120 100 Type I (GU) Type III (HE) 80 60 40 3d 7d 28d 3m Age 1y 3y 5y 10y 20y STEP 1 Estimate SDEV: 9% for typical ready mix. SDEV = 550 * 0.09 = 50 psi STEP 2 S’c design = S’c minimum + z * SDEV S’c design = 550 + 1.282 * 50 S’c design = 614 psi Comparison of f’c, MR, and Required Thickness Compressive Strength (psi) 3000 4000 5000 Flexural Strength Design Thickness (psi) (inches) 450 – 550 (500) 6.5 (6.43) PCA 7.0 510 – 630 (600) 5.5 (5.25) PCA 6.5 570 – 710 (700) 5.0 (4.86) PCA 6.0 Life 30 years, Collector (2), k-value 162, Reliability 80 %, plus C & G, 2 % annual growth New Regulations Concrete requirements Construction class 1 Minimum values of 28-day-oldconcrete Compressive strength on the cube with 20 cm edge lengths Beam-tensile strength [N/mm²] [N/mm²] [mm] 4 5 2 3 traffic load SV, I - IV ZTV Beton Tab.1 Size of aggregates-groupes 35 40 5,5 0/2, 2/8, > 8 0/4, 4/8, > 8 0/2, < 8* *for 8 mm maximum aggregate size V - VI 25 30 4,0 0/4, > 4 - Cement content of construction class SV, I, II, III: > 350 kg/m³ - Water-cement ratio in tests for construction classes SV, I, II, III: < 0,45 - Mixing time: > 45 seconds New Regulations Pavement construction: - The concrete pavement can consist of one or two layers - Thickness of top layer > 4 cm - The thickness of total pavement depends on the RStO 01 (RStO = Guidelines for the Standardization for Pavement Structures for Traffic Areas) 3 examples for construction class SV (heavy traffic load) concrete pavement geotextil cement stabilized base (HGT) 120 subbase frost-resistant material 45 MN/m2 27 cm concrete pavement asphalt stabilized base 120 15 cm 42 cm subbase frost-resistant material 45 MN/m2 26 cm 10 cm concrete pavement 150 crushed-rock base 36 cm 30 cm subbase frost-resistant 45 material MN/m2 30 cm 60cm New Regulations Alternative concrete construction method: 2 layer-concrete on crushed-rock base 4 cm = top layer standard-pavement structure 27 cm geotextil 15 cm 42 cm concrete pavement 30 cm concrete pavement 30 cm crushed-rock base (unbound base) 60 cm frost-resistant material cement stabilized base (HGT) frost-resistant material 26 cm = bottom layer The advantages of thick concrete pavement with a thin upper layer of concrete are: - Improved skid resistance - Reduction of noise - Guarantee of covered dowels - Use of recycled broken-up material in the lower concrete layer Laying technology Laying technology concrete pavement - two layers slipform paver Laying technology dowel setting machine Laying technology control of reinforcement (slipform paver) Joints Example of BAB 5 expresshighway: concrete pavement structure + positions of dowels and tie bars Longitudinal contraction joints, 3 or 5 tie bars per slab Transverse contraction joint, with dowels Spacing of dowels 25 cm 12 % 4,50 3,75 4,25 12,50 m internal lane central lane 2,50 2,50 m external lane shoulder lane concrete pavement 26 cm (19+7) cement stabilized base frost-resistant gravel and sand material Joint technology dummy joint-cut (to prevent wild cracks) bituminous joint filler or joint profile notch cement stabilized base (HGT) Still uses Unified Soil Classification (USC) system ◦ Reference to ASTM 2487 Unified Soil Classification System 60 GW GP GM GC SW SP SM SC CL ML OL CH MH OH PT 50 PLASTICITY INDEX (PI) 40 30 20 MH - OH 10 CL - ML ML - OH 0 0 10 20 30 40 50 60 LIQUID LIMIT (LL) 70 80 90 100 110 13 3 Soil Strength Parameter for RIGID pavement Resilient Modulus E (psi) or Modulus of Subgrade Reaction – k-value (pci) ◦ Design value – “conservative selection” ◦ K-value can be estimated from CBR 1500 CBR k 26 0.7788 (k in pci) 13 4 Seasonal Frost ◦ Same Frost Groups (FG-1, FG-2, FG-3 & FG-4) ◦ Determination of Depth of Frost Penetration Based on local Engineering experience i.e. local construction practice, building codes, etc. No nomographs or programs provided 13 5 13 6 Typical Flexible Pavement Progressively stronger layers Hot-Mix Asphalt Surface Base Course (Minimum CBR=80) (May Require Stabilization) Subbase (Minimum CBR=20) (May Require Stabilization) Frost Protection (As Appropriate) Subgrade 13 7 Muhammet Vefa Akpınar, KTÜ-İnşaat Mühendisliği 13 8 Wheel Load Horizontal Strain and Stress at the bottom of the asphalt Area of Tire Contact Wearing Surface Base Course Must also guard against potential failure in base layers Subbase Subgrade Approximate Line of Wheel-Load Distribution Vertical Subgrade Strain Subgrade Support 13 9 Wheel Load Horizontal Strain and Stress at the bottom of the asphalt Area of Tire Contact Wearing Surface Base Course Must also guard against potential failure in base layers Subbase Subgrade Approximate Line of Wheel-Load Distribution Vertical Subgrade Strain Subgrade Support 14 0 Flexible Pavement Design Wheel Load LAYERED ELASTIC METHOD CBR Method SURFACE ES, S, h BASE EB, B, hB CBR SUBBASE ESB, SB hSB CBR SUBGRADE ESG, SG hSG CBR E = Elastic Modulus h = thickness μ = Poisson’s Ratio Not Defined Subgrade Support CBR = California Bearing Ratio 14 1 Flexible Pavement Design LAYER AC Surface PCC Surface Aggregate Base Aggregate Subbase AC Base AC Base (min) AC Base (max) CTB (min) CTB CTB (max) Undefined (min) Undefined (max) Rubblized PCC (min) Rubblized PCC (max) ** Still subject to change ITEM E (psi) P401/403 200,000 P501 4,000,000 P209 MODULUS P154 MODULUS P401/403 400,000 Variable 150,000 Variable 400,000 P301 250,000 P304 500,000 P306 700,000 1,000 4,000,000 EB66 200,000* EB66 400,000* POISSON’S 0.35 0.15 0.35 0.35 0.35 0.35 0.35 0.20 0.20 0.20 0.35 0.35 0.35 0.35 FAA EQUIV NA NA NA NA 1.6 1.2 1.6 NA NA NA NA NA NA NA Subgrade Characteristics NATIONAL AIRPORT PAVEMENT TEST FACILITY E-CBR Equation E = 1500 X CBR 60,000 E= 1500CBR 50,000 Typical CBR range E (psi) 40,000 30,000 E = 3363.2(CBR)0.6863 R2 = 0.9727 20,000 10,000 0.0 5.0 10.0 15.0 CBR 20.0 25.0 30.0 35.0 40.0 14 3 Base Layer Characteristics ◦ Minimum material requirements P-209, P-208, P-211, P-304, P-306, P-401, P-403, & rubblized PCC ◦ Design assumes minimum strength – CBR > 80 ◦ Aggregate layer modulus dependent on thickness Modulus calculated by FAARFIELD is dependent on thickness ◦ Stabilization required - airplane gross weight > 100,000 lbs ◦ Minimum thickness requirements – by airplane 14 4 Hot-Mix Asphalt Surface Typical Rigid Pavement Base Course (Minimum CBR=80) (May Require Stabilization) Subbase (Minimum CBR=20) Portland Cement Concrete (PCC) (May Require Stabilization) Frost Protection Subbase Course ** Subgrade (As Appropriate) Subgrade ** Stabilization required when airplanes exceeding 100,000 lbs are in the traffic mixture. 145 CRITICAL LOAD CONDITION ASSUMPTIONS Maximum stress at pavement edge 25% Load Transfer to adjacent slab LOAD Maximum Stress Bottom of Slab Subgrade Support 14 6 CRITICAL LOAD CONDITION ASSUMPTIONS Maximum stress at pavement edge 25% Load Transfer to adjacent slab LOAD Maximum Stress Bottom of Slab Subgrade Support 14 7 TOP DOWN CRACKING DUE TO EDGE OR CORNER LOADING NOT INCLUDED IN DESIGN Maximum stress due to corner or edge loading condition Risk increases with large multi-wheel gear configurations These conditions may need to be addressed in future procedures Maximum Stress Top of Slab LOAD 14 8 Subgrade Characteristics k-value can be estimated from CBR value 1500 CBR k 26 0.7788 k = Foundation modulus of the subgrade, in pci 14 9 Portland Cement Concrete Layer Characteristics ◦ Minimum material requirements P-501 ◦ Flexural Strength as design variable FAA recommends 600 – 700 psi for design purposes FAARFIELD will allow 500 – 800 psi ASTM C 78 Flexural Strength of Concrete (Using Simple Beam with Third-Point Loading) Modulus fixed at 4,000,000 psi ◦ 6 Inch minimum thickness requirements ◦ Thickness rounded to the nearest 0.5 inch 15 0 Chapter 3 Section 3 – Rigid Pavement Design Low Strength subgrade High Strength subgrade 15 1 Chapter 3 Section 3 – Rigid Pavement Design Low Strength subgrade High Strength subgrade 15 2 Rigid Pavement Joint Spacing TABLE 3-16. RECOMMENDED MAXIMUM JOINT SPACINGS RIGID PAVEMENT WITH OR WITHOUT STABILIZED SUBBASE Part II, with Stabilized Subbase Part I, without Stabilized Subbase Slab Thickness Joint Spacing1 Slab Thickness Joint Spacing1 Inches Millimeters Feet Meters Inches Millimeters Feet Meters 6 150 12.5 3.8 7-9 175-230 15 4.6 8–10 203-254 12.5 3.8 >9 >230 20 6.1 11-13 279-330 15 4.6 14-16 356-406 17.52 5.32 >16 >406 20 6.1 15 3 Cost Performance Now Using Mechanistic-Empirical Design (MEPDG) to Optimize ESNEK ÜSTYAPILARIN PROJELENDİRİLMESİ Projeje Süresinin seçimi Performans (IRI ,PSI, RN) Yol bakım onarım maliyetleri 5 . 0 2 . 5 1 . 0 Min. Min. Kabul Kabul edilebilir edilebilir Seviye Seviye Proje (Performans) süreleri Analiz süresi Min. Seviye YIL
Benzer belgeler
CURRICULUM VITAE AHMET H. AYDILEK
Leachate Collection System Constructed with Scrap Tires”, Journal of Geotechnical and
Geoenvironmental Engineering, ASCE, Vol. 132, No. 8, pp. 990-1000.
15. Kaplan, H. and Aydilek, A.H. (2006). “Se...
18 October 2012 10:00-11:30 Hall: Kemal Kurdaş Sess
Monotonic triaxial tests on fiber reinforced sand
KMS / 2016 - KMS Mobilya Bağlantı Sistemleri
Sunduğumuz ürün kataloğunun faydalı olması ümidiyle...
KMS; Kalite ve Memnuniyette Standart...
Established in 2002, KMS provides the most high quality and innovative products in furniture
connectio...