İSTATİSTİK ARAŞTIRMA DERGİSİ Journal of Statistical Research İ l
Transkript
İSTATİSTİK ARAŞTIRMA DERGİSİ Journal of Statistical Research İ l
TÜRKİYE İSTATİSTİK KURUMU TÜRKİYE İSTATİSTİK KURUMU İSTATİSTİK ARAŞTIRMA DERGİSİ Journal of Statistical Research İSTATİSTİK ARAŞTIRMA DERGİSİ Journal of Statistical Research Cilt-Volume: 10 Sayı-Number: 02 Temmuz-July 2013 Cilt-Volume: 10 Sayı-Number: 02 Temmuz-July 2013 ISSN 1303-6319 TÜRKİYE İSTATİSTİK KURUMU Turkish Statistical Institute TÜRKİYE İSTATİSTİK KURUMU đ67$7đ67đ. $5$IJ7,50$'(5*đ6đ -RXUQDORI6WDWLVWLFDO 5HVHDUFK &LOW9ROXPH6D\×1XPEHU 7HPPX]-XO\ 4e2+Û9%ØÛ34!4Û34Û+Ø+525-5 4URKISHØ3TATISTICALØ)NSTITUTE Û34!4Û34Û+Ø!2!Ü4)2-!Ø$%2'Û3Û Ø <D\×QLVWHNOHULLoLQ ØØ '|QHU6HUPD\HđijOHWPHVL *OURNALØOFØ3TATISTICALØ2ESEARCH &ORØPUBLICATIONØORDER 2EVOLVINGØ&UNDØ-ANAGEMENT 7HOØØØØØØØØØØØØ )DNV)D[ØØØØ Ø <D\×QLoHULĊLQH\|QHOLNVRUXODU×Q×]LoLQ Ø 'HUJL(GLW|UOĊ &ORØQUESTIONSØABOUTØCONTENTSØOFØTHEØPUBLICATION *OURNALØ%DITORSHIP 7HOØØØØØØØØ )DNV)D[ØØØØ Ø Ø đQWHUQHW KWWSZZZWXLNJRYWU Ø Ø (SRVWD GHUJL#WXLNJRYWU Ø )NTERNET HTTPWWWTURKSTATGOVTR %MAIL JOURNAL TUIKGOVTR <D\×Q1R 0UBLICATIONØ.UMBER ,661 Ø 7UNL\HđVWDWLVWLN.XUXPX 4URKISHØ3TATISTICALØ)NSTITUTE <FHWHSH0DK1HFDWLEH\&DG1RdDQND\D$1.$5$7h5.đ<( %X \D\×Q×Q 6D\×O× )LNLU YH 6DQDW (VHUOHUL .DQXQXQD J|UH KHU KDNN× 7UNL\H đVWDWLVWLN .XUXPX %DijNDQO×Ċ×QD DLWWLU *HUoHN YH\D W]HO NLijLOHU WDUDI×QGDQ L]LQVL] oRĊDOW×ODPD]YHGDĊ×W×ODPD] 4URKISHØ 3TATISTICALØ )NSTITUTEØ RESERVESØ ALLØ THEØ RIGHTSØ OFØ THISØ PUBLICATIONØ 5NAUTHORISEDØ DUPLICATIONØ ANDØ DISTRIBUTIONØ OFØ THISØ PUBLICATIONØISØPROHIBITEDØUNDERØ,AWØ.OØ 7UNL\HđVWDWLVWLN.XUXPX0DWEDDV×$QNDUD 4URKISHØ3TATISTICALØ)NSTITUTEØ0RINTINGØ$IVISIONØ!NKARA 7HO)D[ +D]LUDQ *UNEØ 07%ØØØ$GHW#OPIES Foreword Önsöz Editör Notu 'H÷HUOL2NX\XFXODU TürkiyH øVWDWLVWLN .XUXPX WDUDIÕQGDQ \ÕOÕQGDQ EX \DQD KDNHPOL RODUDN \UWOPHNWH RODQ øVWDWLVWLN $UDúWÕUPD 'HUJLVL LOH LVWDWLVWLNL DUDúWÕUPDODUÕQ QLWHOL÷LQLQ \NVHOWLOPHVL NXUDPVDO YH X\JXODPD DODQÕQGDNL DUDúWÕUPDFÕODU DUDVÕQGD LOHWLúLPLQ RUWDN oDOÕúPD ve \D\ÕQODUODJoOHQPHVLVD÷ODQPD\DoDOÕúÕOPDNWDGÕU (YUHQVHO ELOLPLQ SD\ODúÕOPDVÕQÕ VD÷OD\DQ ELOLPVHO GHUJLOHULQ WHPHO LúOHYL ELOLPVHO PDNDOH \D]DUÕQÕQoDOÕúPDVÕQÕHQHWNLQELoLPGHLIDGHHWPHVLQH\DUGÕPFÕROPDNYHELOLPLDQODúÕODELOLU ELUELoLPGH\D\ÕQODPDNWÕU $NDGHPLV\HQ DUDúWÕUPDFÕYHRNX\XFXODUÕQDUWDQLOJLVLQHSDUDOHORODUDNEL]OHULQoDEDVÕD]PL YHNDUDUOÕOÕ÷ÕGDDUWDFDNROXSGHUJLPL]GDKDVWVHYL\HOHUHWDúÕQDFDNWÕU'HUJLPL]LQXOXVDOYH XOXVODUDUDVÕHQGHNVOHUGHWDUDQPDVÕoDOÕúPDODUÕGDGHYDPHWPHNWHGLU%XNDSVDPGD7h%ø7$. 8/$.%ø0¶HRQ-OLQHEDúYXUX\DSÕOPÕúROXSVRQXoEHNOHQPHNWHGLU%XNRQX\DLOLúNLQRODUDN DOÕQDFDNVRQXoODUVL]OHUOHSD\ODúÕODFDNWÕU %X VD\ÕPÕ]GD NDYUDPVDO NXUDPVDO YH X\JXODPDOÕ oDOÕúPDODU ROPDN ]HUH WRSODP EHú adet oDOÕúPD\Õ VL] GH÷HUOL RNX\XFXODUÕPÕ]OD SD\ODúPDQÕQ JXUXUXQX WDúÕ\RUX] %X GH÷HUOL oDOÕúPDODUÕ EL]OHUOH YH VL] GH÷HUOL RNX\XFXODUÕPÕ] LOH SD\ODúDQ VD\ÕQ \D]DUODUD WHúHNNU HGHUL] $\UÕFD oDOÕúPDODUÕQ GDKD QLWHOLNOL KDOH JHOPHVLQGH oRN GH÷HUOL |QHUL HOHúWLUL Ye NDWNÕODUÕQÕHVLUJHPH\HQVD\ÕQKDNHPOHUHGHúNUDQODUÕPÕ]ÕVXQX\RUX] 'HUJL¶QLQ EDVÕP DúDPDVÕQD JHOPHVLQGH HPH÷LQL YH GHVWHNOHULQL HVLUJHPH\HQ 7hø. %DúNDQÕ 6D\ÕQ %LURO $<'(0ø5¶H GHUJLQLQ KHU DúDPDVÕQGD HPH÷L JHoHQ (GLW|U <DUGÕPFÕVÕ 6D\ÕQ Doç. Dr. Özlem ø/. '$ö’a GHUJL oDOÕúPDODUÕQÕ LoWHQOLNOH YH D]LPOH \UWHQ 'HUJL 6HNUHWHU\DVÕ¶QD YH VRQ RODUDN GD HPH÷L JHoHQ GL÷HU WP 7hø. oDOÕúDQODUÕQD WHúHNNUOHULPL iletmek isterim. %X VD\ÕPÕ]ÕQ GD DNDGHPLV\HQOHU LOH DUDúWÕUPDFÕODUD ID\GDOÕ ROPDVÕ WHPHQQLVL YH JHOecek VD\ÕODUGDKHGHIOHQHQOHU|OoVQGHWHNUDUEXOXúPDNGLOH÷LLOHVD\JÕODUVXQDUÕP Prof. Dr. Fetih YILDIRIM Dergi Editörü TÜİK, İstatistik Araştırma Dergisi, Temmuz 2013 TurkStat, Journal of Statistical Research, July 2013 7hø.øVWDWLVWLN $UDúWÕUPD'HUJLVLTemmuz 2013 TurkStat, Journal of Statistical Research, July 2013 III III 7h5.ø<(ø67$7ø67ø..85808 TURKISH STATISTICAL INSTITUTE ø67$7ø67ø.$5$ù7,50$'(5*ø6ø JOURNAL OF STATISTICAL RESEARCH Sahibi 7UNL\HøVWDWLVWLN.XUXPX$GÕQD Birol $<'(0ø5 7UNL\HøVWDWLVWLN.XUXPX%DúNDQÕ Owner On Behalf of Turkish Statistical Institute %LURO$<'(0ø5 President, Turkish Statistical Institute Editör Editor Prof. Dr. Fetih YILDIRIM Prof. Dr. Fetih YILDIRIM (GLW|U<DUGÕPFÕVÕ Assistant Editor 'Ro'Ug]OHPø/. '$ö $VVRF3URIg]OHPø/. '$ö Sekreterya Secretariat Buket AKGÜN Z.Nur EMRE Nurdan ELVER TÜİK, İstatistik Araştırma Dergisi, Temmuz 2013 TurkStat, Journal of Statistical Research, July 2013 7hø.øVWDWLVWLN $UDúWÕUPD'HUJLVLTemmuz 2013 TurkStat, Journal of Statistical Research, July 2013 V Contents İçindekiler TÜİK, İstatistik Araştırma Dergisi, Temmuz 2013 TurkStat, Journal of Statistical Research, July 2013 VII İçindekiler VIII TÜİK, İstatistik Araştırma Dergisi, Temmuz 2013 TurkStat, Journal of Statistical Research, July 2013 Contents Aim, Target, Principles Amaç, Kapsam, İlkeler TÜİK, İstatistik Araştırma Dergisi, Temmuz 2013 TurkStat, Journal of Statistical Research, July 2013 IX Amaç, Kapsam, İlkeler TÜİK, İstatistik Araştırma Dergisi, Temmuz 2013 TurkStat, Journal of Statistical Research, July 2013 Aim, Target, Principles Referee List Hakem Listesi '(5*ø1ø1%86$<,6,1$%ø/ø06(/.$7.,6$ö/$<$1+$.(0/(5 REFEREES WHO PROVIDED SCIENTIFIC CONTRIBUTIONS FOR THIS VOLUME OF THE JOURNAL Doç. Dr Doç. Dr Doç. Dr Doç. Dr. Doç. Dr. Doç. Dr Doç. Dr Doç. Dr. Yrd. Doç. Dr Yrd. Doç. Dr. Yrd. Doç. Dr. $\WHQ<øöø7(5 Fikret Er +DOLO$<'2ö'8 Mehmet Ali ERYURT 0HKWDS$.dø/2. Meral SUCU g]OHPø/.'$ö 9LOGD38587d82ö/8 %%XUoDN%$ù%8ö(5.$1 1HFOD*h1'h=7(.ø1 5XNL\H'$ö$/3 Hacettepe Üniversitesi Anadolu Üniversitesi Ankara Üniversitesi Hacettepe Üniversitesi %DúNHQWÜniversitesi Hacettepe Üniversitesi 2UWD'R÷X7HNQLNÜniversitesi 2UWD'R÷X7HNQLNhQLYHUVLWHVL 2UWD'R÷X7HNQLNhniversitesi Gazi Üniversitesi Ankara Üniversitesi XI TÜİK, İstatistik Araştırma Dergisi, Temmuz 2013 TurkStat, Journal of Statistical Research, July 2013 7hø.øVWDWLVWLN $UDúWÕUPD'HUJLVLTemmuz 2013 XI Volume: 10 Number: 02 Category: 02 Page: 1-24 ISSN No: 1303-6319 Cilt: 10 Sayı: 02 Kategori: 02 Sayfa: 1-24 7h5.ø<(*(1(/øg/h09(5ø/(5ø.8//$1,/$5$.<$ù$0 7$%/2681812/8ù7858/0$6, Hanife TAYLAN Güçkan YAPAR ÖZET %XoDOÕúPDGDDPDoGH÷LúHQYHULND\ÕWVLVWHPLLOH7hø.WDUDIÕQGDQ\ÕOÕ LWLEDUL\OH \D\ÕPODQPD\D EDúODQDQ 7UNL\H JHQHOL |OP YHULOHUL NXOODQÕODUDN \Dú JUXEX YH FLQVL\HW ED]ÕQGD 7UNL\H '|QHP <DúDP 7DEORVXQXQ ROXúWXUXOPDVÕGÕU <DúDP WDEORVX HOGH HGLOLUNHQ 7UNL\H JHQHOL |OP YHULOHUL YH $GUHVH 'D\DOÕ 1IXV .D\ÕW 6LVWHminden elde edilen nüfus verileri NXOODQÕOPÕúWÕUøONRODUDNEHOLUOLELU]DPDQDUDOÕ÷ÕLoLQ\DúD|]HO|OPKÕ]ODUÕ HOGHHGLOPLúWLU'DKDVRQUDKHUELU\DúJUXEXLoLQ\DúD|]HO|OPYH\DúDP RODVÕOÕNODUÕ LOH EHNOHQHQ \DúDP VUHOHUL 7UNLye nüfusu için elde HGLOPLúWLU %XQXQ VRQXFXQGD \ÕOÕQGD NDGÕQODUGD EHNOHQHQ \DúDP VUHVLQLQ HUNHNOHUGH LVH ROGX÷X J|UOPúWU <DSÕODQ oDOÕúPDODU VRQXFXQGD 7UNL\HQIXVXQXQJLGHUHN\DúODQGÕ÷ÕYHNDGÕQODUÕQHUNHNOHUGHQRUWDODPD \ÕO GDKD X]XQ \DúDGÕNODUÕ YH \ÕOODU LWLEDUL\OH EX IDUNÕQ KÕ]OD azalmaya EDúODGÕ÷Õ J|UOPúWU 6RQ RODUDN HOGH HGLOHQ VRQXoODU GH÷HUOHQGLULOPLú YH WDUWÕúÕOPÕúWÕU Anahtar Kelimeler: %HNOHQHQ \DúDP VUHVL, Özetlenmiú G|QHP \DúDP WDEORVX YDúD |]HO ölüm RODVÕOÕ÷ÕYDúDPWDEORVX. 1. *ø5øù <DúDP WDEORODUÕ demografik veriler NXOODQÕODUDN ROXúWXUXODQ WDEORODUGÕU. <DúD J|UH gerçek ölüm VD\ÕODUÕ yDúDP WDEORODUÕQGD EHOLUOL ELU VUH LoLQGH KD\DWWD NDODQ YH |OHQ ELUH\OHULQ VD\ÕODUÕQGDQ ID\GDODQÕODUDN ]DPDQ YH \Dú DUDOÕ÷Õ ED]ÕQGD |OP YH \DúDP RODVÕOÕNODUÕQÕQ HOGH HGLOGL÷L WDEORODUGÕU +D\DW 6LJRUWDODUÕ 0DWHPDWL÷L LoLQ WHPHO ROXúWXUDQ\DúDPWDEORVXLONNH] (John Graunt, 1662); (Edmont Halley, 1693) WDUDIÕQGDQ ROXúWXUXOPXúWXU (GPRQW +DOOH\ WDUDIÕQGDQ \DSÕODQ oDOÕúPDGD \DúD |]J |OP VD\ÕODUÕ NXOODQÕOPÕúWÕU <DúDP WDEORVX, yDúD |]J |OHQ ve \DúD\DQ NLúL VD\ÕODUÕ NXOODQÕODUDN GHPRJUDILN \DNODúÕPODU \DUGÕPÕ\OD ROXúWXUXOXU(Shryock, Siegel, ve Associates, 1971). $NWHU\DOGHPRJUDILN \DúDP WDEORODUÕQÕQ ROXúWXUXOPDVÕQGD NXOODQÕODQ \|QWHPOHU sÕUDVÕ\OD (Reed ve Merrel, 1939; Greville, 1943; Chiang, 1968, 1972; Fergany, 1971; and Keyfitz and Frauenthal, 1975) WDUDIÕQGDQ JHOLúWLULOPLúWLU %X oDOÕúPDODUGD |OP RODVÕOÕ÷Õ EHOLUOL ELU ]DPDQ DUDOÕ÷Õ LoLQ \DúDQÕODQ ortalama NLúL \ÕO VD\ÕVÕ YH |OP KÕ]Õ NXOODQÕODUDNKHVDSODQPÕúWÕU <DúDP WDEORODUÕ G|QHP YH NXúDN \DúDP WDEORODUÕ ROPDN ]HUH LNL WLSWH ROXúWXUXOXU (Preston vd .XúDN \DúDP WDEORVX D\QÕ ]DPDQ DUDOÕ÷ÕQGD GR÷DQ WP ELUH\OHULQ KHU ELU \HVLQLQ |OPQH NDGDU JHoHQ VUHQLQ PRGHOOHQPHVL LOH ROXúWXUXODQ WDEORODUD denir. Dönem \DúDPWDEORODUÕLVHEHOLUOLELU]DPDQDUDOÕ÷ÕQGD \DúD\DQPHYFXWQIXVXQ yaúDP VUHOHULQLQ PRGHOOHQPHVL\OH ROXúWXUXOXU '|QHP \DúDP WDEORODUÕ JHOLúPLú ONHOHUGHELU\ÕOOÕN\DGD\ÕOOÕNWDEORODUKDOLQGHG]HQOLRODUDNLOJLOLELULPOHUWDUDIÕQGDQ \D\ÕPODQÕU %LUOHúLN $PHULND 'HYOHWOHUL¶QGH +DVWDOÕN .RUXQPD YH gQOHPH 0HUNH]L (NCHS) WDUDIÕQGDQ her \ÕONXúDN ve dönem \DúDPWDEORODUÕ\DúFLQVL\HWYHÕUNDgöre *$Uú Gör. 'RNX] (\OO e-posta: [email protected] **Doç. Dr., 'RNX] (\OO e-posta: [email protected] hQLYHUVLWHVL )HQ )DNOWHVL øVWDWLVWLN %|OP ø]PLU hQLYHUVLWHVL )HQ )DNOWHVL øVWDWLVWLN %|OP ø]PLU TÜİK, İstatistik Araştırma Dergisi, Temmuz 2013 TurkStat, Journal of Statistical Research, July 2013 Hanife TAYLAN, Güçkan YAPAR ROXúWXUXOXUYH\D\ÕPODQÕU$ULDV%HQ]HUúHNLOGH$YXVWUDO\D¶GD$%6WDUDIÕQGDQ %LUOHúLN .UDOOÕNWD 8OXVDO øVWDWLVWLN 2ILVL 216 WDUDIÕQGDQ <HQL =HODQGD¶GD <HQL =HODQGDøVWDWLVWLN0HUNH]L61=WDUDIÕQGDQEHOLUOLSHUL\RWODUKDOLQGH\D\ÕPODQPDNWDGÕU. .XúDN \DúDP WDEORODUÕ ise ELU NXúD÷ÕQ |OP GDYUDQÕúODUÕQÕ LQFHOHGL÷LQGH \DNODúÕN \] \ÕOOÕN|OPYH\DúDPYHULVLQHLKWL\DoGX\DUYHEXoR÷XONHLoLQKHQ]PHYFXWROPD\DQ bir vHUL VHWLGLU hONHPL]GH LVH |OP YH \DúDP YHULOHUL 7hø. WDUDIÕQGDQ \D\ÕPODQPDNWDGÕU %X YHULOHULQ GR÷UX YH WP QIXVX \DQVÕWDFDN úHNLOGH \D\ÕPODQPDVÕ JHUHNLU\ÕOÕLWLEDUL\OH|OPYHULOHUL7UNL\HJHQHOLLoLQ\D\ÕPODQPD\DEDúODQPÕúWÕU YH ND\ÕW VLVWHPLQGHNL EX GH÷LúLNOLN ONHPL] LoLQ G|QHP \DúDP WDEORODUÕQÕQ GR÷UX ELU úHNLOGHROXúWXUXOPDVÕQDRODQDNWDQÕPÕúWÕU <DúDP WDEORODUÕQÕQ EDUÕQGÕUGÕ÷Õ HQ |QHPOL SDUDPHWUH RODQ EHNOHQHQ \DúDP VUHVL GHPRJUDILN RODUDN ELU JHOLúPLúOLN J|VWHUJHVL ROPDVÕQÕQ \DQÕQGD VLJRUWDFÕOÕN VHNW|U LoLQGH |QHPOL ELU ELOJLGLU *HOHFHNWH ELUH\OHULQ RUWDODPD QH NDGDU \DúD\DFD÷ÕQÕQ ELOLQPHVL VRV\DO JYHQOLN VLVWHPL YH |]HO VLJRUWDFÕOÕN VHNW|UQGH SULP UH]HUY WHPLQDW KHVDSODPDODUÕ HPHNOLOLN VUHOHULQLQ EHOLUOHQPHVL \D GD UQ ROXúWurma gibi finansal \|QHWLPLQ WHPHOLQL ROXúWXUDQ DODQODUGD NXOODQÕOÕU *QP]GH \DúDP NRúXOODUÕQÕQ L\LOHúPHVLWÕSYHWHNQRORMLNDODQGD\DúDQDQJHOLúPHOHUGHPRJUDILN\DSÕQÕQGH÷LúPHVLQH \RO DoPÕúWÕU %X JHOLúPHOHU LVH X]XQ |PUOO÷H YH \DúOÕ QIXVXQ DUWPDVÕQD QHGHQ ROPXúWXU <DúOÕ QIXVXQ DUWPDVÕ YH X]XQ |PUOON LVH oDOÕúPD VUHVLQLQ X]XQOX÷X HPHNOLOLN\DúÕQÕQ\NVHOPHVLYHHPHNOLOLNPDDúÕQÕQGDKDX]XQSHUL\RWWD|GHQPHVLJHQo QIXVXQ ]HULQH \N ELQPHVL YH VRV\DO SUREOHPOHULQ DUWPDVÕ JLEL VRUXQODUÕ GD EHUDEHULQGH JHWLUPLúWLU 'H÷LúHQ EX \DSÕ\D X\XP VD÷ODPDN VHNW|UQ \DQOÕú KHVDSODPDODUGDQNRUXQPDVÕYHJHOHFHNWHNDUúÕODúDELOHFH÷LULVNL\|QHWHELOPHVLDoÕVÕQGDQ WRSOXPXQGHPRJUDILN\DSÕVÕQÕ\DQVÕWDQ\DúDPWDEORODUÕQÕQVHNW|UGHNXOODQÕOPDVÕE\N |QHP WDúÕPDNWDGÕU *HOLúPLú ONHOHU NHQGL \DúDP WDEORODUÕQÕ ROXúWXUXUNHQ ONHPL]GH KDODEDúNDONHOHULQ\DúDPWDEORODUÕNXOODQÕOPDNWDGÕU%XoDOÕúPDEXHNVLNOL÷LQRUWDGDQ NDOGÕUÕOPDVÕYH\DSÕODFDNoDOÕúPDODULoLQ|UQHNWHúNLOHWPHVLDPDFÕ\ODROXúWXUXOPXúWXU Tuzgöl, 2005, WDUDIÕQGDQ \DSÕODQ oDOÕúPDGD 66. |OP LVWDWLVWLNOHUL LQFHOHQPLú YH oDOÕúPDNWD RODQ VLJRUWDOÕODU PDOXOL\HW D\OÕ÷Õ YH \DúOÕOÕN D\OÕ÷Õ DODQ JUXSODU LoLQ \ÕOÕ G|QHP \DúDP WDEORVX D\UÕ D\UÕ HOGH HGLOPLúWLU <LQH HOGH HGLOHQ EHNOHQHQ \DúDPVUHOHULQHJ|UHGL÷HUONHOHULQ \DúDPWDEORODUÕ\ODNDUúÕODúWÕUÕOPÕúYHGHPRJUDILN \DSÕQÕQIDUNOÕOÕ÷ÕQÕQ\DSÕODQKHVDSODPDODUGDNLHWNLOHULLQFHOHQPLúWLU \ÕOÕ |QFHVLQGH 7UNL\H LoLQ \DúDP WDEORVX ELUoRN NH] IDUNOÕ oDOÕúPDODU \DSÕODUDN ROXúWXUXOPXúWXU %X NRQXGD \DSÕODQ |QHPOL oDOÕúPDODU VÕUDVÕ\Oa (Alpay, 1969; Özsoy, 1970; Öcal, 1974; Demirci, 1987; Duransoy, 1993; Hoúgör, 1992, 1997; Toros, 2000; Demirbüken, 2001; Coúkun, 2002; .ÕNEHúR÷OX Eryurt ve Koç, 2010) ROPXúWXU. hONHPL]GH EX NRQX LOH LOJLOL \DSÕODQ VRQ oDOÕúPD LVH 7UNL\H +D\DW YH +D\DW $QLWH 7DEORODUÕQÕQ ROXúWXUXOPDVÕ SURMHVLGLU %X SURMH Hacettepe Üniversitesi Fen Fakültesi $NWHU\D %LOLPOHUL %|OP QQ \|QHWLFLOL÷LQGH %1% 'DQÕúPDQOÕN ùLUNHWL 0DUPDUD ÜniversLWHVLYH %DúNHQW hQLYHUVLWHVLX]PDQODUÕLOHELUOLNWH JHUoHNOHúWLULOPLúWLU7UNL\H \ÕOÕ.DGÕQYH(UNHN+D\DWYH+D\DW$QLWH7DEORODUÕROXúWXUXOPXúWXU dDOÕúPDQÕQ ND\QD÷ÕQÕ 7hø. WHQ GHQ \ÕOÕQD NDGDU \DSÕODQ QIXV VD\ÕPÕQÕQ \Dú YH cinsiyet GD÷ÕOÕPÕQGDNL YHULVL ROXúWXUPXúWXU )DUNOÕ QIXV VD\ÕPODUÕQD 3UHVWRQ-Bennet \|QWHPL X\JXODQDUDN HOGH HGLOHQ PRGHO KD\DW WDEOR G]H\OHULQGHNL GH÷LúLP UHJUHV\RQ PRGHOOHUL\OHDoÕNODQPÕúWÕU 6RQXoE|OPQGHEXoDOÕúPDGDROXúWXUXODQ7UNL\H.DGÕQErken Hayat Tablosu (TRH-2010) LOH SURMHGH ROXúWXUXODQ KD\DW WDEORODUÕ NDUúÕODúWÕUÕODFDNWÕU %X oDOÕúPDGD 7UNL\H¶GH YH GQ\DGD \DSÕODQ oDOÕúPDODU YH \HQLOHQHQ YHUL ND\ÕW VLVWHPLQLQ VD÷ODGÕ÷Õ RODQDNODU GLNNDWH DOÕQPÕúWÕU %X GR÷UXOWXGD TÜİK, İstatistik Araştırma Dergisi, Temmuz 2013 TurkStat, Journal of Statistical Research, July 2013 Construction of a Life Table by Using the Turkish General Death Data Türkiye Geneli Ölüm Verileri Kullanılarak Yaşam Tablosunun Oluşturulması ülkenin kendi demografik özellikOHULQL \DQVÕWDQ \DúDP WDEORVXQD GX\GX÷X LKWL\Do DPDFÕ\OD 7UNL\H LoLQ g]HWOHQPLú '|QHP <DúDP 7DEORVX FLQVL\HW ED]ÕQGD ROXúWXUXOPXúWXU 2. 'g1(0<$ù$07$%/2681812/8ù7858/0$6, <DúDP 7DEORODUÕ ELU QIXVXQ |OHQ YH \DúD\DQ NLúL VD\ÕODUÕQGDQ ID\GDODQÕODUDN ROXúWXUXODQJHOHQHNVHOELU\|QWHPGLUYHELUoRNoDOÕúPD\DNRQXROPXúWXU&KLDQJ; Kintner, 2004; Keyfitz ve Caswell, 2005; Bell ve Miller, 2005 vb). Bir ülkenin belirli ELU]DPDQDUDOÕ÷ÕQGDNLPHYFXWGHPRJUDILN \DSÕVÕQÕ \DQVÕWDQYHEXDUDOÕNWDNL \DúD|]el |OPKÕ]ODUÕED]DOÕQDUDNROXúWXUXODQ\DúDPWDEORVXQDG|QHP\DúDPWDEORVXGHQLU (Pfaff vd, 2012) %X E|OPGH YH \ÕOODUÕ LoLQ |OP YH \DúDP YHULOHUL NXOODQÕODUDN 7UNL\H g]HWOHQPLú '|QHP <DúDP 7DEORVX FLQVL\HW YH \Dú JUXSODUÕ ED]ÕQGD HOGH HGLOPLúWLU %X oDOÕúPDQÕQ \|QWHPL DúD÷ÕGD DQODWÕOPÕúWÕU gQFHOLNOH GHPRJUDIL ELOLPLQGH KÕ] KHUKDQJL ELU ROD\ÕQ |OP GR÷XP J|o YE JHUoHNOHúPH VD\ÕVÕQÕQ EX ULVNH PDUX] NDODQ NLúL \ÕO VD\ÕVÕQD E|OP\OH HOGH HGLOLU 7DEORQXQ ROXúWXUXOPDVÕ LoLQ WDQÕPODQDFDN LON GH÷LúNHQ \DúD |]HO |OP KÕ]Õ RODUDN DGODQGÕUÕODQ n M x , belirli bir zamaQ DUDOÕ÷ÕQGD x ve x n \DúODUÕ DUDVÕQGD |OHQ NLúL VD\ÕVÕQÕQ yine D\QÕ\DúDUDOÕ÷ÕQGD\DúDQÕODQ NLúL\ÕOVD\ÕVÕQDE|OQPHVL\OHHlde edilir (Arias, 2010). n Mx Dx | n mx n Nx 1 n ax LOH J|VWHULOHQ RUWDODPD \DúDQDQ NLúL \ÕO VD\ÕVÕ G|UW IDUNOÕ \|QWHPH J|UH hesaplanabilir 3UHVWRQ YG %X oDOÕúmada gerçek gözlemler kullaQÕOPÕú \DQL RUWDODPD \DúDQDQ NLúL \ÕO VD\ÕVÕ |OP VD\ÕODUÕQÕQ KHU ELU \Dú JUXEX LoLQ D÷ÕUOÕNOÕ RUWDODPDODUÕDOÕQDUDNHOGHHGLOPLúWLU n n ax d x . 0 d x 1. 1 d x 2 . 2 d x 3 . 3 d x 4 . 4 n dx , n 5 2 <DúD |]HO |OP RODVÕOÕ÷Õ n qx , x \DúÕQGa bir kimsenin n \ÕO LoLQGHNL |OP olaVÕOÕ÷ÕQÕ LIDGH HGHU YH \DúD |]HO ölüm KÕ]Õ YH \DúDQDQ RUWDODPD NLúL \ÕO VD\ÕVÕ GH÷LúNHQOHUL NXOODQÕODUDN HOGH HGLOLU %X G|QúP JHUoHN NXúDN GDYUDQÕúODUÕQÕ ED] DOÕU YH DúD÷ÕGDNL gibi elde edilir. dx lx n. n mx 1 1 n ax n mx n Lx n . lx n n ax . n d x o n qx n Lx : %LUNXúDNWD[YH[Q\ÕOODUÕDUDVÕQGD\DúDQDQNLúL\ÕOVD\ÕVÕNXúDNGDYUDQÕúODUÕQÕ ED]DOÕU : %LUNXúDNWD\DúD\DQNLúLOHUden EXDUDOÕNWD\DúD\DQNLúL\ÕOVD\ÕVÕ : <DúDQDQRUWDODPDNLúL\ÕO VD\ÕVÕ : %LUNXúDNQIXVXQGDQEXDUDOÕNWD|OHQNLúLOHULQVD\ÕVÕ n . lxn n ax n dx n TÜİK, İstatistik Araştırma Dergisi, Temmuz 2013 TurkStat, Journal of Statistical Research, July 2013 Hanife TAYLAN, Güçkan YAPAR <DúD\DQNXúDNNLúL\ÕOVD\ÕVÕDúD÷ÕGDNLJLEL\HQLGHQG]HQOHQLU n Lx n. lx lx n lx n d x n ax . n d x n Lx n . n d x n ax . n d x 1 ª n Lx n n ax . n d x º¼ n¬ .XúDN GDYUDQÕúODUÕ NXOODQÕODUDN HOGH HGLOHQ lx yani x \DúÕQGD \DúD\DQ ELUH\OHULQ VD\ÕVÕ n q x IRUPOQGH\HULQH\D]ÕOÕU n. n d x n dx n qx lx n Lx n n a x . n d x Pay ve payda n Lx ’e bölünür: d n. n x n Lx n qx L d n x n n ax . n x n Lx n Lx n . n mx 1 n n ax . n d x 'DKDVRQUD\DúD|]HO|OPRODVÕOÕ÷ÕDúD÷ÕGDNLJLELHOGHHGLOLU n qx n. n mx 1 1 n ax n mx and qf 1 3 %XG|QúPGreYLOOHDQG&KLDQJWDUDIÕQGDQWDQÕPODQPÕúWÕUYHVDGHFHELU parametre gerektirir ve o parametre ise n ax ’tir. 2UWDODPD\DúDQDQNLúL\ÕOVD\ÕVÕG|QHP \DúDP WDEORODUÕQÕQ ROXúWXUXOPDVÕQGD |QHPOL ELU \HUH VDKLSWLU YH n mx o n qx G|QúP LOH \DúD |]HO |OP RODVÕOÕNODUÕQÕQ J|]OHQHQ YHULOHUGHQ HOGH HGLOPHVLQH RODUDN VD÷ODU (Preston vd., 2001). 'DKD VRQUD VÕUDVÕ\OD \DúDP WDEORVX IRQNVL\RQODUÕ RODQ \DúDPD RODVÕOÕNODUÕ n px \DúDQDQ NLúL \ÕO VD\ÕVÕ n Lx WRSODP NLúL \ÕO VD\ÕVÕ Tx HOGH HGLOPLúWLU (Selvin, 2008) <DúDP WDEORVX DQDOL]LQGHQ ID\GDODQÕODUDN x \DúÕQGD ELU NLPVHQLQ EHNOHQHQ\DúDP|PUDúD÷ÕGDNLJLELKHVDSODQÕU 0 ex Tx lx 'R÷XúWDEHNOHQHQ\DúDP|PULVHDúD÷ÕGDNLJLELHOGHHGLOLU 0 e0 T0 l0 3. UYGULAMA %X oDOÕúPDGD 7hø. WDUDIÕQGDQ \D\ÕPODQDQ YH \ÕOÕ 7UNL\H JHQHOL QIXV |OP YH GR÷XP YHULOHUL NXOODQÕODUDN YH \ÕOODUÕ LoLQ FLQVL\HW ED]ÕQGD g]HWOHQPLú '|QHP <DúDP 7DEORODUÕ ROXúWXUXOPXúWXU $GUHVH 'D\DOÕ 1IXV TÜİK, İstatistik Araştırma Dergisi, Temmuz 2013 TurkStat, Journal of Statistical Research, July 2013 Construction of a Life Table by Using the Turkish General Death Data Türkiye Geneli Ölüm Verileri Kullanılarak Yaşam Tablosunun Oluşturulması TÜİK, İstatistik Araştırma Dergisi, Temmuz 2013 TurkStat, Journal of Statistical Research, July 2013 Hanife TAYLAN, Güçkan YAPAR TÜİK, İstatistik Araştırma Dergisi, Temmuz 2013 TurkStat, Journal of Statistical Research, July 2013 Construction of a Life Table by Using the Turkish General Death Data Türkiye Geneli Ölüm Verileri Kullanılarak Yaşam Tablosunun Oluşturulması TÜİK, İstatistik Araştırma Dergisi, Temmuz 2013 TurkStat, Journal of Statistical Research, July 2013 Hanife TAYLAN, Güçkan YAPAR TÜİK, İstatistik Araştırma Dergisi, Temmuz 2013 TurkStat, Journal of Statistical Research, July 2013 Construction of a Life Table by Using the Turkish General Death Data Türkiye Geneli Ölüm Verileri Kullanılarak Yaşam Tablosunun Oluşturulması DQFDN\ÕOÕQGDELU|QFHNL\ÕODJ|UHEXDUDOÕNWDHUNHNOHUGHµOLNELUDUWÕúROGX÷X J|]OHPOHQPLúWLU - \Dú DUDOÕ÷ÕQGD |OP RODVÕOÕNODUÕQGDNL D]DOÕú HUNHNOHUGH NDGÕQODUGD LVH ROGX÷X YH \ÕOÕQGD HUNHNOHUGH |OP RODVÕOÕ÷ÕQÕQ DUWWÕ÷Õ J|]OHPOHQPLúWLU - \Dú DUDOÕ÷ÕQGD |OP RODVÕOÕNODUÕQGD NL D]DOÕú HUNeklerde %1.6, NDGÕQODUGD LVH ROGX÷X YH \ÕOÕQGD D\QÕ WUHQGLQ HUNHNOHUGH D]DODUDN GHYDP HWWL÷L J|]OHPOHQPLúWLU *|UOG÷ JLEL EHEHN YH oRFXN |OPOHULQGH YH \Dú VRQUDVÕQGD HUNHNOHUGH \ÕOlarD J|UH D]DODQ |OP RODVÕOÕ÷Õ NDGÕQODUD J|UH GDKD GúNWU %XQXQ WHUVLQH RUWD \Dú DUDOÕ÷ÕQGD GDKD \NVHNWLU $QFDN \ÕOÕQGDQ LWLEDUHQ \DúÕQGDQ VRQUD HUNHNOHULQ \DúD |]HO |OP RODVÕOÕNODUÕQGD ELU DUWÕú WUHQGLQLQ EDúODGÕ÷Õ J|UOPúWU <DúDP WDEORVX DQDOL]L NXOODQÕODUDN HOGH HGLOHQ EHNOHQHQ \DúDP VUHOHUL NDGÕQODUÕQ HUNHNOHUGHQ GDKD X]XQ \DúDGÕ÷ÕQÕ J|VWHUPHNWHGLU 7DEOR ¶GH EHOLUOL \DúODU LoLQ HOGH HGLOHQEHNOHQHQ|PUOHUJ|VWHULOPLúWLU Tablo 2. 2009-2011 yÕOODUÕ cLQVL\HW ED]ÕQGD belirli yDúODU LoLQ ortalama yDúDP süresi (beklenen yDúDPsüresi) (“ “=2009, “*”=2010, “**”=2011) <Dú Tüm Tüm* Tüm** .DGÕQ .DGÕQ .DGÕQ Erkek Erkek* Erkek** 0 75.8 76.5 76.8 78.5 79.1 79,4 73.1 73.9 74,1 20 57.6 58.1 58.3 60.2 60.7 60.9 55.0 55.6 55.7 40 38.3 38.8 39.0 40.7 41.1 41.4 35.9 36.4 36.5 60 20.5 20.9 21.0 22.2 22.6 22.8 18.6 19.0 19.0 80 7.4 7.6 7.7 7.9 8.1 8.3 6.6 6.8 6.8 Tablo 2’de elde edilen sonuçlara göre 7UNL\H¶QLQGR÷XúWDEHNOHQHQ\DúDPVUHVL \ÕOÕQGD LNHQ \ÕOÕQGD \ÕOÕQGD LVH ¶H \NVHOPLúWLU 7UNL\H¶QLQ GR÷XúWDEHNOHQHQ \DúDPVUHVL¶OLNELUDUWÕúJ|VWHUPLúWLU%HNOHQHQ\DúDPVUHVL NDGÕQODUGD\ÕOÕQGD\ÕOÕQGDLNHQ\ÕOÕQGD¶HHUNHNOHUGHLVH \ÕOÕQGD\ÕOÕQGDLNHQ\ÕOÕQGD¶H\NVHOPLúWLU\ÕOÕQGD \ÕOÕQD J|UH7UNL\HQIXVXQXQEHNOHQHQ \DúDPVUHVL \ÕOX]DPÕúWÕU.DGÕQODUÕQ GR÷XúWDEHNOHQHQ\DúDPVUHVL D\X]DUNHQHUNHNOHULQ|PU\ÕOX]DPÕúWÕU Tablo 3. 2011 yÕOÕQGD2009 yÕOÕQDJöre beklenen yDúDPsüresinde meydana gelen aUWÕúoUDQODUÕ <Dú Tüm .DGÕQ Erkek 0 1.32% 1.15% 1.37% 20 1.22% 1.16% 1.27% 40 1.83% 1.72% 1.67% 60 2.44% 1.80% 2.15% 80 4.05% 2.53% 3.03% 7DEOR¶WHHOGHHGLOHQVRQXoODUDJ|UHEHNOHQHQ\DúDPVUHVLQGHNLDUWÕúRUDQÕHUNHNOHUGH ROXUNHQ NDGÕQODUGD ROPXúWXU +HU ELU \Dú JUXEX LoLQ RUDQODU LQFHOHQGL÷LQGH HUNHNOHULQ EHNOHQHQ \DúDP VUHVLQLQ \Dú JUXEX KDULo NDGÕQODUGDQ GDKD KÕ]OÕ X]DGÕ÷Õ J|UOPúWU %X da erkekOHULQ EHNOHQHQ \DúDP VUHVLQLQ zamanla NDGÕQODUÕQNLQH \DNODúDFD÷ÕQÕQELU J|VWHUJHVLGLU7DEOR¶WH J|UOHQELUEDúNDVRQXoLVH EHNOHQHQ\DúDPVUHVLQGHNLDUWÕúRUDQÕQÕQ\DúOÕQIXVDGR÷UX\NVHOPHVLGLU*|UOG÷ TÜİK, İstatistik Araştırma Dergisi, Temmuz 2013 TurkStat, Journal of Statistical Research, July 2013 Hanife TAYLAN, Güçkan YAPAR ]HUH \DúÕQGD RUWDODPD |PUGHNL DUWÕú RUDQÕ ¶WLU %X GXUXP \DúOÕ QIXVXQ |PUQQ\ÕOODULWLEDUL\OHDUWÕúJ|VWHUGL÷LQLDoÕNODPDNWDGÕU 4. %8/*8/$59(7$57,ù0$ %XoDOÕúPDGDJHUoHNQIXVYHGHPRJUDILNYHULOHUNXOODQÕODUDN7UNL\HLoLQg]HWOHQPLú '|QHP <DúDP 7DEORVX ROXúWXUXOPXúWXU <DúDP WDEORVX DQDOL]L YH oHúLWOL GHPRJUDILN \DNODúÕPODUNXOODQÕODUDN|OPGDYUDQÕúODUÕLQFHOHQPLúYH\DúJUXEXYHFLQVL\HWED]ÕQGD bekOHQHQ \DúDP VUHOHUL KHVDSODQPÕúWÕU %XQD J|UH \DúD |]HO |OP RODVÕOÕ÷ÕQÕQ EHEHNOHUGH YH JHQo QIXVWD Gúú J|VWHUGL÷L YH EX RODVÕOÕ÷ÕQ \DúOÕ QIXVD GR÷UX DUWÕú J|VWHUGL÷LJ|UOPúWU%XQXQELUVRQXFXRODUDN7UNL\H¶QLQ\ÕOODULWLEDUL\OHGDKDX]XQ \DúDGÕ÷ÕJ|UOPúWU.DGÕQODUÕQHUNHNOHUGHQGDKDX]XQ\DúDGÕ÷ÕDQFDNEHNOHQHQ\DúDP VUHVLQGHNL DUWÕúÕQ HUNHNOHUGH GDKD ID]OD ROGX÷X |QHPOL ELU EXOJX RODUDN NDUúÕPÕ]D oÕNPÕúWÕU %XQXQ DQODPÕ LVH HUNHNOHULQ LOHUOH\HQ \ÕOODUGD NDGÕQODUÕQ RUWDODPD \DúDP sürelerine \DNODúDFDNODUÕGÕU gOPGDYUDQÕúODUÕLO-LOoHYH7UNL\HJHQHOLED]ÕQGD\D\ÕPODQDQYHULLOHNDUúÕODúWÕUÕOPÕú YH JHQHOGDYUDQÕúÕQD\QÕROGX÷XDQFDN \ÕOÕ LWLEDUL\OHYHULND\ÕWVLVWHPLQHN|\ YH EXFDNODUÕQÕQ GDKLO HGLOPHVL\OH ELUOLNWH EHOOL \Dú JUXSODUÕ LoLQ IDUNOÕOÕN J|VWHUGL÷L J|UOPúWU%XGD7UNL\H¶QLQJHUoHNGHPRJUDILN\DSÕVÕQÕ\DQVÕWPDGÕ÷ÕLoLQ\ÕOÕ |QFHVLQGH\D\ÕPODQDQ|OPYHULOHULQLQNXOODQÕOPDVÕQÕQ\DQOÕúVRQXoODUGR÷XUDELOHFH÷LQL J|VWHUPLúWLU $\UÕFD \ÕOÕ LWLEDUL\OH |OP YHULOHULQLQ güncellenmesiyle birlikte PHYFXWQIXVXQGHPRJUDILN\DSÕVÕQÕ\DQVÕWDQ'|QHP<DúDP7DEORODUÕQÕQROXúWXUXOPDVÕ PPNQNÕOÕQPÕúWÕU ùHNLOYHùHNLO¶GHEXoDOÕúPDGDHOGHHGLOHQ\DúD|]HO|OPRODVÕOÕNODUÕoD\UÕ\DúDP tablosu ile FLQVL\HW ED]ÕQGD NDUúÕODúWÕUÕOPÕúWÕU %X WDEORODU VÕUDVÕ\OD ONHPL]GH KDOHQ NXOODQÕODQ &62 <DúDP 7DEORVX The Commissioners 1980 Standard Ordinary 0RUWDOLW\ 7DEOH EX oDOÕúPDGD ROXúWXUXODQ \DúDP WDEORVX 7XUNL\H YH Hayat 6LJRUWDODUÕ %LOJL 0HUNH]L +$<0(5 için \DSÕODQ projede 7UNL\H LoLQ ROXúWXUXODQ \DúDPWDEORVXGXUTRH-2010). ùHNLOLQFHOHQGL÷LQGHHOGHHGLOHQ\DúD|]HO|OPRODVÕOÕNODUÕQÕQIDUNOÕ\DúDUDOÕNODUÕLoLQ GDYUDQÕúODUÕ\RUXPODQPÕúWÕU%XQDJ|UH-\DúDUDOÕ÷ÕLoLQONHPL]LoLQROXúWXUXODQLNL tabloda CSO’ya J|UH D\QÕ GDYUDQÕúODUÕ J|VWHUPLúWLU $QFDN EX oDOÕúPDGD HOGH HGLOHQ tabloya göre bebek ölümleri CSO ve TRH-2010 tablosuna göre daha yüksek, 1-\Dú DUDOÕ÷ÕQGDLVH|OPRODVÕOÕNODUÕ75+-WDEORVXQDJ|UH&62¶\DGDKD\DNÕQoÕNPÕúWÕU %HQ]HUúHNLOGHD\QÕdurum 65-\DúJUXEXQDNDGDUGHYDPHWPLúWLU\DúVRQUDVÕQGD LVH &62¶\D J|UH |OP RODVÕOÕNODUÕ \NVHOPLúWLU EX GD ONH QIXVXQXQ \DúODQGÕ÷ÕQÕ J|VWHUPHNWHGLU$QFDNEXDUDOÕNWD|OPRODVÕOÕNODUÕ75+-WDEORVXQGDEXoDOÕúPD\D J|UH &62¶\D GDKD \DNÕQ oÕNPÕúWÕU <DQL EX oDOÕúPDGD EHNOHQHQ |PUGHNL DUWÕúÕQ ND\QD÷Õ \DúODQDQ QIXV ROXUNHQ 75+- WDEORVXQGD DUWÕúÕQ QHGHQL GDKD oRN JHQo QIXVWDNL|OPRODVÕOÕNODUÕQÕQGúNO÷ROPXúWXU 10 TÜİK, İstatistik Araştırma Dergisi, Temmuz 2013 TurkStat, Journal of Statistical Research, July 2013 Construction of a Life Table by Using the Turkish General Death Data Türkiye Geneli Ölüm Verileri Kullanılarak Yaşam Tablosunun Oluşturulması TÜİK, İstatistik Araştırma Dergisi, Temmuz 2013 TurkStat, Journal of Statistical Research, July 2013 11 Hanife TAYLAN, Güçkan YAPAR EHEHN YH oRFXN |OPOHULQGHNL GúúWHQ GDKD oRN \DúODQDQ ELU 7UNL\H QIXVXQXQ ROGX÷XQXJ|VWHUPLúWLU Tablo 4. Belirli yDúODULoLQcinsiyet bD]ÕQGDbeklenen yDúDPsüresi .DGÕQ Erkek <Dú CSO Türkiye Haymer CSO Türkiye Haymer 0 75.8 79.1 78.0 70.8 73.9 71.9 20 57.0 60.7 58.9 52.4 55.6 54.0 40 38.4 41.1 39.2 34.1 36.4 34.9 60 21.2 22.6 20.8 17.5 19.0 17.6 80 7.5 8.1 7.0 6.2 6.8 6.0 7DEOR¶WHNDGÕQYHHUNHNOHULoLQHOGHHGLOHQEHNOHQHQ\DúDPVUHOHULNDUúÕODúWÕUÕOPÕúWÕU %XQDJ|UHNDGÕQODUGDEHNOHQHQ\DúDPVUHVL75+-¶DJ|UH\ÕOHUNHNOHUGHLVH \ÕO GDKD X]XQGXU <DúOÕ QIXV LoLQ \Dú LQFHOHQGL÷LQGH EX oDOÕúPDGD KHVDSODQDQ EHNOHQHQ \DúDP VUHVL TRH-201’a göre NDGÕQODUGD \ÕO HUNHNOHUGH \ÕO GDKD uzundur. %X oDOÕúPDGDQ HOGH HGLOHQ EXOJXODU J|VWHUPLúWLU NL ONHPL]GH KDOHQ DNWLI RODUDN NXOODQÕODQ EDúND ONHOHULQ WDEORODUÕ ONHPL]LQ JHUoHN GHPRJUDILN \DSÕVÕQÕ \DQVÕWPDPDNWDGÕU %X GXUXP EDúWD VRV\DO JYHQOLN VLVWHPL YH VLJRUWD VHNW|U LoLQ tehlike arz etmektedir. Bu tehlikelerin önlenmesi için Türkiye kendi demografik \DSÕVÕQÕ\DQVÕWDQ\DúDPWDEORVXQXROXúWXUPDOÕYHDNWLIRODUDNNXOODQPDOÕGÕU 7hø.WDUDIÕQGDQ\D\ÕPODQDQ|OPYHULOHULELOLQPH\HQ\DúDDLWYHULOHUL de içermektedir DQFDNEXoDOÕúPDGDELOLQPH\HQ\DúDDLWRODQ|OPVD\ÕODUÕYHUL\HGDKLOHGLOPHPLúWLU%X oDOÕúPD LoLQ ELU HNVLNOLNWLU YH oHúLWOL LVWDWLVWLNVHO \|QWHPOHU NXOODQÕODUDN EX HNVLNOLN giderilebilir. $\UÕFD EX oDOÕúPDGD g]HWOHQPLú <DúDP 7DEORVX YH \ÕOODUÕ LoLQ D\UÕ D\UÕROXúWXUXOPXúWXU$QFDNG|QHP\DúDPWDEORVXKHU\ÕOD\UÕD\UÕROXúWXUXODELOGL÷LJLEL \ÕOOÕN \D GD EHQ]HUL G|QHPOHU LoLQGH ROXúWXUXODELOLU %X oDOÕúPDGD |UQHN ROPDVÕ LoLn WHN \ÕO YH \Dú JUXSODUÕ LoLQ ROXúWXUXOPXúWXU øOHUOH\HQ oDOÕúPDODUGD WHN \DúODU LoLQ ROXúWXUXOPDVÕKHGHIOHQPHNWHGLU 6RQ RODUDN JHOHFHN \ÕOODU LWLEDUL\OH HNOHQHFHN \HQL |OP YHULOHUL KHU \ÕO ONHPL] LoLQ G|QHP \DúDP WDEORVXQXQ \HQLOHQPHVLQH YH X\JXQ \ÕO VD\ÕVÕQD XODúÕOGÕ÷ÕQGD |OP RODVÕOÕNODUÕQÕQ YH EHNOHQHQ \DúDP VUHOHULQLQ JHOHFHN LoLQ NHVWULPLQH RODQDN VD÷OD\DFDNWÕU 5. KAYNAKLAR Alpay A., 1969. Abridged Life Tables for Selected Regions and Cities of Turkey, Turkish Demography: Proceedings of a Conference. H.Ü. Nüfus Etütleri Enstitüsü, 83108. Arias E., 2010. United States Life Tables by Hispanic Origin, National Center for Health Statistics. Vital Health Stat 2(152). 12 TÜİK, İstatistik Araştırma Dergisi, Temmuz 2013 TurkStat, Journal of Statistical Research, July 2013 Construction of a Life Table by Using the Turkish General Death Data Türkiye Geneli Ölüm Verileri Kullanılarak Yaşam Tablosunun Oluşturulması Australian Bureau of Statistics (ABS). 2008. Life Tables. Retrieved 2012, from http://www.abs.gov.au/AUSSTATS/[email protected]/webpages/statistics?opendocument. Bell, F., C., Miller, M., L., 2005. Life Tables for the United States Social Security Area 1900-2100, Social Security Administration. Actuarial Study, 120. Chiang, C. L., 1968. Introduction to Stochastic Processes in Biostatistics, New York: John-wiley and Sons. Chiang, C. L., 1972. On Constructing Current Life Tables, Journal of the American Statistical Association 67, 538-541. &Rúkun, Y., 2002. Estimation of Adult Mortality by Using the Orphanhood Method from the 1993 and 1998 Turkish Demographic and Health Surveys, H. Ü. Nüfus Etütleri$QNDUDøngilizce). Demirbüken, D., 2001. An Evaluation of Burial Records of Ankara City Cemeteries, H. Ü. Nüfus Etütleri Enstitüsü, Ankara. (øQJLOL]FH). Demirci, M., 1987. 7UNL\H¶QLQgOPOON<Dú <DSÕVÕQD0RGHO<DúDP 7DEORODUÕQGDQ (Q8\JXQ.DOÕEÕQ6HoLPL, H. Ü. Fen Bilimleri Enstütüsü, Ankara. (Türkçe). Duransoy, M. L., 1993. Türk Mortalite Tablosu (1980-2000), Mimar Sinan Üniversitesi, øVWDQEXO (Türkçe). Eryurt, M. A., Koç, ø 7UNL\HLoLQ+D\DW7DEORODUÕQÕQSentetik YetiPOLN7HNQL÷L ile 2OXúWXUXOPDVÕ, Nüfusbilim Dergisi, 28-29, 47-60. Fergany, N., 1971. On the Human Survivorship Function and Life Table Construction, Demography 8, 331-334. Government Actuary’s Department (SNZ)., 2010. Life Tables, Retrieved 2012, from http://www.gad.gov.uk/Demography%20Data/Life%20Tables/. Greville, T. N. E., 1943. Short Methods of Constructing Abridged Life Tables, Record of the American Institute of Actuaries 32, 28-34. +RúJ|U ù, 1992. Estimation of Post-Childhood Life Tables Using Age and Sex Distributions and Intercensal Growth Rates in Turkey, (1930-1990), H. Ü. Nüfus Etütleri Enstitüsü, Ankara, (øQJLOL]FH). +RúJ|Uù(VWLPDWLRQRI3RVW-Childhood Life Tables of Provinces and Regions in Turkey, by Using Age and Sex Distributions and Intercensal Growth Rates (19851990), H. Ü. Nüfus Etütleri Enstitüsü, Ankara, (øQJLOL]FH). Keyfitz N., 1982. Choice of Function for Mortality Analysis: Effective Forecasting Depends on a Minimum Parameter Representation Theoretical Population Biology, 21, 329–352. TÜİK, İstatistik Araştırma Dergisi, Temmuz 2013 TurkStat, Journal of Statistical Research, July 2013 13 Hanife TAYLAN, Güçkan YAPAR Keyfitz, N., Caswell, H., 2005. Applied Mathematical Demography, 3rd Edition. New York: Springer. Keyfitz, N., Frauenthal, J., 1975. An Improved Life Table Method, Biometrics 31, 889900. .ÕUNEHúR÷OX(, 2006. Construction of Mortality Tables for Life Insurance Sector from the 2003 Turkey Demographic and Health Survey, H. Ü. Nüfus Etütleri Enstitüsü, Ankara. øQJLOL]FH. Kintner, H. J., 2004. The Life Table. In: Siegel, J.S. and Swanson, D. A. (eds.). The Methods and Materials of Demography, 2nd edition. San Diego: Elsevier, Academic Press: 301-340. National Center For Health Statistics (NCHS). 2011. Life Table Analysis System. Retrieved 2011, from http://www.cdc.gov/niosh/LTAS/. Öcal, M., 1974. 7UNL\HgOP2UDQODUÕ7DEORVX, øVWDQEXO Özsoy, A., 1970. 7UNL\H LoLQ gOP 7DEORODUÕ, Ankara, Ordu <DUGÕPODúPD .XUXPX <D\ÕQODUÕ Preston, S. H., Heuveline, P., Guillot, M., 2001. Demography Measuring and Modeling Population Process, Blackwell, INC., Publications, USA. Pfaff, Thomas, J., Seltzer, Stanley, 2012. "Period Life Tables: A Resource for Quantitative Literacy, 5(1), Article 5. Reed, L. J., Merrell, M., 1939. A Short Method for Constructing an Abridged Life Table, American Journal of Hygiene 30. Selvin, S., 2008. Survival Analysis for Epidemiologic and Medical Research, Cambridge University, INC., Publications, USA. Shryock, H. S., Siegel, J. S., Associates, 1971. The Methods and Materials of Demography, U.S. Government Printing Office, Washington, D.C. Sigorta Bilgi ve Gözetim Merkezi, 2010. Türki\H+D\DWYH+D\DW$QQLWH7DEORODUÕQÕQ 2OXúWXUXOPDVÕ3URMHVL, 2012. http://www.sbm.org.tr/?p=mortaliteIstatistik, 2012. Statistics New Zealand (SNZ). (2009. Period Life Tables.Retrieved, 2012, from http://www.stats.govt.nz/browse_for_stats/health/life_expectancy/periodlifetables.aspx. Toros, A., 2000. Life Tables for the Last Decade of XX. Century in Turkey, Nüfusbilim Dergisi, 22, 57-110. Tucek, D., G., A., 2011. Comparison of Period and Cohort Life Tables, Journal of Legal Economics, 17(2), 99-112. 14 TÜİK, İstatistik Araştırma Dergisi, Temmuz 2013 TurkStat, Journal of Statistical Research, July 2013 Construction of a Life Table by Using the Turkish General Death Data Türkiye Geneli Ölüm Verileri Kullanılarak Yaşam Tablosunun Oluşturulması TÜİK, İstatistik Araştırma Dergisi, Temmuz 2013 TurkStat, Journal of Statistical Research, July 2013 15 Hanife TAYLAN, Güçkan YAPAR Ek 1. Türkiye Ö]HWOHQPLú'|QHP<DúDP7DEORVX ŐĞ 16 Ŷ ŵ dž Ŷ a dž d dž Ğ dž 0 Ŷ Ƌ dž Ŷ p dž ů dž Ŷ Ě dž Ŷ L dž 0,0139 0,9861 1.000.000 13.895 986.105 75.759.422 75,8 0 0,0139 1 0,0010 1,1726 0,0039 0,9961 986.105 3.810 3.933.647 74.773.317 75,8 5 0,0006 1,8642 0,0028 0,9972 982.295 2.723 4.902.937 70.839.671 72,1 10 0,0004 2,0484 0,0020 0,9980 979.572 1.934 4.892.154 65.936.734 67,3 15 0,0006 2,1131 0,0028 0,9972 977.639 2.702 4.880.393 61.044.580 62,4 20 0,0006 2,0526 0,0029 0,9971 974.937 2.791 4.866.457 56.164.187 57,6 25 0,0006 2,0506 0,0032 0,9968 972.146 3.118 4.851.531 51.297.730 52,8 30 0,0007 2,0019 0,0036 0,9964 969.027 3.527 4.834.560 46.446.199 47,9 35 0,0010 2,0381 0,0051 0,9949 965.500 4.942 4.812.860 41.611.638 43,1 40 0,0017 2,3448 0,0082 0,9918 960.558 7.914 4.781.775 36.798.778 38,3 45 0,0027 2,1651 0,0135 0,9865 952.644 12.897 4.726.657 32.017.003 33,6 50 0,0045 2,2712 0,0224 0,9776 939.747 21.072 4.641.236 27.290.346 29,0 55 0,0074 2,1823 0,0364 0,9636 918.675 33.402 4.499.262 22.649.110 24,7 60 0,0115 2,0985 0,0558 0,9442 885.274 49.400 4.283.033 18.149.848 20,5 65 0,0195 2,1604 0,0924 0,9076 835.874 77.265 3.959.963 13.866.815 16,6 70 0,0320 1,9882 0,1458 0,8542 758.609 110.616 3.459.890 9.906.852 13,1 75 0,0548 1,9660 0,2349 0,7651 647.993 152.198 2.778.192 6.446.961 9,9 80 0,0910 1,9126 0,3552 0,6448 495.794 176.098 1.935.287 3.668.769 7,4 85 0,1465 1,6235 0,4900 0,5100 319.697 156.648 1.069.559 1.733.482 5,4 90+ 0,2456 3,3810 1,0000 0,0000 163.048 163.048 663.923 663.923 4,1 TÜİK, İstatistik Araştırma Dergisi, Temmuz 2013 TurkStat, Journal of Statistical Research, July 2013 Construction of a Life Table by Using the Turkish General Death Data Türkiye Geneli Ölüm Verileri Kullanılarak Yaşam Tablosunun Oluşturulması Ek 2. 7UNL\Hg]HWOHQPLú'|QHP<DúDP7DEORVX(UNHN ŐĞ Ŷ ŵ dž Ŷ a dž d dž Ğ dž 0 Ŷ Ƌ dž Ŷ p dž ů dž Ŷ Ě dž Ŷ L dž 0,0146 0,9854 1.000.000 14.609 985.391 73.125.091 73,1 0 0,0146 1 0,0010 1,1806 0,0039 0,9961 985.391 3.883 3.930.615 72.139.700 73,2 5 0,0006 1,8955 0,0028 0,9972 981.508 2.758 4.898.975 68.209.085 69,5 10 0,0004 2,0924 0,0022 0,9978 978.749 2.143 4.887.516 63.310.109 64,7 15 0,0007 2,1871 0,0035 0,9965 976.606 3.448 4.873.333 58.422.593 59,8 20 0,0008 2,0652 0,0038 0,9962 973.159 3.682 4.854.986 53.549.260 55,0 25 0,0008 2,0286 0,0042 0,9958 969.476 4.091 4.835.227 48.694.274 50,2 30 0,0009 1,9779 0,0046 0,9954 965.386 4.473 4.813.410 43.859.047 45,4 35 0,0013 2,0333 0,0064 0,9936 960.912 6.177 4.786.236 39.045.638 40,6 40 0,0021 2,3291 0,0106 0,9894 954.735 10.090 4.746.726 34.259.402 35,9 45 0,0036 2,1797 0,0179 0,9821 944.645 16.909 4.675.538 29.512.675 31,2 50 0,0063 2,2578 0,0309 0,9691 927.737 28.622 4.560.195 24.837.137 26,8 55 0,0104 2,1793 0,0503 0,9497 899.114 45.218 4.368.026 20.276.942 22,6 60 0,0159 2,0830 0,0760 0,9240 853.896 64.869 4.080.258 15.908.916 18,6 65 0,0260 2,1248 0,1210 0,8790 789.028 95.445 3.670.719 11.828.659 15,0 70 0,0406 1,9519 0,1808 0,8192 693.582 125.429 3.085.591 8.157.940 11,8 75 0,0659 1,8503 0,2727 0,7273 568.154 154.948 2.352.736 5.072.349 8,9 80 0,1074 1,8567 0,4014 0,5986 413.206 165.847 1.544.722 2.719.613 6,6 85 0,1698 1,5561 0,5358 0,4642 247.359 132.525 780.392 1.174.891 4,7 90+ 0,2911 3,0861 1,0000 0,0000 114.835 114.835 394.499 394.499 3,4 TÜİK, İstatistik Araştırma Dergisi, Temmuz 2013 TurkStat, Journal of Statistical Research, July 2013 17 Hanife TAYLAN, Güçkan YAPAR Ek 3. 7UNL\Hg]HWOHQPLú'|QHP<DúDP7DEORVX.DGÕQ ŐĞ 18 Ŷ ŵ dž Ŷ a dž d dž Ğ dž 0 Ŷ Ƌ dž Ŷ p dž ů dž Ŷ Ě dž Ŷ L dž 0,0131 0,9869 1.000.000 13.057 986.943 78.455.301 78,5 0 0,0131 1 0,0009 1,1636 0,0037 0,9963 986.943 3.655 3.937.406 77.468.358 78,5 5 0,0005 1,8298 0,0027 0,9973 983.288 2.650 4.908.040 73.530.952 74,8 10 0,0003 1,9900 0,0017 0,9983 980.638 1.703 4.898.064 68.622.912 70,0 15 0,0004 1,9721 0,0019 0,9981 978.935 1.899 4.888.925 63.724.848 65,1 20 0,0004 2,0265 0,0019 0,9981 977.036 1.854 4.879.669 58.835.923 60,2 25 0,0004 2,0949 0,0022 0,9978 975.183 2.098 4.869.818 53.956.254 55,3 30 0,0005 2,0455 0,0026 0,9974 973.085 2.544 4.857.908 49.086.436 50,4 35 0,0008 2,0464 0,0038 0,9962 970.541 3.676 4.841.847 44.228.528 45,6 40 0,0012 2,3744 0,0058 0,9942 966.865 5.624 4.819.557 39.386.681 40,7 45 0,0018 2,1360 0,0091 0,9909 961.240 8.756 4.781.125 34.567.124 36,0 50 0,0028 2,3018 0,0138 0,9862 952.484 13.147 4.726.949 29.785.999 31,3 55 0,0045 2,1890 0,0224 0,9776 939.337 21.074 4.637.448 25.059.051 26,7 60 0,0076 2,1278 0,0371 0,9629 918.264 34.072 4.493.456 20.421.603 22,2 65 0,0139 2,2177 0,0668 0,9332 884.192 59.107 4.256.504 15.928.146 18,0 70 0,0249 2,0361 0,1160 0,8840 825.085 95.682 3.841.836 11.671.643 14,1 75 0,0457 2,1005 0,2020 0,7980 729.403 147.308 3.219.895 7.829.807 10,7 80 0,0811 1,9568 0,3251 0,6749 582.095 189.246 2.334.554 4.609.912 7,9 85 0,1343 1,6666 0,4638 0,5362 392.848 182.213 1.356.847 2.275.358 5,8 90+ 0,2293 3,5081 1,0000 0,0000 210.635 210.635 918.511 918.511 4,4 TÜİK, İstatistik Araştırma Dergisi, Temmuz 2013 TurkStat, Journal of Statistical Research, July 2013 Construction of a Life Table by Using the Turkish General Death Data Türkiye Geneli Ölüm Verileri Kullanılarak Yaşam Tablosunun Oluşturulması Ek 4. 7UNL\Hg]HWOHQPLú'|QHP<DúDP7DEORVX ŐĞ Ŷ ŵ dž Ŷ a dž d dž Ğ dž 0 Ŷ Ƌ dž Ŷ p dž ů dž Ŷ Ě dž Ŷ L dž 0,0122 0,9878 1.000.000 12.175 987.825 76.492.416 76,5 0 0,0122 1 0,0009 1,1365 0,0034 0,9966 987.825 3.381 3.941.617 75.504.592 76,4 5 0,0005 1,7157 0,0024 0,9976 984.444 2.315 4.914.615 71.562.974 72,7 10 0,0004 2,0373 0,0018 0,9982 982.128 1.732 4.905.512 66.648.360 67,9 15 0,0005 2,0947 0,0026 0,9974 980.397 2.595 4.894.444 61.742.848 63,0 20 0,0005 2,0317 0,0026 0,9974 977.802 2.576 4.881.362 56.848.403 58,1 25 0,0006 2,1163 0,0029 0,9971 975.226 2.871 4.867.849 51.967.041 53,3 30 0,0007 1,9497 0,0034 0,9966 972.355 3.346 4.851.566 47.099.192 48,4 35 0,0009 2,1159 0,0047 0,9953 969.008 4.543 4.831.939 42.247.626 43,6 40 0,0015 2,1704 0,0075 0,9925 964.465 7.186 4.801.991 37.415.687 38,8 45 0,0025 2,0603 0,0124 0,9876 957.279 11.879 4.751.472 32.613.696 34,1 50 0,0043 2,1919 0,0213 0,9787 945.399 20.169 4.670.359 27.862.224 29,5 55 0,0067 1,9699 0,0328 0,9672 925.230 30.374 4.534.114 23.191.865 25,1 60 0,0111 1,9683 0,0539 0,9461 894.856 48.225 4.328.074 18.657.752 20,9 65 0,0184 2,0616 0,0874 0,9126 846.631 73.983 4.015.761 14.329.678 16,9 70 0,0312 2,0057 0,1425 0,8575 772.648 110.111 3.533.532 10.313.917 13,3 75 0,0522 2,1130 0,2267 0,7733 662.537 150.216 2.879.011 6.780.385 10,2 80 0,0881 1,9427 0,3471 0,6529 512.321 177.850 2.017.868 3.901.374 7,6 85 0,1416 1,6205 0,4788 0,5212 334.472 160.149 1.131.134 1.883.507 5,6 90+ 0,2317 3,2246 1,0000 0,0000 174.323 174.323 752.373 752.373 4,3 TÜİK, İstatistik Araştırma Dergisi, Temmuz 2013 TurkStat, Journal of Statistical Research, July 2013 19 Hanife TAYLAN, Güçkan YAPAR Ek 5. 7UNL\Hg]HWOHQPLú'|QHP<DúDP7DEORVX(UNHN ŐĞ 20 Ŷ ŵ dž Ŷ a dž d dž Ğ dž 0 Ŷ Ƌ dž Ŷ p dž ů dž Ŷ Ě dž Ŷ L dž 0,0129 0,9871 1.000.000 12.853 987.147 73.903.554 73,9 0 0,0129 1 0,0009 1,1509 0,0035 0,9965 987.147 3.479 3.938.675 72.916.407 73,9 5 0,0005 1,7769 0,0023 0,9977 983.668 2.311 4.910.890 68.977.732 70,1 10 0,0004 2,0467 0,0020 0,9980 981.357 1.935 4.901.068 64.066.843 65,3 15 0,0007 2,1508 0,0034 0,9966 979.422 3.367 4.887.515 59.165.774 60,4 20 0,0007 2,0451 0,0036 0,9964 976.055 3.500 4.869.931 54.278.259 55,6 25 0,0008 2,0785 0,0039 0,9961 972.555 3.789 4.851.704 49.408.328 50,8 30 0,0009 1,9388 0,0045 0,9955 968.766 4.312 4.830.628 44.556.624 46,0 35 0,0012 2,1314 0,0059 0,9941 964.454 5.703 4.805.909 39.725.996 41,2 40 0,0019 2,1784 0,0093 0,9907 958.751 8.946 4.768.513 34.920.087 36,4 45 0,0033 2,0870 0,0165 0,9835 949.805 15.697 4.703.302 30.151.574 31,7 50 0,0060 2,2004 0,0293 0,9707 934.109 27.385 4.593.876 25.448.272 27,2 55 0,0093 1,9758 0,0453 0,9547 906.724 41.046 4.409.488 20.854.396 23,0 60 0,0153 1,9468 0,0730 0,9270 865.678 63.224 4.135.353 16.444.908 19,0 65 0,0243 2,0427 0,1135 0,8865 802.454 91.058 3.742.986 12.309.555 15,3 70 0,0396 1,9676 0,1767 0,8233 711.396 125.703 3.175.797 8.566.569 12,0 75 0,0628 2,0501 0,2650 0,7350 585.693 155.233 2.470.543 5.390.772 9,2 80 0,1048 1,8875 0,3951 0,6049 430.460 170.069 1.622.967 2.920.229 6,8 85 0,1626 1,5819 0,5226 0,4774 260.391 136.078 836.825 1.297.263 5,0 90+ 0,2700 2,9682 1,0000 0,0000 124.313 124.313 460.438 460.438 3,7 TÜİK, İstatistik Araştırma Dergisi, Temmuz 2013 TurkStat, Journal of Statistical Research, July 2013 Construction of a Life Table by Using the Turkish General Death Data Türkiye Geneli Ölüm Verileri Kullanılarak Yaşam Tablosunun Oluşturulması Ek 6. 7UNL\Hg]HWOHQPLú'|QHP<DúDP7DEORVX.DGÕQ ŐĞ Ŷ ŵ dž Ŷ a dž d dž Ğ dž 0 Ŷ Ƌ dž Ŷ p dž ů dž Ŷ Ě dž Ŷ L dž 0,0114 0,9886 1.000.000 11.399 988.601 79.121.556 79,1 0 0,0114 1 0,0008 1,1201 0,0033 0,9967 988.601 3.217 3.945.141 78.132.955 79,0 5 0,0005 1,6506 0,0023 0,9977 985.385 2.290 4.919.251 74.187.814 75,3 10 0,0003 2,0245 0,0015 0,9985 983.094 1.502 4.911.002 69.268.563 70,5 15 0,0004 1,9819 0,0018 0,9982 981.592 1.761 4.902.646 64.357.561 65,6 20 0,0003 2,0010 0,0016 0,9984 979.831 1.602 4.894.351 59.454.916 60,7 25 0,0004 2,1944 0,0019 0,9981 978.229 1.904 4.885.805 54.560.565 55,8 30 0,0005 1,9708 0,0024 0,9976 976.326 2.337 4.874.550 49.674.759 50,9 35 0,0007 2,0889 0,0034 0,9966 973.989 3.353 4.860.183 44.800.210 46,0 40 0,0011 2,1562 0,0055 0,9945 970.636 5.316 4.838.061 39.940.026 41,1 45 0,0017 2,0061 0,0082 0,9918 965.320 7.945 4.802.811 35.101.965 36,4 50 0,0026 2,1722 0,0131 0,9869 957.375 12.554 4.751.372 30.299.154 31,6 55 0,0041 1,9569 0,0204 0,9796 944.820 19.272 4.665.452 25.547.782 27,0 60 0,0073 2,0090 0,0360 0,9640 925.548 33.275 4.528.213 20.882.329 22,6 65 0,0132 2,0920 0,0636 0,9364 892.273 56.743 4.296.355 16.354.117 18,3 70 0,0244 2,0550 0,1138 0,8862 835.529 95.052 3.897.724 12.057.761 14,4 75 0,0434 2,1875 0,1932 0,8068 740.478 143.074 3.299.996 8.160.037 11,0 80 0,0781 1,9866 0,3160 0,6840 597.404 188.807 2.418.071 4.860.041 8,1 85 0,1305 1,6450 0,4539 0,5461 408.597 185.449 1.420.801 2.441.970 6,0 90+ 0,2185 3,3281 1,0000 0,0000 223.148 223.148 1.021.170 1.021.170 4,6 TÜİK, İstatistik Araştırma Dergisi, Temmuz 2013 TurkStat, Journal of Statistical Research, July 2013 21 Hanife TAYLAN, Güçkan YAPAR Ek 7. 7UNL\Hg]HWOHQPLú'|QHP<DúDP7DEORVX ŐĞ 22 Ŷ ŵ dž Ŷ a dž Ŷ Ě dž d dž Ğ dž 0 Ŷ Ƌ dž Ŷ p dž ů dž ŶLdž 0,0117 0,9883 1.000.000 11.720 988.280 76.755.744 76,8 0 0,0117 1 0,0008 1,1269 0,0032 0,9968 988.280 3.152 3.944.064 75.767.464 76,7 5 0,0004 1,6902 0,0021 0,9979 985.128 2.064 4.918.809 71.823.400 72,9 10 0,0003 2,0768 0,0016 0,9984 983.064 1.525 4.910.863 66.904.591 68,1 15 0,0005 2,1151 0,0027 0,9973 981.539 2.629 4.900.111 61.993.728 63,2 20 0,0005 2,0568 0,0027 0,9973 978.910 2.657 4.886.730 57.093.618 58,3 25 0,0006 2,0218 0,0029 0,9971 976.253 2.839 4.872.811 52.206.888 53,5 30 0,0007 1,9993 0,0033 0,9967 973.414 3.259 4.857.291 47.334.077 48,6 35 0,0009 2,2168 0,0047 0,9953 970.155 4.555 4.838.097 42.476.786 43,8 40 0,0014 2,0620 0,0071 0,9929 965.600 6.852 4.807.868 37.638.689 39,0 45 0,0024 2,0649 0,0119 0,9881 958.748 11.419 4.760.223 32.830.821 34,2 50 0,0040 2,0285 0,0198 0,9802 947.329 18.798 4.680.783 28.070.598 29,6 55 0,0067 1,9424 0,0327 0,9673 928.530 30.386 4.549.744 23.389.815 25,2 60 0,0111 2,0380 0,0536 0,9464 898.144 48.182 4.348.009 18.840.071 21,0 65 0,0182 2,0949 0,0864 0,9136 849.963 73.415 4.036.535 14.492.063 17,1 70 0,0308 2,0790 0,1413 0,8587 776.547 109.716 3.562.258 10.455.527 13,5 75 0,0524 2,2384 0,2288 0,7712 666.831 152.593 2.912.749 6.893.269 10,3 80 0,0861 1,9454 0,3408 0,6592 514.238 175.254 2.035.866 3.980.520 7,7 85 0,1412 1,5985 0,4769 0,5231 338.984 161.664 1.145.025 1.944.654 5,7 90+ 0,2218 3,0890 1,0000 0,0000 177.321 177.321 799.629 799.629 4,5 TÜİK, İstatistik Araştırma Dergisi, Temmuz 2013 TurkStat, Journal of Statistical Research, July 2013 Construction of a Life Table by Using the Turkish General Death Data Türkiye Geneli Ölüm Verileri Kullanılarak Yaşam Tablosunun Oluşturulması Ek 8. 7UNL\Hg]HWOHQPLú'|QHP<DúDP7DEORVX(UNHN ŐĞ Ŷ ŵ dž Ŷ a dž d dž Ğ dž 0 Ŷ Ƌ dž Ŷ p dž ů dž Ŷ Ě dž Ŷ L dž 0,0123 0,9877 1.000.000 12.284 987.716 74.091.496 74,1 0 0,0123 1 0,0008 1,1333 0,0033 0,9967 987.716 3.232 3.941.598 73.103.780 74,0 5 0,0004 1,7252 0,0021 0,9979 984.484 2.099 4.915.544 69.162.182 70,3 10 0,0003 2,1797 0,0017 0,9983 982.385 1.714 4.907.090 64.246.638 65,4 15 0,0007 2,1384 0,0035 0,9965 980.671 3.461 4.893.451 59.339.548 60,5 20 0,0007 2,0744 0,0036 0,9964 977.210 3.555 4.875.650 54.446.097 55,7 25 0,0008 1,9811 0,0038 0,9962 973.655 3.653 4.857.246 49.570.447 50,9 30 0,0009 1,9931 0,0043 0,9957 970.002 4.163 4.837.491 44.713.201 46,1 35 0,0012 2,2068 0,0058 0,9942 965.839 5.558 4.813.667 39.875.710 41,3 40 0,0018 2,0954 0,0091 0,9909 960.280 8.766 4.775.940 35.062.043 36,5 45 0,0031 2,0968 0,0156 0,9844 951.515 14.845 4.714.473 30.286.103 31,8 50 0,0055 2,0392 0,0270 0,9730 936.669 25.303 4.608.429 25.571.630 27,3 55 0,0092 1,9501 0,0449 0,9551 911.366 40.887 4.432.129 20.963.201 23,0 60 0,0153 2,0138 0,0732 0,9268 870.479 63.743 4.162.044 16.531.072 19,0 65 0,0244 2,0591 0,1138 0,8862 806.736 91.792 3.763.728 12.369.029 15,3 70 0,0397 2,0351 0,1775 0,8225 714.944 126.885 3.198.522 8.605.300 12,0 75 0,0639 2,2307 0,2713 0,7287 588.059 159.546 2.498.466 5.406.778 9,2 80 0,1044 1,8739 0,3935 0,6065 428.512 168.618 1.615.445 2.908.312 6,8 85 0,1664 1,5586 0,5290 0,4710 259.894 137.496 826.284 1.292.867 5,0 90+ 0,2623 2,7725 1,0000 0,0000 122.397 122.397 466.583 466.583 3,8 TÜİK, İstatistik Araştırma Dergisi, Temmuz 2013 TurkStat, Journal of Statistical Research, July 2013 23 Hanife TAYLAN, Güçkan YAPAR (N7UNL\Hg]HWOHQPLú'|QHP<DúDP7DEORVX.DGÕQ ŐĞ 24 Ŷ ŵ dž Ŷ a dž Ŷ Ě dž ŶLdž d dž Ğ dž 0 Ŷ Ƌ dž Ŷ p dž ů dž 0,0111 0,9889 1.000.000 11.124 988.876 79.433.927 79,4 0 0,0111 1 0,0008 1,1197 0,0031 0,9969 988.876 3.067 3.946.668 78.445.052 79,3 5 0,0004 1,6520 0,0021 0,9979 985.808 2.027 4.922.254 74.498.384 75,6 10 0,0003 1,9364 0,0013 0,9987 983.781 1.326 4.914.844 69.576.130 70,7 15 0,0004 2,0667 0,0018 0,9982 982.455 1.752 4.907.139 64.661.287 65,8 20 0,0004 2,0187 0,0018 0,9982 980.704 1.717 4.898.401 59.754.148 60,9 25 0,0004 2,0998 0,0020 0,9980 978.987 1.989 4.889.167 54.855.747 56,0 30 0,0005 2,0107 0,0024 0,9976 976.998 2.325 4.878.040 49.966.579 51,1 35 0,0007 2,2329 0,0036 0,9964 974.673 3.529 4.863.601 45.088.539 46,3 40 0,0010 1,9983 0,0050 0,9950 971.144 4.833 4.841.213 40.224.938 41,4 45 0,0016 2,0034 0,0082 0,9918 966.311 7.895 4.807.895 35.383.726 36,6 50 0,0025 2,0047 0,0125 0,9875 958.416 11.968 4.756.230 30.575.831 31,9 55 0,0042 1,9259 0,0206 0,9794 946.448 19.506 4.672.273 25.819.600 27,3 60 0,0072 2,0855 0,0352 0,9648 926.941 32.650 4.539.550 21.147.327 22,8 65 0,0127 2,1558 0,0613 0,9387 894.292 54.817 4.315.545 16.607.778 18,6 70 0,0236 2,1384 0,1107 0,8893 839.475 92.943 3.931.414 12.292.233 14,6 75 0,0431 2,2475 0,1927 0,8073 746.532 143.891 3.336.601 8.360.819 11,2 80 0,0751 2,0048 0,3067 0,6933 602.642 184.836 2.459.590 5.024.218 8,3 85 0,1285 1,6246 0,4480 0,5520 417.806 187.196 1.457.176 2.564.628 6,1 90+ 0,2082 3,2219 1,0000 0,0000 230.610 230.610 1.107.452 1.107.452 4,8 TÜİK, İstatistik Araştırma Dergisi, Temmuz 2013 TurkStat, Journal of Statistical Research, July 2013 Volume: 10 Number: 02 Category: 02 Page: 25-41 ISSN No: 1303-6319 Cilt: 10 Sayı: 02 Kategori: 02 Sayfa: 25-41 TÜİK, İstatistik Araştırma Dergisi, Temmuz 2013 TurkStat, Journal of Statistical Research, July 2013 25 Mutlu KAYA, Emel ÇANKAYA dHúLWOL ND\QDNODUGDQ HOGH HGLOHQ |Q ELOJLQLQ WDKPLQ VUHFLQH GDKLO HGLOPHVLQH RODQDN VD÷OD\DQ%D\HVFL\DNODúÕPGDGDPRGHOVHoLPLSUREOHPLSRSOHUELUoDOÕúPDDODQÕRODUDN RUWD\D oÕNPDNWDGÕU %D\HVFL PRGHOOHPH \DSDQ DUDúWÕUPDFÕODU EX DPDo LoLQ VÕNOÕNOa %D\HVIDNW|UQNXOODQPD\ÕWHUFLKHWPLúOHUGLU.DVVYH5DIWHU\øNLUDNLSPRGHO NÕ\DVODQPDN LVWHQGL÷LQGH NXOODQÕODQ %D\HV IDNW|U PRGHOOHU KDNNÕQGDNL |Q ELOJLGHQ VRQELOJL\HJHoLúWHPRGHOOHUGHQELULOHKLQHRGGVODUGDQHNDGDUOÕNELUGH÷LúLPROGX÷Xnun |OoVGU 0RGHOOHU KDNNÕQGD ELU |Q ELOJLQLQ ROPDPDVÕ GXUXPXQGD GDKL PRGHOOHULQ GR÷UXOX÷XQD GDLU ELU RODVÕOÕN KHVDSODQPDVÕQD RODQDN WDQÕPDVÕ YH EXQODUÕQ RUDQODQPDVÕQGDQ HOGH HGLOPHVL \RUXPX NROD\ WXWDUOÕ YH RWRPDWLN RODUDN PRGHOGH “basitlik prensibinH´ VDKLS ROPDVÕ DoÕVÕQGDQ WHUFLK HGLOLU ELU \|QWHP ROPXúWXU $\UÕFD IRUPO\OHoRNOXPRGHONDUúÕODúWÕUPDVÕGD\DSÕODELOPHNWHGLU0DUWLQR 2007). %D\HV IDNW|UQQ KLSRWH] WHVWOHULQGHNL NXOODQÕPÕ -HIIUH\V WDUDIÕQGDQ PRGHO VHoLPLQGHNLNXOODQÕPÕLVHLONRODUDN6FKZDU]YH5DIWHU\WDUDIÕQGDQRUWD\D NRQXOPXúWXU0FFXOORJKYH5RVVLHúOHQLN|QVHOOHUL.DVVYH:DVVHUPDQ isH UHIHUDQV |QVHOOHUL NXOODQDUDN PRGHO NDUúÕODúWÕUPDVÕQGD %D\HV IDNW|U X\JXODPDODUÕ VXQPXúODUGÕU +DQ YH &DUOLQ %D\HV IDNW|U KHVDEÕ LoLQ Markov Zinciri Monte Carlo (MCMC) metodunu, Sinharay ve Stern (2002), Bayes faktörünün önsel GD÷ÕOÕPODUD GX\DUOÕOÕ÷ÕQÕ LQFHOHPLú ROXS %D\HV IDNW|U YH DOWHUQDWLI oHúLWOHULQLQ NXOODQÕPÕ $UDXMR YH 3HUHLUD ¶QÕQ oDOÕúPDVÕQGD ED]Õ VLPODV\RQ X\JXODPDODUÕ\OD J|VWHULOPLúWLU 0DUMLQDO RODELOLUOLNOHU RUDQÕ RODQ %D\HV IDNW|UQQ DQDOLWLN RODUDN KHVDSODQPDVÕQÕQ mümkQ ROPDGÕ÷Õ GXUXPODUGD /DSODFH \DNODúÕP \|QWHPL |QHP örneklemesi, Gauss NDUHOHúWLUPH ve 0&0& VLPODV\RQX HQ oRN NXOODQÕODQ \|QWHPOHU DUDVÕQGDGÕU (Rosenkranz ve Raftery, 1994). %LOHúLN PRGHO-SDUDPHWUH X]D\Õ WDUDPD \|QWHPOHULQGHQ Carlin ve Chib (1995) yöntHPLLVHPRGHOEHOLUVL]OL÷LQLELUPRGHOJ|VWHUJHVL\DUGÕPÕ\OD EHOLUOH\LS 0&0& \|QWHPLQL NXOODQDUDN PRGHOOHULQ NDUúÕODúWÕUÕOPDVÕQGD %D\HV IDNW|UQQ HOGH HGLOPHVLQL J|VWHUPLúWLU. $\UÕFD EHOOL úDUWODU DOWÕQGD, Schwarz (1978) WDUDIÕQGDQ JHOLúWLULOHQ YH PRGHO SDUDPHWUHOHULQH |QVHO GD÷ÕOÕP EHOLUOHPH\L JHUHNWLUPH\HQ%,&6FKZDU]|OoW \DUGÕPÕ\OD%D\HVIDNW|UQQNDEDFDELUWDKPLQL elde edilebilmektedir (Kass ve Wasserman, 1995). %D\HV IDNW|U LOH PRGHO NDUúÕODúWÕUPDVÕQÕQ PRGHO SDUDPHWUH VD\ÕVÕQÕ ELOPH\L JHUHNWLUPHVLSDUDPHWUHVD\ÕVÕQÕQJ|]OHPOHUGHQVD\ÕFDID]ODROGX÷XNDUPDúÕNKL\HUDUúLN PRGHOOHUGH KHVDSODQPDVÕQÕQ PPNQ ROPDPDVÕ JLEL SUREOHPOHU *HOIDQG YH 'H\ 1994; Kass ve Raftery, 1995), AIC’ye benzer prHQVLSWHoDOÕúDQ\HQLELU|OoWQ6DSPD Bilgi Ölçütü (',& DGÕ\OD JHOLúWLULOPHVLQH QHGHQ ROPXúWXU 6SLHJHOKDOWHU vd., 2002). .XOODQÕPÕ VRQ G|QHPOHUGH ROGXNoD DUWDQ YH KDOHQ DNWLI DUDúWÕUPD NRQXVX RODQ EX ölçütün özelliklerLYHX\JXODPDODUÕ(Da Silva vd., 2004), Mislevy (2006), Spiegelhalter (2006a), Martino (2007), Asseburg (2007) ve Wilberg ve Bence (2008)’de bulunabilir. %XoDOÕúPDGD\DUÕSDUDPHWULNPRGHOOHPHQLQ|]HOELUIRUPXRODQNXDQWDOPRGHOOHPHQLQ OLWHUDWUGHNL ELU X\JXODPDVÕ VRQXFX RUWD\D oÕNDQ DOWHUQDWLI LNL PRGHOLQ NÕ\DVODPDVÕ %D\HV IDNW|U YH ',& KHVDSODQDUDN \DSÕODFDNWÕU %D\HV IDNW|U KHVDEÕ NXOODQÕP NROD\OÕ÷Õ DoÕVÕQGDQ &DUOLQ YH &KLE \|QWHPL LOH \DSÕOPÕúWÕU øNL \|QWHPLQ NXOODQÕP amaçlarÕQGDNL IDUNOÕOÕNWDQ GROD\Õ Gelman vd., 2004; Spiegelhalter vd., 2002), VRQXoODUÕQ NÕ\DVODQDELOLUOL÷LQL VD÷ODPDN DoÕVÕQGDQ PRGHOOHU LoLQ KHVDSODQDQ %,& 26 TÜİK, İstatistik Araştırma Dergisi, Temmuz 2013 TurkStat, Journal of Statistical Research, July 2013 An Application of the Bayesian Model Selection by Using Bayes Factor, Bayesian Information Criterion and Deviance Information Criterion Bayes Faktörü, Bayesci Bilgi Ölçütü ve Sapma Bilgi Ölçütü Kullanımıyla Bayesci Model Seçiminin Bir Uygulaması GH÷HUOHUL GH oDOÕúPDGD VXQXOPXúWXU 7P LúOHPOHU LoLQ :LQEXJV SDNHW SURJUDPÕ NXOODQÕOPÕúWÕU 2. YÖNTEM 2.1 Bayes Faktörü 6RQOXVD\ÕGDPRGHOOHUDUDVÕQGDQ³HQL\L´PRGHOLVHoPHSUREOHPL\OHLOJLOHQHOLP5DNLS modeller kümesi olmak üzere gözlenen veri setinin, ( ) PRGHOLWDUDIÕQGDQ vektörü ile UHWLOGL÷L YDUVD\ÕOVÕQ +HU PRGHOLQ IDUNOÕ ELOLQPH\HQ SDUDPHWUHOHUL gösterilsin. Model için, , PRGHOLQ |QVHO RODVÕOÕ÷Õ SDUDPHWUH YHNW|UQQ |QVHO GD÷ÕOÕPÕ YH WDQÕPODQÕUVDELOHúLNGD÷ÕOÕP , model , olabilirlik fonksiyonu olarak olur. %LOHúLNGD÷ÕOÕPÕQ parametre vektörüne göre marjinallenmesi ve gözlenen veri üzerine NRúXOODQGÕUÕOPDVÕVRQXFXKHUELUPRGHOHLOLúNLQVRQVDOPRGHORODVÕOÕNODUÕ, ile hesaplanabilir (Martino, 2007). Burada marjinal olabilirlik olup úHNOLQGHKHVDSODQÕU $OWHUQDWLI PRGHO VD\ÕVÕQÕQ LNL ROGX÷X GXUXPGD NÕ\DVODPD LúOHPL VRQVDO PRGHO RODVÕOÕNODUÕQÕQRUDQODQPDVÕ\ROX\OD \DSÕOÕU%LUELULQHUDNLS ve modelleri için bu oran; GÕU%XUDGDPDUMLQDORODELOLUOLNOHURUDQÕ%D\HVIDNW|UGU%XHúLWOLN sözel olarak, [Sonsal Odds] = [Önsel Odds] [Bayes faktörü] ile ifade edilirse, TÜİK, İstatistik Araştırma Dergisi, Temmuz 2013 TurkStat, Journal of Statistical Research, July 2013 27 Mutlu KAYA, Emel ÇANKAYA úHNOLQGH RGGV RUDQÕ RODUDN WDQÕPODQDQ RUDQÕQD ¶\H NÕ\DVOD lehine Bayes IDNW|U DGÕ YHULOLU 5DIWHU\ %LU EDúND GH\LúOH |QVHOGHQ VRQVDOD JHoLúWH odds’larda OHKLQH QH NDGDUOÕN ELU GH÷LúLP ROGX÷XQXQ ELU |OoVGU Modellerin WHUFLK HGLOHELOLUOL÷L NRQXVXQGD ELU |Q ELOJLQLQ ROPDPDVÕ GXUXPXQGD |QVHO RODVÕOÕNODU RODUDN VHoLOLU YH GROD\ÕVÕ\OD %D\HV IDNW|U VRQVDO RGGV¶D HúLW ROXU6RQVDOPRGHORODVÕOÕNODUÕQÕQWRSODPÕELUHHúLWROGX÷XQGDQformül 4, úeklinde yeniden ifade edilebilir. Hesaplanan Bayes faktörünün yorumu, Tablo 1 NXOODQÕODUDN\DSÕOÕU 7DEOR%D\HVIDNW|UGH÷HULQLQPRGHOVHoLPLQGHNL\RUXPX-HIIUH\V %D\HVIDNW|UGH÷HUL( Yorum Ok yönünde artan derecede BFij 0.1 M j OHKLQHJoONDQÕW 0.1 BFij 0.3 M j lehine makul NDQÕW 0.3 BFij 1 M j OHKLQH]D\ÕI NDQÕW 1 BFij 3 M i OHKLQH]D\ÕI NDQÕW 3 BFij 10 M i OHKLQHPDNXONDQÕW M i tercih edilir BFij ! 10 * ) M j tercih edilir M i OHKLQHJoONDQÕW BFij : j. PRGHOHNÕ\DVODi. PRGHOOHKLQHKHVDSODQDQ%D\HVIDNW|UGH÷HUL %D\HV IDNW|UQQ DQDOLWLN RODUDN KHVDSODQDELOPHVL HúLWOLN ¶GH YHULOHQ LQWHJUDO LúOHPOHULQLQ \DSÕOPDVÕQÕ JHUHNWLULU 0RGHOOHUGH \HU DODQ ELOLQPH\HQ SDUDPHWUH VD\ÕVÕ DUWWÕ÷ÕQGDEXLúOHPOHULJHUoHNOHúWLUPHNROGXNoDJoOHúLUKDWWDED]ÕGXUXPODUGDPPNQ GH÷ildir. .DUPDúÕN LQWHJUDV\RQ WHNQLNOHUL X\JXODPDN \HULQH NRúXOOX GD÷ÕOÕPODUGDQ |UQHNOHP oHNPHN \ROX\OD SDUDPHWUH WDKPLQOHULQLQ HOGH HGLOPHVLQL VD÷OD\DQ 0&0& \|QWHPLPRGHOVHoLPLSUREOHPOHULQGHGHHWNLQELUúHNLOGHNXOODQÕOPDNWDGÕU*LONVYG 1996). Bu yaNODúÕPDVDKLS&DUOLQYH&KLE\|QWHPLELUVRQUDNLE|OPGHD\UÕQWÕOÕolarak DoÕNODQPÕúWÕU .Õ\DVODQPDN LVWHQHQ PRGHOOHULQ |Q RODVÕOÕNODUÕQÕQ HúLW ROGX÷X GXUXPODUGD %D\HV IDNW|UQQ \DNODúÕN KHVDEÕ %,& \DUGÕPÕ\OD DúD÷ÕGDNL formül NXOODQÕODUDN GD \DSÕODELOPHNWHGLU (Kass ve Wasserman, 1995): 28 TÜİK, İstatistik Araştırma Dergisi, Temmuz 2013 TurkStat, Journal of Statistical Research, July 2013 An Application of the Bayesian Model Selection by Using Bayes Factor, Bayesian Information Criterion and Deviance Information Criterion Bayes Faktörü, Bayesci Bilgi Ölçütü ve Sapma Bilgi Ölçütü Kullanımıyla Bayesci Model Seçiminin Bir Uygulaması ya da Burada Q |UQHNJHQLúOL÷LS PRGHOGHNLSDUDPHWUHVD\ÕVÕYH Tˆ = parametre vektörünün en çok olabilirlik tahmin edicisi olmak üzere, BIC i ve BIC j ; formülü NXOODQÕODUDN, i. ve j. modeller için D\UÕD\UÕhesaplanPÕúGH÷HUOHUGLU Modeldeki SDUDPHWUH VD\ÕVÕQÕQ DUWPDVÕ EX |OoWQ GH÷HULQLQ ORJQ RUDQÕQGD E\PHVLQH QHGHQ RODFD÷ÕQGDQ %,& GH EDVLW \D GD ER\XWX NoN PRGHOOHUL WHUFLK HWPH H÷LOLPLQGHGLU 'R÷UXPRGHOLQROGX÷XYDUVD\ÕPÕ\ODHQNoN%,&GH÷HUli modelin en iyi model oOGX÷X \|QQGH\RUXPODQPDVÕ|QHULOPHNWHGLUBurnham, 2004). 2.2 Carlin ve Chib Yöntemi %D\HV IDNW|UQQ HOGH HGLOPHVLQGH JHUHNOL RODQ VRQVDO PRGHO RODVÕOÕNODUÕQÕQ KHVDSODQPDVÕQD RODQDN VD÷OD\DQ \DNODúÕPODUGDQ ELUL 0&0& SUHQVLSOHULQL NXOODQDQ CDUOLQ YH &KLE \|QWHPLGLU %X \DNODúÕPGD PRGHO EHOLUVL]OL÷L ELU SDUDPHWUH RODUDN WDQÕPODQÕU YH DOGÕ÷Õ GH÷HUOHU ELU J|VWHUJH GH÷LúNHQL LOH EHOLUOHQLU %X SDUDPHWUH \DUGÕPÕ\OD ELUELULQH UDNLS PRGHOLQ |UQHNOHP X]D\ODUÕ ELUELULQH ED÷ODQÕU YH E|\OHFH 0&0& |UQHNOHPHVLQLQ EX ELOHúLN PRGHO X]D\ÕQÕQ ELU IRUPXQGDQ |UQHNOHPOHU DOPDVÕ VD÷ODQÕU 0RGHOSDUDPHWUHVLWDPVD\ÕGH÷HUOL ile ve tüm modellere ait YHNW|UOHULQLQELUOHúLPL ROGX÷XQGD rakip model ioLQELOHúLNGD÷ÕOÕP ise ile gösterilsin. ROXU*|VWHUJHGH÷LúNHQ , hangi vektörünün LOHLOLúNLOLROGX÷XQXEHOLUOHGL÷LQGHQ YHULOGL÷LQGH GL÷HU PRGHOOHULQ YHNW|UQGHQ ED÷ÕPVÕ]GÕU $\UÕFD modellere ait YHNW|UOHULQLQGHELUELULQGHQED÷ÕPVÕ]ROGX÷XYDUVD\ÕOÕU%XGXUXPGD PRGHO DOWÕQGD LoLQ NXOODQÕODQ GD÷ÕOÕPVDO IRUP %D\HVFL PRGHO WDQÕPODPDVÕQGD |QHPOL ROPDGÕ÷ÕQGDQ EXQlar için “sözde (pseudo) önsel” seçimi \DSÕODELOLU %XUDGD V|]GH |QVHO JHUoHN ELU |QVHO ROPD\ÕS ELOHúLN PRGHO-SDUDPHWUH X]D\ÕQÕ WDQÕPOD\DELOPHN LoLQ X\JXQ úHNLOGH VHoLOPLú ELU ED÷ODQWÕ GD÷ÕOÕPÕGÕU *LEEV örneklemesini yürütmek için gerekli ’nin tam koúXOOXGD÷ÕOÕPÕ RODUDNWDQÕPODQÕU%XUDGD ROGX÷XQGDWPNRúXOOXRODVÕOÕNODUJHoHUOLolan model ’den, ROGX÷XQGD ise sözde önselinden üretilir. TÜİK, İstatistik Araştırma Dergisi, Temmuz 2013 TurkStat, Journal of Statistical Research, July 2013 29 Mutlu KAYA, Emel ÇANKAYA Sonuçta Gibbs örneklemesinin RUDQWÕODQDUDNVRQVDOPRGHO PRGHOL ]L\DUHW VD\ÕVÕ WP |UQHNOHPOHU VD\ÕVÕQD RODVÕOÕNODUÕQÕQ tahminleri, úHNOLQGHHOGHHGLOHELOLU%XUDGD *LEEVLWHUDV\RQVD\ÕVÕGÕU&DUOLQYH&KLE %X WDKPLQ GH÷HUOHULQGHQ HOGH HGLOHQ VRQVDO RGGV |QVHO RGGV LOH HúLWOLN 4’de ifade HGLOGL÷L JLEL ELUOHúWLULOLUVH PRGHOOHULQ LNLúHUOL NÕ\DVODPDODUÕ DPDoOÕ %D\HV IDNW|U hesaplanabilir. 2.3 Sapma Bilgi Ölçütü (DIC) .ODVLN ELU PRGHOOHPH oDOÕúPDVÕQGD PRGHO NÕ\DVODPDVÕ \DSÕOPDN LVWHQGL÷LQGH YHULQLQ PRGHOH X\XPXQX |OoHQ ELU VDSPD LVWDWLVWL÷L LOH PRGHOGHNL SDUDPHWUH VD\ÕVÕQÕQ EHOLUOHGL÷L PRGHO NDUPDúÕNOÕ÷Õ DUDVÕQGD GHQJH NXUPD\D GD\DOÕ |OoWOHU NXOODQÕOÕU %XQODUGDQ ED]ÕODUÕQÕQ PRGHOGHNL SDUDPHWUH VD\ÕVÕQÕ EHOLUOHPH\L JHUHNWLUPHVL YH ED]ÕODUÕQÕQ LVH SDUDPHWUHOHUL J|]OHPOHUGHQ VD\ÕFD VWQ RODQ NDUPDúÕN KL\HUDUúLN modellerde do÷rudDQ X\JXODQDPDPDVÕ *HOIDQG YG VRQ ]DPDQODUGD NXOODQÕPÕ \D\JÕQ RODQ DOWHUQDWLI ELU %D\HVFL PRGHO VHoLP \öntemi Sapma Bilgi Ölçütünün JHOLúWLULOPHVLQHVHEHSROPXúWXU DICLNLELOHúHQGHQROXúPDNWDGÕU DIC 8\XPL\LOL÷L + .DUPDúÕNOÕN ĻĻ Kuramsal bir model ile Artan model parametre |UQHNOHPYHULVLDUDVÕQGDNLVD\ÕVÕLoLQELUVÕQÕUODPDWHULPL uyumun bir ölçüsü = DIC¶QLQ ELULQFL ELOHúHQL PRGHO \HWHUOLOL÷LQLQ ELU WDKPLQL ROXS 'HPSVWHU WDUDIÕQGDQNODVLNVDSPDLIDGHVLQHGD\DOÕGÕU Burada ; model parametre vektörüQH GD\DOÕ RODELOLUOLN IRQNVL\RQX ROXS ise úHNOLQGHVDGHFHYHULQLQIRQNVL\RQXRODQVDELWELUWHULPGLU %X WHULP PRGHO NDUúÕODúWÕUPDVÕQGD WP PRGHOOHU LoLQ DOÕQDUDN DúD÷ÕGD YHULOHQ formüllerin WPQGHLKPDOHGLOPHVLVD÷ODQÕU&HOHX[YG 6DSPDQÕQVRQVDOGD÷ÕOÕPÕQÕQRUWDODPDVÕX\XPL\LOL÷i ölçüsü RODUDNNXOODQÕOÕU%XLIDGH úHNOLQGHDGODQGÕUÕOÕUYH ile gösterilir. 30 TÜİK, İstatistik Araştırma Dergisi, Temmuz 2013 TurkStat, Journal of Statistical Research, July 2013 An Application of the Bayesian Model Selection by Using Bayes Factor, Bayesian Information Criterion and Deviance Information Criterion Bayes Faktörü, Bayesci Bilgi Ölçütü ve Sapma Bilgi Ölçütü Kullanımıyla Bayesci Model Seçiminin Bir Uygulaması Burada C, burn-LQ \DNÕQVDPD SHUL\RGX oÕNDUÕOPÕú 0&0& VLPODV\RQODUÕQÕQ VD\ÕVÕ olup ise olabLOLUOLNIRQNVL\RQXQXQGR÷DOORJDULWPDVÕGÕU6SLHJHOKDOWHUYG %X HúLWOLNWHQ J|UOG÷ JLEL , Gibbs örneklemesinin bir iterasyonunun VRQXQGDKHVDSODQPÕúORJ-RODELOLUOLNOHULQRUWDODPDVÕGÕU NXOODQÕODUDN DIC HúLWOL÷LQGH \HU DODQ LNLQFL ELOHúHQ LVH ¶QÕQ VRQVDO RUWDODPDVÕ KHVDSODQDQVDSPD\DGD\DOÕGÕU GL\HDGODQGÕUÕODQYH ile gösterilen bu ifade, úHNOLQGHWDQÕPOÕGÕU%LUEDúNDGH\LúOH ¶QÕQVRQVDORUWDODPDVÕQÕNXOODQDUDNKHVDSODQPÕú log-olabilirliktir. 9HUL\OH HQ L\L X\XPX VD÷OD\DQ ELU PRGHOGH \HU DOPDVÕ JHUHNHQ HWNLQ SDUDPHWUH VD\ÕVÕ RODUDN|OoOHQPRGHONDUPDúÕNOÕ÷Õ ile gösterilir ve HúLWOL÷L LOH HOGH HGLOLU %XUDGD PRGHOGHNL SDUDPHWUH VD\ÕVÕ LoLQ ELU VÕQÕUODPD WHULPLGLUYHPRGHOSDUDPHWUHVD\ÕVÕQÕQ\DNODúÕNGH÷HULQLYHULU %XWDQÕPODUÕNXOODQDUDNDIC ölçütü, úHNOLQGHLIDGHHGLOLU (Spiegelhalter vd., 2002). /LWHUDWUGHPRGHOGHNLSDUDPHWUHVD\ÕVÕD\QÕNDOPDNNRúXOX\ODPRGHOSDUDPHWUHOHULQLQ yeniden ifadelendirilmesi sonucu ¶QLQ GH÷HULQGH E\N GH÷LúLNOLNOHU RODELOHFH÷L NRQXVXQGD\DSÕODQX\DUÕODUQHGHQL\OH6SLHJHOKDOWHUYH%XOO*HOPDQYG \HULQH VDSPDQÕQ VRQVDO YDU\DQVÕQÕQ \DUÕVÕ úHNOLQGH WDQÕPOÕ ’nin tarDIÕQGDQ NXOODQÕPÕ|QHULOPLúWLU Matematiksel ifadeyle, olarak gösterilir. 9HUL\LUHWWL÷LYDUVD\ÕODQL\LELUPRGHOLQRODELOLUOL÷LQLQE\NGH÷HUOLROPDVÕ ¶QÕQ GDKD NoN GH÷HUOHUH XODúPDVÕQÕ YH GROD\ÕVÕ\OD DIC¶QLQ NoN GH÷HUOL ROPDVÕQÕ VD÷OD\DFDNWÕU 6RQXo RODUDN HQ NoN DIC GH÷HULQH VDKLS PRGHO UDkip modeller DUDVÕQGDQHQL\LPRGHORODUDNVHoLOHELOLU DIC GH÷HULGDLPDSR]LWLIROPD\ÕSQHJDWLIGH÷HUOHUGHYHUHELOPHNWHGLU6WDQGDUWVDSPDVÕ küçük olan bir RODELOLUOL÷LQLQVHEHSROGX÷XE|\OHVLGXUXPODUGDQHJDWLIGH÷HUOHU GHGLNNDWHDOÕQDUDNHQNüçük DIC¶\HVDKLSPRGHOOHKLQGHVHoLP\DSÕOÕU6SLHJHOKDOWHU 2006b). TÜİK, İstatistik Araştırma Dergisi, Temmuz 2013 TurkStat, Journal of Statistical Research, July 2013 31 Mutlu KAYA, Emel ÇANKAYA %D\HV IDNW|UQQ DNVLQH ',&¶QLQ PXWODN E\NO÷QQ PRGHO NDUúÕODúWÕUPDVÕQGD ELU |QHPL \RNWXU gQHPOL RODQ VDGHFH ',& GH÷HUOHUL DUDVÕQGDNL IDUNÕQ PXWODN E\NO÷GU (Spiegelhalter vd., PLQLPXP GH÷HUOL ',& GH÷HUL LOH DUDVÕQGD ¶GHQ GDKD D] IDUN RODQ PRGHOOHULQ HúLW GHUHFHGH L\L PRGHO RODUDN GLNNDWH DOÕQPDVÕ JHUHNWL÷LQL í DUDVÕQGD IDUN GH÷HUOL PRGHOOHULQ LVH GDKD D] GHVWH÷H VDKLS PRGHOOHU RODUDNGH÷HUOHQGLULOPHVLQL|QHUPLúWLU 3. BULGULAR 3.1 Kuantum Modelleme øVWDWLVWLNVHOPRGHOOHPHQLQ|]HOELUIRUPXNXDQWDOPRGHOOHPHDGÕDOWÕQGDSHN oRNIDUNOÕ GLVLSOLQGH NDUúÕPÕ]D oÕNPDNWDGÕU %LU \DUÕ-SDUDPHWULN PRGHOOHPH |UQH÷L RODQ NXDQWDO modellemede; verilen herhangi bir örneklem verisinin bir temel birim olan kuantumun WDPVD\Õ NDWODUÕ rastJHOH KDWD RODUDN LIDGH HGLOLS HGLOHPH\HFH÷L VRUXVXQD cevap DUDQPDNWDGÕU %X VRUJXGDNL HQ |QHPOL QRNWD E|\OH ELU NXDQWXP GH÷HULQLQ YDU ROXS ROPDGÕ÷ÕQÕQ |QFHGHQ ELOLQPHPHVLGLU $QFDN E|\OH ELU GH÷HU YDUVD YHULGHQ WDKPLQ HGLOPHN\ROX\ODKHVDSODQPDOÕGÕU$FDU örneklem verisi olmak üzere matematiksel olarak basit kuantum modeli, olarak ifade edilir. Burada = kuantum, round ( úHNOLQGHKHVDSODQDQWDPVD\Õ GH÷HUOHU URXQG E|OPQ HQ \DNÕQ WDPVD\Õ\D \XYDUODQPDVÕ FLYDUÕQGDYH µ\HNÕ\DVODNoNGH÷HUOHUDODFDNWÕU KDWD GH÷HUOHUL VÕIÕU Kuantum modelleme ilk olaUDNøQJLOWHUHøVNRo\DYH*DOOHU¶GHSHNoRNVD\ÕGDEXOXQDQ 6WRQHKHQJH LVLPOL GDLUHVHO IRUPGDNL WDULKL WDú GLNLWOHULQ \DUÕoDSODUÕQÕQ (Thom, 1955) WDUDIÕQGDQ |OoOPHVL VRQXFXQGD RUWD\D oÕNPÕúWÕU 0HJDOLWLN G|QHPL LQVDQODUÕQÕQ EX \DSÕWODUÕ ROXúWXUXUNHQ temel bir ölçü birimi ve onun katlarÕQÕ NXOODQPÕú RODELOHFHNOHUL VDYÕRUWD\DDWÕOPÕúYHNODVLNLVWDWLVWLNVHO\|QWHPOHUOHDQDOL]HGLOPHVLVRQXFXQGD = 5.44 LQo GH÷HULQLQ NXDQWXP \D GD OLWHUDWUGHNL QO DGÕ\OD ³0HJDOLWLN <DUG´ RODELOHFH÷LQH GDLU|QHPOLEXOJXODUHOGHHGLOPLúWLU.HQGDOO). %XSUREOHPLQ%D\HVFL\DNODúÕPODLONDQDOL]LLVH)UHHPDQWDUDIÕQGDQ\DSÕOPÕúYH NXDQWXP LoLQ \DQÕ VÕUD YH GH÷HUOHULQLQ GH DOWHUQDWLI RODELOHFH÷L oÕNDUVDPDVÕQGD EXOXQXOPXúWXU 0RGHUQ %D\HVFL \|QWHPOHUGHQ 0&0& NXOODQÕODUDN problemin yeniden analizi (Acar, 2000) sonucunda elde edilen iki alternatif kuantum WDKPLQGH÷HUL = 5.439 ve = 7.480, Freeman (¶ÕQVRQXoODUÕLOHWXWDUOÕGÕU %X oDOÕúPDGD \XNDUÕGD |]HWOHGL÷LPL] oDOÕúPDODU VRQXFX HOGH HGLOPLú IDUNOÕ NXDQWXP WDKPLQ GH÷HUOHULQLQ ROXúWXUGX÷X LNL EDVLW NXDQWXP PRGHOLQLQ NÕ\DVODQPDVÕ %D\HV faktörü, BIC YH ',& NXOODQÕODUDN \DSÕOPÕúWÕU /LWHUDWUGH NXDQWDO ROPD |]HOOL÷LQH HQ ID]OD VDKLS ROGX÷X VÕNOÕNOD DWIHGLOHQ JRRG ULQJV Q YHUL VHWL 7KRP EX oDOÕúPDX\JXODPDVÕLoLQWHUFLKHGLOPLúWLU 32 TÜİK, İstatistik Araştırma Dergisi, Temmuz 2013 TurkStat, Journal of Statistical Research, July 2013 An Application of the Bayesian Model Selection by Using Bayes Factor, Bayesian Information Criterion and Deviance Information Criterion Bayes Faktörü, Bayesci Bilgi Ölçütü ve Sapma Bilgi Ölçütü Kullanımıyla Bayesci Model Seçiminin Bir Uygulaması Modeller matematiksel olarak, Model 1 : Model 2 : úeklinde WDQÕPODQÕUBurada , , , , , olup = 7.480 ve = 5.439 ‘dur. 3.2 Kuantum Modellerinin Carlin vH&KLE<|QWHPL\OH.Õ\DVODQPDVÕ ) Model göstergesi *LEEV|UQHNOHPHVLER\XQFD]LQFLULQUHWWL÷L GH÷HUOHULQL NXOODQDUDN ELOHúLN PRGHOOHPH\L JHUoHNOHúWLUHQ ELU SDUDPHWUH ROXS NXDQWXP PRGHOOHULQGHQ PRGHO YH PRGHO ¶\H LOLúNLQ ELOLQPH\HQ SDUDPHWUHOHU LVH VÕUDVÕ\OD =( ve =( ‘dir. %DVLW NXDQWXP PRGHOOHPH oDOÕúPDODUÕQGD, VÕIÕUD \DNÕQ oRN NoN GH÷erlerin gerçek NXDQWXPRODPD\DFD÷Õ YHD\UÕFDmaximum gözlemGHQGDKDE\NGH÷HUOLELU tahminin PPNQ ROPDGÕ÷Õ YXUJXODQPÕú “Megalitik Yard” |UQH÷L verisinin klasik yöntemlerle analizinde [q min =2, q max @ DUDOÕ÷ÕQGD WDUDPD \DSÕOarak bir tahmin sonucuna XODúÕOPÕúWÕU (Kendal, 1974). Ancak GDKD JQFHO ELU oDOÕúPDGD (Acar, 2000), t=1/q GH÷LúNHQLQLQ 8QLIRUP GD÷ÕOÕPD VDKLS ROGX÷X LVSDWODQPÕú YH WDUDPDQÕQ >W min =1/q max , t max =1/q min ] DUDOÕ÷ÕQGD \DSÕOPDVÕ önerilPLúWLU $\QÕ YHULQLQ NXOODQÕOGÕ÷Õ EX oDOÕúPDGD bu parametre için |QVHO GD÷ÕOÕP RODUDN YH SDUDPHWUHOL 8QLIRUP GD÷ÕOÕP VHoLOPLúWLU Herhangi bir verinin kuantal ROGX÷XQGDQbahsedilebilmek için; model hata teriminin (H i ) eúitlik LOHWDQÕPOÕ GH÷HUOHULnin ± µ\HNÕ\DVODNoNYH³´FLYDUÕQGD\R÷XQODúPDVÕ ELU EDúND GH\LúOH KDWD YDU\DQVÕQÕQ (V2), WHVW HGLOHQ NXDQWXP GH÷HULQH NÕ\DVOD NoN ROPDVÕ JHUHNPHNWHGLU. %X oDOÕúPDGD NXOODQÕODQ YHULnin, )UHHPDQ WDUDIÕQGDQ %D\HVFL \DNODúÕPOD \DSÕODQ LON o|]POHQPHVLQGH KDWD YDU\DQVÕQÕQ ³´ den büyük olmDVÕ GXUXPXQGD YHULGH YDU RODELOHFHN ELU NXDQWDO \DSÕQÕQ RUWD\D 2 oÕNDUÕODPD\DFD÷ÕQGDQ EDKVHGLOPLú ve bu parametre için F (2) önVHO GD÷ÕOÕPÕ kullanÕOPÕúWÕU'ROD\ÕVÕ\OD çaOÕúPDQÕQilerleyen bölümlerinde, V2 için bu önsel ile benzer GH÷HUOHU UHWHELOHFHN úHNLOGH SDUDPHWUL]H HGLOPLú ELU *DPPD |QVHOL Winbugs model formülasyonunda W = V parametresi için NXOODQÕOPÕúWÕU Bu ELOJLOHU ÕúÕ÷ÕQGD, iki kuantal PRGHO NÕ\DVODPDVÕ LoLQ JHUHNOL |QVHO GD÷ÕOÕPODU ; úHNOLQGHbelirlenPLúWLU Burada ve ’dir. TÜİK, İstatistik Araştırma Dergisi, Temmuz 2013 TurkStat, Journal of Statistical Research, July 2013 33 Mutlu KAYA, Emel ÇANKAYA %LOHúLN PRGHO WDQÕPODPDVÕQÕ VD÷ODPDN için gerekli sözde önseller D\QÕ YHUL VHWLnin 0&0& \DNODúÕPÕ LOH o|]POHQPHVLnden elde edilen (Acar, 2000) ve Tablo 2’de sunulan parametre tahminlerinin %D\HVFLJYHQDUDOÕNODUÕQGDQ ID\GDODQÕOarak elde HGLOPLúWLU. Tablo 2. <DNÕQVDNOÕN WHVWOHULQL JHoHQ SDUDPHWUHOHULQ IDUNOÕ EDúODQJÕo GH÷HUOHUL LoLQ sonsal tahminleri =LQFLU3DUDPHWUH%DúODQJÕo'H÷HUL Sonsal Ortalama 1 2 %95 Güven $UDOÕ÷Õ t q 0.13414 --0.33128 --- 0.134 7.480 1.371 0.586 [0.1323, 0.1352] [7.395, 7.559] [1.034, 1.707] [0.3437, 0.9346] t q 0.16003 --0.67310 --- 0.184 5.439 2.190 0.709 [0.183, 0.185] [5.410, 5.470] [0.949, 3.870] [0.509, 1.030] W V W V Not: *LEEV |UQHNOHPHVL EDúODQJÕo GH÷HUOHUL DWDPDVÕ sadece |QVHO GD÷ÕOÕP WDQÕPODQDQ PRGHO parametreleri t ve W için gereklidir. Tahmin edilmek istenen q ve V SDUDPHWUHOHUL LoLQ ]LQFLU GH÷HUOHUL t=1/q ve W= V–2 deterministik LOLúNLOHUNXOODQÕODUDNROXúWXUXOPDNWDGÕU Bu durumda pseudo önselleri Model 1 için (j=1), Model 2 için (j=2), , (0.1323 , 0.1352) , (0.1829 , 0.1849) , (1 , 0.5) (1 , 0.5) RODUDNDOÕQPÕúWÕU Formül 19’da verilen iki kuantum modelini, model göstergesi ( \DUGÕPÕ\OD NÕ\DVODPDNYHELOHúLNPRGHOOHPH\LEHOLUOHPHNDPDFÕ\ODPRGHOOHULQ:LQEXJVSURJUDPÕ içindeki grafiksel gösterimi ùHNLO ¶GH J|UOG÷ gibidir. Model parametresi M’nin DODELOHFH÷L³1” ve “2” GH÷HUOHULQLUHWPHNDPDFÕ\OD:LQEXJVSURJUDPÕQGDWDQÕPOÕdcat NDWHJRULNGD÷ÕOÕPÕNXOODQÕOPÕúWÕr. 'D÷ÕOÕP parametresi ; = 1, 2 ise modellerin önsel RODVÕOÕNODUÕQDNDUúÕOÕNJHOip, VD÷ODPDNWDGÕU ùHNLOGHNLkesikli çizgili oklar ise GHWHUPLQLVWLNLOLúNLOHULJ|VWHUPHNDPDFÕ\ODNXOODQÕOPDNWDGÕU 34 TÜİK, İstatistik Araştırma Dergisi, Temmuz 2013 TurkStat, Journal of Statistical Research, July 2013 An Application of the Bayesian Model Selection by Using Bayes Factor, Bayesian Information Criterion and Deviance Information Criterion Bayes Faktörü, Bayesci Bilgi Ölçütü ve Sapma Bilgi Ölçütü Kullanımıyla Bayesci Model Seçiminin Bir Uygulaması M dcat ( p[ ] ) t1 U (0.1 , 0.5) q1 W1 W2 q2 1 Gamma (1 , 0.5) Gamma (1 , 0.5) 1 t1 Oi1 t2 t2 U (0.1 , 0.5) Oi 2 m1i §Y · round ¨ i ¸ © q1 ¹ Model 1 ĂůƚŦŶĚĂ t2 ~ U (0.1829, 0.1849) W 2 ~ Ga (1, 0.5) m2i m1i q1 m2i q2 yi N (Oij , W j V j 2 ) i 1, 2,...,16 j 1, 2 §Y · round ¨ i ¸ © q2 ¹ Model 2 ĂůƚŦŶĚĂ t1 ~ U (0.1323, 0.1352) W 1 ~ Ga (1, 0.5) ùHNLO&DUOLQYH&KLEyöntemi ile iki Kuantum modelinin kÕ\DVODQPDVÕQÕQgrafiksel gösterimi (OGH HGLOHQ EX ELOJLOHU NXOODQÕODUDN &DUOLQ YH &KLE \|QWHPL LOH \D]ÕODQ SURJUDPÕQ :LQEXJV3DNHW3URJUDPÕ¶QGDoDOÕúWÕUÕOPDVÕVRQXFXNXDQWXPPRGHOLQLQVRQVDOPRGHO RODVÕOÕ÷ÕQÕQWDKPLQL = 0.5005 olarak bulunur. (MC hata = 0.01259) Bu durumda model ¶HNÕ\DVODPRGHOOHKLQH%D\HVIDNW|Uformül 4’den, RODUDNKHVDSODQÕU%XKHVDSODPDGDPRGHOOHULQ|QVHORODVÕOÕNODUÕ]LQFLULQ GH÷HULQLHúLW sD\ÕGD UHWPHVLQL VD÷ODPDN DPDFÕ\OD = 0.999995 ve = 0.000005 olarak seçilPLúWLU. Elde edilen GH÷HULQLQ 7DEOR ¶H J|UH ¶GDQ ROGXNoD E\N ELU GH÷HU ROPDVÕ VHEHEL\OHYHUL\LUHWWL÷LYDUVD\ÕODQHQL\LNXDQWXPPRGHOLQLQ modeli; GROD\ÕVÕ\ODHQ RODVÕNXDQWXPGH÷HULQLQROPDVÕ\|QQGHJoOELUNDQÕWÕQEXOXQGX÷XV|\OHQHELOLU TÜİK, İstatistik Araştırma Dergisi, Temmuz 2013 TurkStat, Journal of Statistical Research, July 2013 35 Mutlu KAYA, Emel ÇANKAYA 3.3 Kuantum Modellerinin BIC ve ',&.XOODQÕODUDN.Õ\DVODQPDVÕ DIC KHVDEÕ (formül 16) için gerekli olan sapma; (formül 12), (formül 13), (formül 14) ve (formül NXOODQÕODUDN :LQEXJV SDNHW SURJUDPÕQGD \D]ÕODQ SURJUDPODUÕQoDOÕúWÕUÕOPDVÕVRQXFXQGDKHULNLNXDQWXPPRGHOLLoLQD\UÕD\UÕKHVDSODQDQ ',& GH÷HUOHUL 7DEOR ¶WH J|UOG÷ JLEL HOGH HGLOPLúWLU Bilgi ölçütü temelinde NÕ\DVODPD\DRODQDNWDQÕPDVÕDoÕVÕQGDQformül 7 LOHWDQÕPODQDQ%,&hesap GH÷HUOHULGH D\QÕWDEORGDVXQXOPXúWXU Tablo 3. Model ve PRGHOOHULQLQ%,&YH',&KHVDSGH÷HUOHUL Dbar Dhat p pD pV DIC BIC 57.662 55.706 2 1.957 1.930 3.8612 59.619 60.058 33.613 31.648 2 1.965 1.919 3.8377 35.578 36.018 Sonuçlar yorumlanGÕ÷ÕQGD HQNoN%,&YH',&GH÷HUOHULQLQD\QÕPRGHOLLúDUHWHWWL÷L, PRGHOL ROGX÷X ELU EDúND GH\LúOH veri setini en iyi temsil eden kuantum modelinin görülmektedir. 0RGHO¶HNDUúÕPRGHOOHKLQH %D\HVIDNW|UGH÷HULLVHformül 6 NXOODQÕODUDN úHNOLQGH EXOXQXU Bu GH÷HULQ, formül 22’de Carlin ve Chib yöntemiyle tam olarak hesaplanan Bayes faktörünün kaba bir tahmini ROGX÷XQX KDWÕUODWDUDN ROPDVÕVHEHEL\OH PRGHOLQHNDUúÕ modeli lehine NHVLQNDQÕWROGX÷X VRQXFXQDELUNHUHGDKDXODúÕODELOLU 7$57,ù0$YH6218d *QP] LVWDWLVWLNVHO PRGHOOHPH oDOÕúPDODUÕQGD QH NDGDU NRPSOHNV ROXUVD ROVXQ hemen hemen her problemin PRGHOOHQPHVLQLQPPNQROGX÷XJ|UOPHNWHGLU0HYFXW PRGHOOHU DUDVÕQGDQ HQ X\JXQ PRGHOL VHoPHN LoLQ ELU DUDo JHUHNVLQLPL JLWJLGH DUWWÕ÷ÕQGDQKDOHQSHNoRNPHWRWJHOLúWLULOPHNWHGLU0HWRWODUÕQoHúLWOLOL÷LYHVD\ÕFDID]OD ROPDVÕ SUREOHP oHúLWOLOL÷LQGHQ JHUHNOL DQDOLWLN LúOHPOHULQ ]RUOXN GHUHFHVLQGHQ \D GD PRGHOLQROXúWXUXOPDDPDFÕQGDQND\QDNOÕGÕU %X oDOÕúPDGD PRGHO VHoLPL SUREOHPLQH %D\HVFL \DNODúÕPODUGDQ %D\HV IDNW|U YH 6DSPD %LOJL gOoW ',& LONLQLQ OLWHUDWUGH VÕNOÕNOD NXOODQÕOPDVÕ YH GL÷HULQLQ VRQ G|QHPOHUGH JHOLúWLULOPLú ROPDVÕ VHEHEL\OH WDQÕWÕOPÕú YH ELU X\JXODPDVÕ J|VWHULOPLúWLU %D\HV IDNW|UQGHQ WDPDPHQ IDUNOÕ \DSÕGD YH SUHQVLSWH oDOÕúDQ ',&¶QLQ NÕ\DVODQDELOLUOL÷LQL VD÷ODPDN DPDFÕ\OD %D\HVFL %LOJL gOoW %,& GH oDOÕúPD\D GDKLO HGLOPLúWLU %D\HV IDNW|UQQ DQDOLWLN LúOHPOHUL LoLQ 0&0& VLPODV\RQXQD GD\DOÕ 36 TÜİK, İstatistik Araştırma Dergisi, Temmuz 2013 TurkStat, Journal of Statistical Research, July 2013 An Application of the Bayesian Model Selection by Using Bayes Factor, Bayesian Information Criterion and Deviance Information Criterion Bayes Faktörü, Bayesci Bilgi Ölçütü ve Sapma Bilgi Ölçütü Kullanımıyla Bayesci Model Seçiminin Bir Uygulaması &DUOLQ YH &KLE \|QWHPL X\JXODPD NROD\OÕ÷Õ DoÕVÕQGDQ WHUFLK HGLOPLúWLU %D\HV IDNW|UQQ%,&\DUGÕPÕ\OD\DNODúÕNRODUDNKHVDEÕGDNÕVDFDDoÕNODQPÕúWÕU øNLPRGHONDUúÕODúWÕUPDVÕQGDYH|]HOOLNOHKLSRWH]WHVWOHULQGHVÕNOÕNODWHUFLKHGLOHQ%D\HV IDNW|UROGXNoDNXOODQÕúOÕROPDVÕQDUD÷PHQ|QVHOGD÷ÕOÕPVHoLPLQHYHPRGHOLQ\HQLGHQ SDUDPHWUL]HHGLOPHVLQHNDUúÕGX\DUVÕ]GH÷LOGLUg]HOLNOHNÕ\DVODQDFDNPRGHOOHULQIDUNOÕ ER\XWODUGDROPDVÕX\JXQVX] \DGDPX÷ODN|QVHOVHoLPL%D\HVIDNW|UQQNXOODQÕPÕQÕ JHoHUVL]NÕOPDNWDGÕU+DOO$\UÕFDSDUDPHWUHVD\ÕVÕJ|]OHPVD\ÕVÕQGDQID]ODRODQ KL\HUDUúLN PRGHOOHULQ NÕ\DVODQPDVÕQGD %D\HV IDNW|U X\JXODQDPDPDNWDGÕU %X GH]DYDQWDMODUGDQ ED]ÕODUÕQÕQ VWHVLQGHQ JHOPHN LoLQ %D\HV IDNW|UQQ YHUVL\RQODUÕ VRQVDO NÕVPL LoVHO YH NHVLUOL %D\HV IDNW|U JHOLúWLULOPLú ROPDVÕQD UD÷PHQ EXQODUÕQ NXOODQÕPNRúXOODUÕGDKDOHQWDUWÕúPDNRQXVXGXU$UDXMRYH3HUHLUD %,& IDUNOÕ VD\ÕGD SDUDPHWUH LoHUHQ IDUNOÕ PRGHOOHU DUDVÕQGDQ VHoLP \DSPDN LoLQ NXOODQÕOPDVÕ |QHULOHQ |OoWOHUGHQ ELULGLU %XUQKDP $UWDQ GH÷LúNHQ VD\ÕVÕQÕQ X\XPGD VD÷ODGÕ÷Õ L\LOHúPH\L DUWDQ SDUDPHWUH VD\ÕVÕ LOH ORJQ RUDQÕQGD FH]DODQGÕUGÕ÷ÕQGDQ PRGHOGH EDVLWOLN SUHQVLELQH GD\DQÕU gUQHNOHP E\NO÷ DUWWÕ÷ÕQGDWXWDUOÕELUPHWRWWXU%LUEDúNDGH\LúOHH÷HUDOWHUQDWLIPRGHOOHUDUDVÕQGDGR÷UX PRGHOYDULVHRQXEXOXU3DUDPHWUHOHULoLQ|QVHOGD÷ÕOÕPEHOLUWPH\LJHUHNWLUPHGL÷LQGHQ |QELOJL\HWHUVL]OL÷LQGHWHUFLKHGLOHELOPHNWHGLU Son dönemlerde, özellikle kompOHNV KL\HUDUúLN PRGHOOHPHGH NDUúÕODúÕODQ SUREOHPOHUL JLGHUPHN DPDFÕ\OD JHOLúWLULOHQ ',& |OoW %D\HV IDNW|UQGHQ WDPDPHQ IDUNOÕ ELU \DSÕGD ROXS $,& YH %,& LOH EHQ]HU SUHQVLSWH oDOÕúPDNWDGÕU %X \DNODúÕP YHUL\H X\JXQOX÷XWHVW HGLOHQPRGHOGH \HUDOPDVÕ JHUHNHQHWNLQSDUDPHWUHVD\ÕVÕQÕQWDKPLQLQL VD÷ODPDVÕ 0&0& \|QWHPL LOH NROD\OÕNOD KHVDSODQDELOPHVL |QVHO VHoLPLQH GX\DUOÕ ROPDPDVÕ JLEL DYDQWDMODUD VDKLS ROPDVÕQD UD÷PHQ KHU PRGHOOHPH WUQH X\JXODQDPDPDVÕ YH E\N |UQHNOHPOHUGH JHUHNVL] VD\ÕGD SDUDPHWUH\H VDKLS E\N modelleri tercih etmesi gibi dezavantajlara da sahiptir. %LU PRGHOOHPH oDOÕúPDVÕQGD KDQJL PHWRW \D GD PHWRWODUOD PRGHO VHoLPL \DSÕODFD÷Õ PRGHOOHULQ ROXúWXUXOPD DPDFÕQD J|UH EHOLUOHQPHOLGLU (÷HU DPDo |QJ|U \DSPDN LVH Bayes faktörü ve DIC (ya da BIC) NXOODQÕPÕ\OD PRGHO NÕ\DVODPDVÕQÕQ D\QÕ VRQXFD LúDUHW HWPHVL EHNOHQPHPHOLGLU dQN LNLVL GH IDUNOÕ DPDFD KL]PHW HWPHNWHGLU %D\HV IDNW|UVDGHFHELUPRGHOLQGR÷UXROGX÷XYDUVD\ÕPÕ\ODDOWHUQDWLIPRGHOOHUDUDVÕQGDQEX GR÷UX PRGHOLQ VHoLOPHVL DPDFÕ\OD NXOODQÕOÕU ',& NXOODQÕPÕQGD LVH DPDo GL÷HU ELOJL ölçütleri (AIC, BIC, AIC c YV NXOODQÕPODUÕQGD ROGX÷X JLEL GR÷UX PRGHO ROPDVD ELOH YHUL\OH HQ X\XPOX PRGHOL VHoPHNWLU g]HOOLNOH KL\HUDUúLN PRGHOOHPHGH |QJ|UQQ KL\HUDUúLQLQKDQJLVHYL\HVLLoLQ\DSÕODFD÷ÕQDED÷OÕRODUDNPRGHOVHoLP|OoWWHUFLKLQLQ \DSÕOPDVÕJHUHNWL÷L|QHPOHYXUJXODQPÕúWÕU6SLHJHOKDOWHU6b). øVWDWLVWLNVHO PRGHOOHPH DODQÕQGD IDUNOÕ ELU \HUH VDKLS NXDQWDO PRGHOOHPHGH LVH DPDo J|]OHPOHQHQ YHULGH ROPDVÕ PXKWHPHO ELU \DSÕQÕQ NXDQWDO ROPD RUWD\D oÕNDUÕOPDVÕQD \|QHOLN WDQÕPOD\ÕFÕ ELU PRGHO ROXúWXUPDNWÕU /LWHUDWUGH ³0HJDOLWLN <DUG´ DGÕ\OD TÜİK, İstatistik Araştırma Dergisi, Temmuz 2013 TurkStat, Journal of Statistical Research, July 2013 37 Mutlu KAYA, Emel ÇANKAYA ELOLQHQ ELU |UQH÷LQGH DQWLN G|QHP LQVDQODUÕQÕQ \DSÕ LQúDDWODUÕQGD JQP] PHWULN VLVWHPLQGHNLJLEL\HUOHúLNELUWHPHOX]XQOXN|OoVNXDQWXPNXOODQÕSNXOODQPDGÕNODUÕ VRUXVXQD FHYDS DUDQPDNWDGÕU %XUDGD PRGHO SDUDPHWUHVL NXDQWXPXQ ELUGHQ ID]OD WDKPLQL PPNQ ROGX÷XQGDQ SDUDPHWUHQLQ KDQJL GH÷HULQLQ YHULQLQ TXDQWDO \DSÕVÕQÕ WDQÕPOD\DQ HQ L\LHQ GR÷UX GH÷HU ROGX÷X WHVSLWL %ayes faktörü, DIC ve BIC ile \DSÕODELOLU %X oDOÕúPDGD ³0HJDOLWLN <DUG´ SUREOHPLQLQ ELU YHUL VHWLQH o \|QWHPLQ X\JXODQPDVÕ VRQXFX 0HJDOLW \DSÕ LQúDDWÕQGD NXOODQÕOPÕú RODELOHFHN WHPHO |Oo ELULPL için ¶HNÕ\DVOD LQoGH÷HULQLGHVWHNOHU\|QGHRUWDNEXOJX\DXODúÕOPÕúWÕU %X oDOÕúPD LoLQ VHoLOHQ \|QWHPOHUGHQ D\QÕ GR÷UXOWXGD VRQXo HOGH HGLOPLúWLU $QFDN PRGHO VHoLP |OoWOHULQLQ IDUNOÕ VRQXoODU YHUGL÷L ELU EDúND X\JXODPD oDOÕúPDVÕQGD PRGHOOHPH DODQÕna YH DPDFÕQD |UQHNOHP JHQLúOL÷LQH PRGHOGHNL SDUDPHWUH VD\ÕVÕQD PRGHOOHULQ LoLoH JHoPLú ROXS ROPDGÕ÷ÕQD YV EDNÕODUDN VRQXoODU \RUXPODQPDOÕGÕU gUQH÷LQ E\N |UQHNOHPOHU LoLQ PRGHOLQ JHUHNVL] GHUHFHGH E\N ROPD LKWLPDOLQH |QOHP RODUDN %,& WHUFLK HGLOLUNHQ NoN |UQHNOHPOHUGH $,& SUHQVLELQGH oDOÕúDQ ',& daha iyi sonuçlar vermektedir. Bayes Faktörü, BIC, AIC ve DIC model seçim \|QWHPOHULQLQ VLPODV\RQD GD\DOÕ ELU J|]GHQ JHoLUPH oDOÕúPDVÕ YH GDKD D\UÕQWÕOÕ NÕ\DVODPDODUÕ:DUG¶GDEXOXQDELOLU 5. KAYNAKLAR Acar, E., 2000. Extensions of Quantal Problems. PhD. Thesis. University of Sheffield Department of Probability and Statistics, UK. (in English). Araujo, M. I., Pereira, B.B., 2007. A Comparison of Bayes factors for Separated Models: Some Simulation Results. Communications in Statistics, Simulation and Computation, 36, 297-309. Asseburg, C., 2007. An Introduction to Using WinBUGS for Cost-Effectiveness Analyses in Health Economics Centre for Health Economics, University of York, UK. Box, G. E. P., 1979. Robustness in the Strategy of Scientific Model Building. In R.L.Launer & G. N. Wilkinson, (Eds.) Robustness in Statistics New York: Academic Press, 201-236. Burnham, K. P. 2004. Multimodel Inference: Understanding AIC and BIC in Model Selection. Colorado Cooperative F&W Research Unit, Coloroda State University, Amsterdam Workshop on model selection, USA. Carlin, B., Chib, S., 1995. Bayesian Model Choice via Markov Chain Monte Carlo Methods. J. Royal Statist. Society Series B, 57(3), 473-484. Celeux, G., Forbes, F., Robert, C. P., Titterington, D. M., 2006. Deviance Information Criteria for Missing Data Models. Bayesian Analysis, 4, 651-674. Da Silva, S. A., Melo, L. L. M., Ehlers, R., 2004. Spatial Analysis of Incidence Rates: A Bayesian Approach. Biostatistics, 1-17. 38 TÜİK, İstatistik Araştırma Dergisi, Temmuz 2013 TurkStat, Journal of Statistical Research, July 2013 An Application of the Bayesian Model Selection by Using Bayes Factor, Bayesian Information Criterion and Deviance Information Criterion Bayes Faktörü, Bayesci Bilgi Ölçütü ve Sapma Bilgi Ölçütü Kullanımıyla Bayesci Model Seçiminin Bir Uygulaması TÜİK, İstatistik Araştırma Dergisi, Temmuz 2013 TurkStat, Journal of Statistical Research, July 2013 39 Mutlu KAYA, Emel ÇANKAYA Raftery, A. E., 1995. Bayesian Model Selection in Social Research. Sociological Methodology, Marsden, P. V. Cambridge, Mass., Blackwells, 111-196. Rosenkranz, S. L., Raftery, A. E., 1994. Covariate Selection in Hierarchical Models of Hospital Admission Counts: A Bayes Factor Approach No.268 Department of Statistics, GN 22 University of Washington Seattle, Washington, 98195 USA. Schwarz, G., 1978. Estimating the Dimension of a Model. Annals of Statistics, 6(2), 461-464. Sinharay, S., Stern, H. S., 2002. On the Sensitivity of Bayes Factors to the Prior Distributions. The American Statistician, 56(3), 196-201. Spiegelhalter, D. J., Bull, K., 1997. Tutorial in Biostatistics Survival Analysis in Observational Studies. Statistics in Medicine, 16(9), 1041-1074. Spiegelhalter, D. J., Best, N. G., Carlin, B. P., Van der Linde, A., 2002. Bayesian Measures of Model Complexity and Fit. Journal of the Royal Statistical Society, Series B, Methodological, 64(4), 583-616. Spiegelhalter, D. J., 2006a. Two Brief Topics on Modelling with WinBUGS. MRC Biostatistics Unit, Cambridge. Spiegelhalter, D. J., 2006b. Some DIC Slides. MRC Biostatistics Unit, Cambridge. Thom, A., 1955. A Statistical Examination of the Megalithic Sites in Britain. J. R. Statist. Soc. A., 118, 275-295. Thom, A., 1967. Megalithic Sites in Britain. Clarendon Press, Oxford. 8FDO 0 ù (NRQRPHWULN 0RGHO 6HoLP .ULWHUOHUL h]HULQH .ÕVD %LU øQFHOHPH &høNWLVDGLYHøGDUL%LOLPOHU'HUJLVL-57. Ward, E. J., 2008. A Review and Comparison of Four Commonly Used Bayesian and Maximum Likelihood Selection Tools. Ecological Modelling, 211, 1-10. Wilberg, M. J., Bence, J. R., 2008. Performance of Deviance Information Criterion Model Selection in Statistical Catch-at-age Analysis. Fisheries Research, 93, 212-221. 40 TÜİK, İstatistik Araştırma Dergisi, Temmuz 2013 TurkStat, Journal of Statistical Research, July 2013 An Application of the Bayesian Model Selection by Using Bayes Factor, Bayesian Information Criterion and Deviance Information Criterion Bayes Faktörü, Bayesci Bilgi Ölçütü ve Sapma Bilgi Ölçütü Kullanımıyla Bayesci Model Seçiminin Bir Uygulaması AN APPLICATION OF THE BAYESIAN MODEL SELECTION BY USING BAYES FACTOR, BAYESIAN INFORMATION CRITERION AND DEVIANCE INFORMATION CRITERION ABSTRACT In statistical modelling studies, due to the advanced technology and methodological developments, it is possible to construct alternative models assumed to generate the data. Therefore, the process of choosing “the best model” among available competing models appears to be one of the crucial steps that has to be included in the modelling process. In this study, Bayes factor, which is a preferred Bayesian approach to the solution of statistical model selection problem, is introduced. For the cases when analytical computation of Bayes factor is not possible, in addition to Bayesian Information Criterion (BIC), Carlin and Chib method based on Markov Chain Monte Carlo (MCMC) simulation is explained. Besides, a frequently used criteria in the recent years of model selection applications, namely Deviance Information Criterion (DIC), which has a completely different working principle than Bayes factor, is described in detail. Two models appeared in the literature as a result of an application of quantal modelling, which is an example of a semi-parametric modelling, are compared by means of Bayes factor, BIC and DIC. Keywords: Bayes factor, Carlin and Chib method, DIC, MCMC, BIC. TÜİK, İstatistik Araştırma Dergisi, Temmuz 2013 TurkStat, Journal of Statistical Research, July 2013 41 Cilt: 10 Sayı: 02 Kategori: 02 Sayfa: 42-55 ISSN No: 1303-6319 Volume: 10 Number: 02 Category: 02 Page: 42-55 42 TÜİK, İstatistik Araştırma Dergisi, Temmuz 2013 TurkStat, Journal of Statistical Research, July 2013 Investigation of Factors Effective on Credit Card Ownership of Marmara University Students by Bayesian Logistic Regression Marmara Üniversitesi Öğrencilerinin Kredi Kartı Sahibi Olmalarını Etkileyen Faktörlerin Bayesci Lojistik Regresyon Yardımıyla İncelenmesi DUDVÕQGDNLVHEHS-VRQXoLOLúNLVLQLLQFHOHUNHQLojistik UHJUHV\RQDQDOL]LNXOODQÕOÕU(Oktay vd., 2009). Lojistik regresyon modeli ilk olarak \ÕOÕQGD %HUNVRQ WDUDIÕQGDQ NXOODQÕOPÕúWÕU &R[ EX PRGHOL J|]GHQ JHoLUHUHN oHúLWOL X\JXODPDODUÕQÕ \DSPÕú, |]HWJHOLúPHOHULVHLON$QGHUson (1979, 1983) WDUDIÕQGDQYHULOPLúWLU3UHJLERQLNL grup Lojistik modelde etkin (influential) D\NÕUÕ RXWOLHU J|]OHPOHUL YH EHOLUOHPH ölçütlerini, Lesaffre (1986), Lesaffre ve Albert (1989) ise çoklu grup Lojistik PRGHOOHUGHHWNLQYHD\NÕUÕJ|]OHPOHUOHEHOLUOHPH|OoOHULQLLQFHOHPLúOHUGLU Lojistik UHJUHV\RQ PRGHOOHULQLQ \D\JÕQ ELU ELoLPGH NXOODQÕOÕU KDOH JHOPHVL NDWVD\Õ WDKPLQ \|QWHPOHULQLQ JHOLúWLULOPHVL YH Lojistik UHJUHV\RQ PRGHOOHULQLQ GDKD D\UÕQWÕOÕ LQFHOHQPHVLQHVHEHSROPXúWXU&RUQILHOGLojistik UHJUHV\RQGDNLNDWVD\ÕWDKPLQ LúOHPlerinde diskriminanW IRQNVL\RQX \DNODúÕPÕQÕ LON NH] NXOODQDUDN SRSOHU hale JHWLUPLúWLU 5REHUW YG. (1987) Lojistik regresyonda standart Ki-kare, olabilirlik oran (G2), “pseudo” en çok olabilirlik tahminleri, uyum mükemPHOOL÷L YH KLSRWH] WHVWOHUL ]HULQH DUDúWÕUPDODU \DSPÕúODUGÕU 'XII\ Lojistik regresyonda hata terimlerinin GD÷ÕOÕúÕ YH SDUDPHWUH GH÷HUOHULQLQ JHUoHN GH÷HUOHUH \DNODúPDVÕQÕ LQFHOHPLúWLU %DúDUÕU NOLQLN YHULOHUGH oRN GH÷LúNHQOL Lojistik regres\RQ DQDOL]L YH D\UÕPVDPD VRUXQX ]HULQHoDOÕúPÕúWÕU 6RQ\ÕOODUGDNODVLN\|QWHPOHUGHNLNÕVÕWODPDODU%D\HVFL\DNODúÕPDRODQLOJL\LDUWWÕUPÕúWÕU %D\HVFL \DNODúÕPVXEMHNWLIGúQFHQLQWHPHOWDúÕRODUDNNDEXOHGLOHQ%D\HVWHRUHPLQH GD\DQDUDNJHOLúWLULOPLúWLUYH\DNODúÕPDJ|UHSDUDPHWUHOHUNODVLN\DNODúÕPGDNLJLELVDELW RODUDNGH÷LORODVÕOÕ÷DED÷OÕRODUDNWDQÕPODQÕU'ROD\ÕVÕLOHKHUELUSDUDPHWUH\HLOLúNLQELU GD÷ÕOÕP V|] NRQXVXGXU %X RODVÕOÕNODU ³NDQDDW GHUHFHVL GHJUHHV RI EHOLHI´ RODUDN WDQÕPODPDNWDGÕU %LU EDúND GH\LúOH SDUDPHWUHOHU UDVJHOH GH÷LúNHQ RODUDN HOH DOÕQPDNWDGÕU ³%D\HVFL´ NHOLPHVL GH SDUDPHWUH WDKPLQOHUL LoLQ \DSÕODQ oÕNDUVDPDODUGD 7KRPDV%D\HV¶LQWHRUHPLQGHQID\GDODQÕOPDVÕQGDQGR÷PXúWXU(Ibrahim vd., 2001). %D\HVFL \DNODúÕP NDUPDúÕN YHUL\L PRGHOOHPHGH |QVHO SULRU ELOJL\H EDúYXUPD HVQHNOL÷L QHGHQL\OH NODVLN \|QWHPOHUH J|UH ROGXNoD DYDQWDMOÕGÕU (Ibrahim vd., 2001; Wong vdgQVHOELOJLQLQHOGHHGLOPHVL%D\HVFLoÕNDUVDPDGD|QHPOLUROR\QDU gQVHO GD÷ÕOÕPÕQ VRQXoODUÕ QH NDGDU GH÷LúWLUHFH÷L PRGHO VHoLP NULWHUOHUL LOH WHVSLW HGLOPHOLGLU gQVHO GD÷ÕOÕPODU DoÕNOD\ÕFÕ RODQ LQIRUPDWLYH YH DoÕNOD\ÕFÕ ROPD\DQ QRQLQIRUPDWLYH ROPDN ]HUH LNL WHPHO JUXED D\UÕOÕU $oÕNOD\ÕFÕ |QVHO ELOJLOHU, daha |QFH \DSÕOPÕú oDOÕúPDODUGDQ HOGH HGLOHQ ELOJLOHU JHoPLú GHQH\LPOHU olarak EHOLUOHQLUNHQ DoÕNOD\ÕFÕ ROPD\DQ |QVHO ELOJLOHU LVH SDUDPHWUHQLQ WDQÕPOÕ ROGX÷X DUDOÕN ELOJLVL GÕúÕQGD KHUKDQJL ELU ELOJLQLQ ROPDPDVÕ RODUDN WDQÕPODQPDNWDGÕU %D\HVFL \DNODúÕP |QVHO ELOJLOHU ÕúÕ÷ÕQGD J|]OHQHQ YHULQLQ VXEMHNWLI \RUXPXQD GD\DQÕU YH EXUDGDQ KDUHNHWOH HOGH HGLOHQ \HQL ELOJLQLQ ELOHúLPL RODQ VRQVDO GD÷ÕOÕPOD DoÕNODQÕU (Congdon, 2006; Wong vd., 2005). Hsu ve Leonard (1995) Lojistik regresyon IRQNVL\RQODUÕQGD %D\HV WDKPLQOHULQLQ HOGH HGLOPHVL LúOHPOHUL ]HULQH oDOÕúPÕúODU YH Bayesci Lojistik UHJUHV\RQGD 0RQWH &DUOR G|QúPQQ NXOODQÕODELOHFH÷LQL J|VWHUPLúOHUGLU dDOÕúPDQÕQ DPDFÕ %D\HV WDQÕPÕQGDQ \ROD oÕNDUDN YDU olan bilginin yeni bilgi ile güncellenmesini göstermektir. %X DPDoOD \ÕOÕQGD *D]LRVPDQSDúD YH øQönü QLYHUVLWH |÷UHQFLOHULQLQ NUHGL NDUWÕ VDKLSOL÷LQL HWNLOH\HQ IDNW|UOHUL EHOLUOHPH oDOÕúPDVÕQGD X\JXODQDQ VRUXOXN DQNHW, Marmara üniversitesinde okuyan 200 |÷UHQFL\H X\JXODQPÕúWÕU 0DUPDUDQLYHUVLWHVL|÷UHQFLOHULQGHQGHUOHQHQ YHULOHU önsel bilgi olDUDN NXOODQÕODQ *D]LRVPDQSDúD YH øQ|Q QLYHUVLWH |÷UHQFLOHULQLQ YHULOHUL LOH TÜİK, İstatistik Araştırma Dergisi, Temmuz 2013 TurkStat, Journal of Statistical Research, July 2013 43 Esin AVCI ELUOHúWLULOHUHN%D\HVFLLojistik UHJUHV\RQX\JXODQPÕúYHNUHGLNDUWÕ VDKLSOL÷LQHHWNLHGHQ IDNW|UOHUEHOLUOHQPLúWLU 2. YÖNTEM 2.1 Lojistik regresyon øVWDWLVWLNVHO PRGHOOHULQ NXOODQÕOGÕ÷Õ ELUoRN ELOLPVHO DUDúWÕUPDGD VRQXoODUÕQ DQDOL] edilmesinde en çok lineer olmayan PRGHOOHU NXOODQÕOPDNWDGÕU. Lojistik regresyon modeli lineer-olmayan modellerden en önemlilerindendir. Lojistik regresyon modeli ED÷ÕPOÕ GH÷LúNHQLQ NHVLNOL ED÷ÕPVÕ] GH÷LúNHQOHULQ LVH NHVLNOL YH\D VUHNOL ROPDVÕ GXUXPXQGD ED÷ÕPOÕ GH÷LúNHQOH ED÷ÕPVÕ] GH÷LúNHQOHU DUVÕQGDNL VHEHS-VRQXo LOLúNLVLQLQ RUWD\DNRQXOPDVÕQGDNXOODQÕOPDNWDGÕU (Eskandari ve Meshkani, 2006). Lojistik regresyon analizi, diskriminant analizi ve çRNOX UHJUHV\RQ DQDOL]LQGHQ IDUNOÕ RODUDN ED÷ÕPVÕ] GH÷LúNHQOHULQ GD÷ÕOÕPÕQD LOLúNLQ DUDúWÕUPDFÕODUFD NDUúÕODQPDVÕ JHUHNHQ YDUVD\ÕPODU JHUHNWLUPH] 7DEDFKQLFN YH )LGHOO %LU EDúND GH\LúOH ED÷ÕPVÕ] GH÷LúNHQOHULQQRUPDOGD÷ÕOPDVÕGR÷UXVDOOÕNYHYDU\DQV-NRYDU\DQVPDWULVOHULQLQHúLWOL÷L gibi YDUVD\ÕPODUÕQ NDUúÕODQPDVÕJHUHNPH]'ROD\ÕVÕ\ODGDLojistik UHJUHV\RQXQGL÷HULNL WHNQLNWHQ oRN GDKD HVQHN ROGX÷X LIDGH HGLOHELOLU Lojistik UHJUHV\RQXQ \DQVÕ] YH VDSPDVÕ] LVWDWLVWLNOHU RUWD\D NR\PDVÕ LoLQ E\N |UQHNOHPOHU JHUHNWLUGL÷L ELOGLULOPHNWHGLU g]HOOLNOH ED÷ÕPOÕ GH÷LúNHQLQ LNLGHQ ID]OD NDWHJRULVLQLQ ROGX÷X GXUXPODUGD JHoHUOL ELU KLSRWH] WHVWL LoLQ KHU ED÷ÕPVÕ] GH÷LúNHQGH HQ D] NLúLOLN ELU JUXS E\NO÷QH LKWL\Do YDUGÕU %D]Õ ND\QDNODUGD EX VD\ÕQÕQ KHU ED÷ÕPVÕ] GH÷LúNHQ LoLQ PLQLPXP WRSODPGD PLQLPXP ROPDVÕ JHUHNWL÷L YXUJXODQPDNWDGÕU 'L÷HU \DQGDQ |UQHNOHP E\NONOHULQLQ D\QÕ ROPDVÕ GXUXPXQGD ED÷ÕPOÕ GH÷LúNHQLQ KHU ELU NDWHJRULVLQGH ED÷ÕPVÕ] GH÷LúNHQOHULQ oRN GH÷LúNHQOL QRUPDOOL÷H VDKLS ROPDVÕ Ker bir NDWHJRUL LoLQ YDU\DQV YH NRYDU\DQVODUÕQ HúLWOL÷L YDUVD\ÕPODUÕQÕQ NDUúÕODQPDVÕ GXUXPXQGD GDKD |QFH GH GH÷LQLOGL÷L JLEL GLVNULPLQDQW DQDOL]L Lojistik regresyon analizine tercih edilmelidir. Bununla birlikte, Lojistik UHJUHV\RQ DQDOL]L LOH \DSÕODQ çö]POHPHGHQ HOGH HGLOHQ PDWHPDWLNVHO PRGHOLQ \RUXPODQPDVÕQÕQ GDKD NROD\ ROGX÷XQX EHOLUWPHNWH \DUDU YDUGÕU $NNXú YH dHOLN *ULPP YH <DUQROG .DOD\FÕLeech vd., 2005; Poulsen ve French, 2008; Tabachnick ve Fidell, 1996; 7DWOÕGLO Lojistik UHJUHV\RQ DQDOL]L DGÕQÕ ED÷ÕPOÕ GH÷LúNHQH X\JXODQDQ ORJLW G|QúPQden ORJLW WUDQVIRUPDWLRQ DOPDNWDGÕU %X GXUXP D\QÕ ]DPDQGD KHP NHVWLULP KHP GH \RUXPODPDVUHFLQGHED]ÕIDUNOÕOÕNODUDQHGHQROXU+DLU vd., 2006). Lojistik regresyon analizi, bD÷ÕPOÕ GH÷LúNHQLQ |OoOG÷ |OoHN WUQH YH ED÷ÕPOÕ GH÷LúNHQLQ VHoHQHN VD\ÕVÕQD J|UH oH D\UÕOPDNWDGÕU (÷HU ED÷ÕPOÕ GH÷LúNHQ LNL VHoHQHNOL ELU NDWHJRULN GH÷LúNHQ LVH ³øNLOL Lojistik Regresyon Analizi (Binary Logistic Regression Analysis)” DGÕQÕDOÕUgUQH÷LQELUDNDGHPLNSURJUDPÕELWLUPHGXUXPXQD J|UH|÷UHQFLOHULQEDúDUÕOÕ YHEDúDUÕVÕ]RODUDNQLWHOHQGLULOPHVLGXUXPXQGDLNLOLLojistik UHJUHV\RQX\JXODQÕU(÷HU ED÷ÕPOÕ GH÷LúNHQ LNLGHQ oRN NDWHJRULOL G]H\OL VÕQÕIODPDOÕ ELU GH÷LúNHQ LVH ³dRN Kategorili/Düze\OL øVLPVHO Lojistik Regresyon Analizi (Multinominal Logistic 5HJUHVVLRQ $QDO\VLV´ DGÕQÕ DOÕU gUQH÷LQ o IDUNOÕ DNDGHPLN SURJUDPGD |÷UHQLP J|UPHNWH RODQ |÷UHQFLOHUGHQ ROXúDQ ELU ED÷ÕPOÕ GH÷LúNHQLQ ROPDVÕ GXUXPXQGD oRN düzeyli isimsel Lojistik regresyon X\JXODQÕU(÷HUED÷ÕPOÕGH÷LúNHQVÕUDODPD|OoH÷L\OH HOGH HGLOPLú LVH EX GXUXPGD GD ³6ÕUDOÕ Lojistik Regresyon Analizi (Ordinal Logistic 5HJUHVVLRQ $QDO\VLV´ NXOODQÕOÕU gUQH÷LQ |÷UHQFLOHULQ |÷UHQLP J|UGNOHUL DNDGHPLN 44 TÜİK, İstatistik Araştırma Dergisi, Temmuz 2013 TurkStat, Journal of Statistical Research, July 2013 Investigation of Factors Effective on Credit Card Ownership of Marmara University Students by Bayesian Logistic Regression Marmara Üniversitesi Öğrencilerinin Kredi Kartı Sahibi Olmalarını Etkileyen Faktörlerin Bayesci Lojistik Regresyon Yardımıyla İncelenmesi SURJUDPGDNL EDúDUÕODUÕQÕQ ³GúN´ ³RUWD´ YH ³\NVHN´ RODUDN JUXSODQGÕ÷Õ GXUXPGD VÕUDOÕ Lojistik UHJUHV\RQ X\JXODQÕU Lojistik UHJUHV\RQ ³WHN GH÷LúNHQOL Lojistik UHJUHV\RQ ED÷ÕPVÕ] GH÷LúNHQLQ WHN ROGX÷X GXUXP´ YH ³oRN GH÷LúNHQOL Lojistik UHJUHV\RQ ED÷ÕPVÕ] GH÷LúNHQLQ LNL YH\D GDKD ID]OD olGX÷X GXUXP´ RODUDN VÕQÕIODQGÕUPD\DSÕOPDNWDGÕU (Stephenson, 2008). 'R÷UXVDO UHJUHV\RQ DQDOL]LQGH ED÷ÕPOÕ GH÷LúNHQLQ GH÷HUL NHVWLULOLUNHQ Lojistik UHJUHV\RQ DQDOL]LQGH ED÷ÕPOÕ GH÷LúNHQLQ DODFD÷Õ GH÷HUOHUGHQ ELULQLQ JHUoHNOHúPH RODVÕOÕ÷ÕNHVWLULOLU%XRODVÕOÕNGH÷HULDúD÷ÕGDNLPRGHONXOODQÕODUDNHOGHHGLOLU S ( x) exp( E 0 E 1 x1 ... E p x p ) (1) 1 exp( E 0 E 1 x1 ... E p x p ) Burada x ( x1 , x 2 ,..., x p ) ED÷ÕPVÕ] GH÷LúNHQOHU YHktörü ve ED÷ÕPVÕ]GH÷LúNHQOHUHDLWSDUDPHWUHYHNW|UQJ|VWHUPHNWHGLU E ( E 1 , E 2 ,..., E p ) økili de÷HUDODQED÷ÕPOÕGH÷LúNHQ y(0,1) için EúLWOLN¶GHYHULOHQifade, verilen x GH÷HUL için y ¶QLQ¶HHúLWROPDNRúXOOXRODVÕOÕ÷ÕQÕYHUPHNWHGLU%XRODVÕOÕN S ( x) P( y 1 x) (2) HúLWOL÷LLOHVD÷ODQÕU%HQ]HUELoLPGH 1 S ( x) P( y (3) 0 x) HúLWOL÷L\¶QLQ¶ÕDOPDNRúXOOXRODVÕOÕ÷ÕQÕJ|VWHUPHNWHGLU Lojistik UHJUHV\RQ PRGHOLQGH SDUDPHWUH WDKPLQL \DSÕODELOPHVL LoLQ RODELOLUOLN IRQNVL\RQX|QFHOLNOHROXúWXUXOPDOÕGÕr. \ED÷ÕPOÕGH÷LúNHQL S (x) EDúDUÕRODVÕOÕ÷ÕLOH %HUQRXOOL GD÷ÕOPDNWDGÕU <XNDUÕGDNL HúLWOLN YH ¶GHQ i. birim için y i 1 ROGX÷XQGD RODELOLUOLN IRQNVL\RQXQD NDWNÕVÕ S ( xi ) ve y i 0 ROGX÷XQGD RODELOLUOLN IRQNVL\RQXQD NDWNÕVÕ 1 S ( xi ) NDGDUGÕUBuna göre i. ELULPLQRODELOLUOLNIRQNVL\RQXQDNDWNÕVÕ, L( E i ) S ( xi ) yi (1 S ( xi )) (1 yi ) i=1,2,…,n (4) HúLWOL÷L LOH LIDGH HGLOLU *|]OHPOHULQ ELUELULQGHQ ED÷ÕPVÕ] ROGX÷X YDUVD\ÕOGÕ÷ÕQGD RODELOLUOLNIRQNVL\RQXHúLWOLN¶WHNLKHUELUELULPLQoDUSÕOPDVÕ\ODHOGHHGLOLU L( y E ) n S (x ) i yi (1 S ( xi )) (1 yi ) i=1,2,…,n (5) i 1 Burada n ELULPVD\ÕVÕQÕJ|VWHUPHNWHGLU Lojistik regresyon modelinin parametre tahmininde klasik yöntemler olarak; En Çok Olabilirlik <HQLGHQ $÷ÕUOÕNODQGÕUÕOPÕú 7HNUDUOÕ (Q .oN .DUHOHU YH WHNUDUOÕ YHUL TÜİK, İstatistik Araştırma Dergisi, Temmuz 2013 TurkStat, Journal of Statistical Research, July 2013 45 Esin AVCI durumunda Minimum lojit Ki-.DUH \|QWHPOHUL NXOODQÕOPDNWDGÕU 0XUDW YH ,úÕ÷ÕoRN 2007). Klasik yönteme alternatif olarak %D\HVFL\|QWHPGHNXOODQÕOPDNWDGÕU. 2.2 Lojistik Regresyon için Bayesci YDNODúÕP %D\HVFL \DNODúÕP YHULOHUGHQ HOGH HGLOHQ \HQL ELOJL LOH |QFHGHn bilinen bilginin GHUOHQPHVL LOH ROXúDQ ELU \|QWHPGLU (Wong vd., 2005). .ODVLN \DNODúÕPGD WDKPLQ yöntemi sadece veriden derlenen en çok olabilirlik IRQNVL\RQXQD GD\DQÕUNHQ %D\HVFL \DNODúÕPGD NODVLN \|QWHPGH HOGH HGLOHQ RODELOLUOLN SDUDPHWUH KDNNÕQGD ELOLQHQ |QVHO bilgiyi ( p ( E ) ) GH÷LúWLUPHN LoLQ NXOODQÕOPDNWDGÕU %XQD göre BD\HVFL \DNODúÕPD J|UH parametre tahmini; p ( E / y ) v L( y E ) u p ( E ) (6) HúLWOL÷L LOH YHULOHQ VRQVDO GD÷ÕOÕP LOH HOGH HGLOPHNWHGLU %XUDGD VRQVDO GD÷ÕOÕP SDUDPHWUH KDNNÕQGDNL |QVHO ELOJL LOH YHULGHQ HOGH HGLOHQ RODELOLUOLN IRQNVL\RQXQXQ ELUOHúPHVLQGHQROXúDQJQFHOELOJLGLU %D\HVFL\DNODúÕPWHRULNoDWÕDOWÕQGDYHULQLQ|QVHOELOJLLOHELUOHúLPLQLQWHPHOYHGR÷DO ELU \RO VD÷ODPDVÕ DVLPSWRWLN \DNODúÕP ROPDNVÕ]ÕQ YHULGHQ úDUWOÕ YH NHVLQ oÕNDUÕPODU YHUPHVLNoN|UQHNE\NONOHULQGHNXOODQÕODELOPHVLSDUDPHWUHWDKPLQOHULYHKLSRWH] WHVWOHULQGH GR÷UXGDQ oÕNDUÕPODU \DSPDVÕ ND\ÕS YHUL YH KL\HUDUúLN PRGHOOHU LoLQ NROD\OÕNOD X\JXODQDELOPHVL JLEL ELUoRN DYDQWDMÕQÕQ \DQÕ VÕUD |QVHO ELOJLQLQ VHoLPLQGH NHVLQ ELU \|QWHP ROPDPDVÕ YH |]HOOLNOH SDUDPHWUH VD\ÕVÕQÕQ ID]OD ROGX÷X GXUXPODUGD KHVDSODPD]RUOX÷XGH]DYDQWDMODUÕDUDVÕQGDVD\ÕODELOPHNWHGLU&HQJL]YG Bir parametrenin önsel bilgisi, veri elde edilmeden |QFHSDUDPHWUHKDNNÕQGDNLELOJLOHUL LIDGH HGHU %X ELOJLOHU ELU GD÷ÕOÕP LOH LIDGH HGLOLU %X QHGHQOH %D\HVFL \DNODúÕPD J|UH parametreler klasik \DNODúÕPGDNL JLEL VDELW RODUDN GH÷LO RODVÕOÕ÷D ED÷OÕ RODUDN WDQÕPODQÕU gQVHO ELOJL ROPDNVÕ]ÕQ %D\HVFL oÕNDUVDPD \DSÕODPD] Önsel bilgiler; bilgi verici (informative) ve bilgi verici olmayan (non-informative) olmak üzere VÕQÕIODQGÕUÕOÕUODU%LOJLYHULFLROPD\DQ|QVHOOHUVRQVDOGD÷ÕOÕP]HULQGHPLQLPXPHWNL\H sahiptir. Bu önseller daha objektiftiU ROGXNODUÕQGDQ ELUoRN LVWDWLVWLNoL WDUDIÕQGDQ NXOODQÕOÕUODU $QFDN SDUDPHWUH KDNNÕQGDNL WRSODP EHOLUVL]OL÷LQ REMHNWLI |QVHOOH YHULOPHVL KHU ]DPDQ X\JXQ GH÷LOGLU %D]Õ GXUXPODUGD REMHNWLI |QVHOOHU NXOODQÕFÕ\Õ \DQOÕúVRQVDOODUD \|QOHQGLUHELOLU%LOJLYHULFL|QVHOOHURODELOLUOLNIRQNVL\RQXWDUDIÕQGDQ HWNLVL D]DOWÕOPD\DQ |QVHO GD÷ÕOÕPGÕU %X WLS |QVHOOHU GHQH\LPOHUGHQ EHQ]HU JHoPLú oDOÕúPDODUGDQ YH X]PDQ J|UúOHULnden elde edilen bilgi çerçevesinde belirlenirler. 6RQVDO GD÷ÕOÕP ]HULQGH ROGXNoD HWNLOL ROGXNODUÕ LoLQ |QVHO GD÷ÕOÕP EHOLUOHQLUNHQ oRN GLNNDWOL ROXQPDOÕGÕU GHQHO RODUDN SDUDPHWUH KDNNÕQGDNL EHOLUVL]OL÷L HQ L\L DoÕNOD\DFDN GD÷ÕOÕP E j ~ N ( P j , V 2j ) j=1,2,...,p (7) %LOJL RODPDPDVÕ KDOLQGH HQ oRN VÕIÕU RUWDODPDOÕ YH RODELOGL÷LQFH E\N varyans seçilmeliGLU 9DU\DQV LoLQ LOH DUDVÕQGD ELU DUDOÕN WHUFLK HGLOPHNWHGLU (Rashwan vd., 2012). 46 TÜİK, İstatistik Araştırma Dergisi, Temmuz 2013 TurkStat, Journal of Statistical Research, July 2013 Investigation of Factors Effective on Credit Card Ownership of Marmara University Students by Bayesian Logistic Regression Marmara Üniversitesi Öğrencilerinin Kredi Kartı Sahibi Olmalarını Etkileyen Faktörlerin Bayesci Lojistik Regresyon Yardımıyla İncelenmesi /RMLVWLNUHJUHV\RQLoLQ%D\HVFL\DNODúÕP(úLWOL÷LQHJ|UHLIDGHHGLOLUVH n gözlem için olabilirlik fonksiyonu, L( y E ) (1 yi ) º ª§ exp( E E x ... E x ) · yi § exp( E 0 E 1 x1 ... E p x p ) · 0 1 1 p p ¸ ¸ ¨1 » (8) «¨ » «¨© 1 exp( E 0 E 1 x1 ... E p x p ) ¸¹ ¨© 1 exp( E 0 E 1 x1 ... E p x p ) ¸¹ ¼ ¬ Bilinmeyen E parametrelerine ait önsel bilginin E j ~ N ( P j , V 2j ) GD÷ÕOÕPOÕ ROGX÷X YDUVD\ÕOGÕ÷ÕQGDVRQVDOGD÷ÕOÕP p(E y) p u j 1 (1 yi ) º ª§ exp( E E x ... E x ) · yi § exp( E 0 E1 x1 ... E p x p ) · 0 1 1 p p ¸ ¨ ¸ ¨ » « 1 ¸ ¨ 1 exp( E E x ... E x ) ¸ ¨ » i 1 «© 1 exp( E 0 E 1 x1 ... E p x p ) ¹ © 0 1 1 p p ¹ ¼ ¬ n 1§E P 1 ° j j exp® ¨ ¨ V 2 2SV i j °̄ © · ¸ ¸ ¹ 2 ½ ° ¾ °¿ (9) elde edilir (Acquah, 2013). (úLWOLN ¶XQ DQDOLWLN o|]P EXOXQPDPDNWDGÕU øVWDWLVWLNVHO oÕNDUÕP \DSDELOPHN LoLQ Ker bir parametrenin PDUMLQDO GD÷ÕOÕPODUÕQÕQ elde HGLOPHVLJHUHNPHNWHGLU %XQXQLoLQoRNOXLQWHJUDOOHUOHLúOHP \DSÕOPDVÕ JHUHNPHNWHGLU U\JXODPDGD VRQVDO GD÷ÕOÕPODUGDQ LVWDWLVWLNVHO oÕNDUÕPODU yapmak için simülasyon \|QWHPOHULQGHQ 0DUNRY =LQFLUL 0RQWH &DUOR 0&0& \|QWHPLQLQ NXOODQÕPÕQÕ \D\JÕQODúWÕUPÕúWÕU0&0&\|QWHPLLOJLOHQLOHQVRQVDOGD÷ÕOÕPGDQEDúDUÕOÕELUúHNLOGH bir |QFHNLQH ED÷OÕ |UQHNOHPOHU VHoPHNWHGLU MCMC yöntemi ücretsiz olarak indirilebilen :LQ%8*6 SDNHW SURJUDPÕ \DUGÕPÕ\OD NROD\OÕNOD X\JXODQPDNWDGÕU %8*6 (Spiegelhalter vd |]HO RODUDN 0&0& \|QWHPLQLQ WDP RODVÕOÕN PRGHOOHULQH X\JXODQPDVÕ LoLQ NXOODQÕODQ YH NRG \D]ÕPÕQD GD\DQDQ ELU SURJUDPGÕU %X SURJUDP %D\HVFL DQDOL]L VD÷ODGÕ÷ÕQGDQ tüm parametreler rasgelH GH÷LúNHQ RODUDN HOH DOÕQPDNWDGÕU 3. BULGULAR %X oDOÕúPDGD 0DUPDUD hniversitesi’nde \ÕOÕQGD H÷LWLP J|UPHNWH RODQ |÷UHQFLOHULQ NUHGL NDUWÕ VDKLSOLOL÷L EHOLUOHPHGH HWNLOL RODQ VRV\R-ekonomik ve demografik faktörler Bayesci Lojistik UHJUHV\RQ \DUGÕPÕ\OD EHOLUOHQPH\H oDOÕúÕOPÕúWÕU Bu amaçla, \ÕOÕQGD*D]LRVPDQSDúDYH øQ|QQLYHUVLWH|÷UHQFLOHULQLQNUHGLNDUWÕ VDKLSOL÷LQL HWNLOH\HQ IDNW|UOHUL EHOLUOHPH oDOÕúPDVÕQGD X\JXOanan 24 soruluk anket, Marmara ÜQLYHUVLWHVL +D\GDUSDúD YH *|]WHSH NDPSV¶QGH RNX\DQ |÷UHQFL\H X\JXODQPÕúYHYHULOHUGHUOHQPLúWLU$QNHWLQJHQHOJYHQLUOLOLNNDWVD\ÕVÕCronbach Alfa NDWVD\ÕVÕ RODUDN HOGH HGLOPLúWLU %X GH÷HU, NXOODQÕODQ DQNHWLQ ROGXNoD JYHQLOLU ROGX÷XQXJ|VWHUPHNWHGLU Marmara ÜQLYHUVLWHVL +D\GDUSDúD YH *|]WHSH NDPSV¶QGH RNX\DQ |÷UHQFLQLQ NUHGLNDUWÕVDKLSOLOL÷LQLEHOLUOHPHGe etkili olabilecek de÷LúNHQOHU VÕQÕIG]H\LFLQVL\HW \DúNDUGHúVD\ÕVÕ|÷UHWLPWUNUHGL-EXUVGXUXPXDQQHYHEDEDQÕQH÷LWLPGXUXPODUÕ DQQHQLQ oDOÕúPD GXUXPX DLOHQLQ D\OÕN JHOLUL |÷UHQFLQLQ D\OÕN JHOLUL YH KDUFDPD WXWDUÕ gibi sosyo-ekonomik ve demografik göstergeler HOHDOÕQPÕúWÕU$UDúWÕUPDGD \HUYHULOHQ NUHGL NDUW VDKLSOLOL÷L %D÷ÕPOÕ GH÷LúNHQ YH HWNL HGHQ VRV\R-ekonomik ve demografik TÜİK, İstatistik Araştırma Dergisi, Temmuz 2013 TurkStat, Journal of Statistical Research, July 2013 47 Esin AVCI J|VWHUJHOHUH ED÷ÕPVÕ] GH÷LúNHQOHUH ait verilmektedir. 48 belirleyici Tablo 1. Belirleyici istatistikler De÷LúNHQOHU KKS .UHGL.DUWÕ6DKLSOLOL÷L 1=Evet +D\ÕU 6D\Õ Yüzde 92 108 46 54 SNF 6ÕQÕI']eyi) 6ÕQÕI 6ÕQÕI 6ÕQÕI 6ÕQÕI 35 63 31 71 17.5 31.5 15.5 35.5 CNS (Cinsiyet) 0=Bayan 1=Erkek 117 83 58.5 41.5 YAS <Dú 1=17-20 2=21-23 3=24 ve üzeri 66 111 23 33 55.5 11.5 KRDS .DUGHú6D\ÕVÕ 1=1-2 2=3-4 YH]HULNDUGHú 134 66 0 67 33 0 OGT g÷UHWLP7U g÷UHWLP g÷UHWLP 178 22 89 11 KRDB (Kredi veya Burs) +D\ÕU 2=Evet BEGT %DED(÷LWLP'XUXmu) øON|÷UHWLP 2=Lise 3=Önlisans 4=Lisans 5=Yüksek Lisans 80 120 40 60 73 65 13 45 4 36.5 32.5 6.5 22.5 2 AEGT $QQH(÷LWLP'XUXPX øON|÷UHWLP 2=Lise 3=Önlisans 4=Lisans 5=Yüksek Lisans 114 58 4 22 2 57 29 2 11 1 ACLS $QQHdDOÕúPD'XUXPX +D\ÕU 2=Evet 149 51 74.5 25.5 AGLR $LOHQLQ$\OÕN*HOLUL 1=500 TL’den az 2=501-1000 TL 3=1001-1500 TL 4=1501-2000 TL 10 39 43 38 5 19.5 21.5 19 TÜİK, İstatistik Araştırma Dergisi, Temmuz 2013 TurkStat, Journal of Statistical Research, July 2013 istatistikler Tablo 1’de Investigation of Factors Effective on Credit Card Ownership of Marmara University Students by Bayesian Logistic Regression Marmara Üniversitesi Öğrencilerinin Kredi Kartı Sahibi Olmalarını Etkileyen Faktörlerin Bayesci Lojistik Regresyon Yardımıyla İncelenmesi 5=2001-2500 TL 6=2501 TL’den fazla 26 44 13 22 OGLR g÷UHQFLQLQ$\OÕN*HOLUL TL 1=300 TL’den az 2=301-600 TL 3=601 TL’den fazla 74 50 76 37 25 38 OHRC g÷UHQFLQLQ$\OÕN+DUFDPD7XWDUÕ) TL 1=300 TL’den az 2=301-600 TL 3=601 TL’den fazla 58 23 11 63 25 12 Bayesci \DNODúÕPÕQ X\JXODQPDVÕQGD HOH DOÕQDQ VRV\R-ekonomik ve demografik göstergelere ait parametrelerin da÷ÕOÕPODUÕQÕQ |QVHO ELOJLQLQ EHOLUOHQPHVL DPDFÕ\OD, \ÕOÕQGD<D\DUYHDUNDGDúODUÕWDUDIÕQGDQ *D]LRVPDQSDúDYHøQ|QhQLYHUVLWHOHULQGH RNX\DQ |÷UHQFLOHULQ NUHGL NDUW VDKLSOLOL÷LQH HWNL HGHQ IDNW|UOHULQ VDSWDQPDVÕ oDOÕúPDVÕQGDQ \DUDUODQÕOPÕúWÕU %X oDOÕúPDGD, her iki ünivHUVLWH YHULOHULQL ELUOHúWLUHQ (Model-3) klasik Lojistik regresyon analizi sonucunda elde edilen parametre tahmin ve 2 bu tahminlere ait standart hatalar NXOODQÕOPÕú ( E ~ N ( Eˆ 2011 , V 2011 ) ) ve Tablo 2’de YHULOPLúWLU Tablo 2. $oÕNOD\ÕFÕGH÷LúNHQOHULQSDUDPHWUHOHULLoLQ|QVHOELOJLOHU 'H÷LúNHQOHU Sabit SNF CNS YAS KRDS OGT KRDB BEGT AEGT ACLS AGLR OGLR OHRC Ê 2011 V Ê -4.359 0.022 0.051 0.635 -0.173 0.277 0.291 -0.006 0.050 0.670 0.122 0.366 0.367 0.687 0.089 0.163 0.160 0.132 0.169 0.185 0.093 0.150 0.279 0.074 0.211 0.214 2011 Tablo 2’de verilen önsel bilgiler NXOODQÕODUDN %D\HVFL Lojistik regresyon yöntemi :LQ%8*6 SURJUDPÕQGD PDFUR \D]ÕODUDN X\JXODQPÕúWÕU $oÕNOD\ÕFÕ GH÷LúNHQOHULQ parametreOHULQHDLWVRQVDOGD÷ÕOÕPÕQ sonuçlarÕ 7DEOR¶WHYHULOPLúWLU TÜİK, İstatistik Araştırma Dergisi, Temmuz 2013 TurkStat, Journal of Statistical Research, July 2013 49 Esin AVCI Tablo 3. Bayesci Lojistik UHJUHV\RQDQDOL]VRQXoODUÕ Parametreler MC MC V Eˆ Ê HATA Hata/ V Eˆ B.Sabit B.SNF B.CNS B.YAS B.KRDS B.OGT B.KRDB B.BEGT B.AEGT B.ACLS B.AGLR B.OGLR B.OHRC -3.591 0.499 0.687 -0.344 0.0091 0.6514 0.8901 0.1316 -0.258 0.5046 0.1061 0.6807 0.2989 0.8186 0.1965 0.3487 0.346 0.3434 0.5493 0.3501 0.1679 0.2279 0.4372 0.1308 0.2 0.3430 0.0311 0.0063 0.0060 0.0117 0.0106 0.0060 0.0062 0.0041 0.0055 0.0076 0.0036 0.0047 0.0086 0.0380 0.0319 0.0173 0.0338 0.03078 0.0109 0.0177 0.0243 0.0243 0.0173 0.0271 0.0235 0.0247 Alt VÕQÕU %2.5 -5.206 0.1207 0.0053 -1.04 -0.6644 -0.4143 0.2048 -0.1956 -0.713 -0.3485 -0.1419 0.2911 -0.3734 Üst VÕQÕU %97.5 -1.964 0.8976 1.373 0.313 0.6762 1.748 1.577 0.4618 0.1885 1.368 0.3696 1.085 0.9712 %DúODPD Örnek Exp( Ê ) 2500 2500 2500 2500 2500 2500 2500 2500 2500 2500 2500 2500 2500 17501 17501 17501 17501 17501 17501 17501 17501 17501 17501 17501 17501 17501 0.0276* 1.6471* 1.9877* 0.7089 1.0091 1.9182 2.4354* 1.1407 0.7726 1.6563 1.1119 1.9753* 1.3484 6RQVDO GD÷ÕOÕPÕQ \DNÕQVDPD VD÷ODPDVÕ YH EDúODQJÕo GH÷HUOHULQLQ HWNLVLQLQ HQ D]D indirilmesi için, 0DUNRY ]LQFLULQGH HOGH HGLOHQ |UQHNOHPLQ EDúODQJÕo NÕVPÕ oÕNDUÕOÕU Uygulamada 2 LWHUDV\RQXQ LON LWHUDV\RQX oÕNDUÕOPÕú YH HOGH HGLOHQ Bayesci Lojistik regresyon VRQXoODUÕTablo 3’te YHULOPLúWLU7DEORLQFHOHQGL÷LQGH0&KDWDQÕQ sonsal standart KDWD\D RUDQÕ ¶WHQ NoN ROGX÷X LoLQ 7KXPE NXUDOÕQD J|UH yeterli LWHUDV\RQ VD\ÕVÕQD XODúÕOGÕ÷Õ V|\OHQLU YH JYHQ DUDOÕNODUÕ LQFHOHQGL÷LQGH ³´ GH÷HULQL LoHUHQ DUDOÕ÷D VDKLS RODQ SDUDPHWUHOHULQ NUHGL NDUW VDKLSOLOL÷L üzerine bir HWNLVL ROPDGÕ÷Õ V|\OHQLU Buradan hareketOH NUHGL NDUW VDKLSOLOL÷LQH \Dú NDUGHú VD\ÕVÕ |÷UHWLP WUEDEDH÷LWLPGXUXPXDQQHH÷LWLPGXUXPXDQQHoDOÕúPDGXUXPXDLOHQLQ gelir durumunun önemli etNLOHULQLQROPDGÕ÷ÕVDSWDQPÕúWÕU 6ÕQÕI G]H\L FLQVL\HW NUHGL YH\D EXUV DOPD GXUXPX |÷UHQFLQLQ JHOLULQLQ NUHGL NDUW VDKLSOLOL÷LQH|QHPVHYL\HVLQGH|QHPOLHWNLVLROGX÷XVDSWDQPÕúWÕU 6ÕQÕIG]H\LQGHNL ELUELULPOLNDUWÕúNDWYH\DRUDQÕQGDHUNHN|÷UHQFLOHULQED\DQ|÷UHQFLOHUHJ|UH \DNODúÕN NDW YH\D RUDQÕQGD NUHGL YH EXUV DODQODUÕQ DOPD\DQODUD J|UH \DNODúÕN NDWYH\DRUDQÕQGDYH|÷UHQFLQLQJHOLULQGHNLELUELULPOLNDUWÕúÕQ\DNODúÕNNDW YH\DRUDQÕQGDNUHGLNDUWVDKLSOLOL÷LQLDUWWÕUGÕ÷ÕJ|UOPHNWHGLU %D\HVFL \DNODúÕPGD NXOODQÕODQ 0&0& \|QWHPLQLQ GR÷UX VRQXoODU YHULOGL÷LQH NDUDU verebilmek için VRQVDO GD÷ÕOÕPD \DNÕQVDPDQÕQ JHUoHNOHúWL÷LQLQ VDSWDQPDVÕ JHUHNLU EX amaçla; L] VRQVDO \R÷XQOXN YH RWRNRUHODV\RQ JUDILNOHULQGHQ \DUDUODQÕOÕU. Kredi kart VDKLSOLOL÷LQHHWNLHGHQGH÷LúNHQOHUGHQkredi veya burs alma durumuna ait ilgili VÕUDVÕ\OD iz (a), Kernel \R÷XQOXNEYHRWRNRUHODV\RQFgrafikleri ùHNLO¶GHYHULOPLúWLU 50 TÜİK, İstatistik Araştırma Dergisi, Temmuz 2013 TurkStat, Journal of Statistical Research, July 2013 Investigation of Factors Effective on Credit Card Ownership of Marmara University Students by Bayesian Logistic Regression Marmara Üniversitesi Öğrencilerinin Kredi Kartı Sahibi Olmalarını Etkileyen Faktörlerin Bayesci Lojistik Regresyon Yardımıyla İncelenmesi B.KRDB 3.0 2.0 1.0 0.0 -1.0 2500 5000 10000 15000 20000 iteration (a) B.KRDB B.KRDB sample: 17501 1.0 0.5 0.0 -0.5 -1.0 1.5 1.0 0.5 0.0 -1.0 0.0 1.0 2.0 0 20 40 lag (b) ùHNLOø]Kernel yR÷XQOXN ve otokorelasyon grafikleri (c) ø]JUDIL÷LQGHVDOÕQÕPID]ODOÕ÷ÕYHVÕNOÕ÷ÕVRQVDOGD÷ÕOÕPD \DNÕQVDPDQÕQKÕ]OÕELUúHNLOGH JHUoHNOHúWL÷LQL, Kernel \R÷XQOXNJUDIL÷LQGHLVHoDQúHNOLQGHROXúDQJ|UQPQsonsal GD÷ÕOÕPD XODúÕOGÕ÷ÕQÕ 2WRNRUHODV\RQ JUDIL÷L LVH MDUNRY ]LQFLUL |UQHNOHUL DUDVÕQGDNL ED÷ÕPOÕOÕ÷Õ |OoPHNWH EX QHGHQOH GúN NRUHODV\RQ \DNÕQVDPDQÕQ VD÷ODQGÕ÷ÕQÕ belirtmektedir. .ODVLNYH %D\HVFL \DNODúÕPÕQNDUúÕODúWÕUÕOPDVÕDPDFÕ\ODAkaike Bilgi Kriteri (AIC) ve Bayesci Bilgi Kriteri (BIC) GH÷HUOHUL bütün veriler KHVDSODQPÕú YH 7DEOR ¶WH YHULOPLúWLU Tablo 4. Klasik ve Bayesci Lojistik regresyon için AIC ve B,&GH÷HUOHUL Kriter AIC BIC Klasik 301.9775 344.8556 Bayesci 267.44 310.3181 Tablo 4’te yer alan sonuçlar incelendL÷LQGH $,& YH %,& GH÷HUleri içinde en küçük GH÷HULQ%D\HVFLLojistik UHJUHV\RQ\DNODúÕPÕQDDLWROGX÷XJ|UOU 4. SONUÇ %X oDOÕúPDGD YDU RODQ ELOJLQLQ JQFHOOHQPHVLQL VD÷OD\DQ %D\HV \DNODúÕPÕQÕQ NXOODQÕOPDVÕ DPDoODQPÕúWÕU %X DPDoOD, \ÕOÕQGD *D]LRVPDQSDúD YH øQ|Q üniverVLWH |÷UHQFLOHULQH NUHGL NDUWÕ VDKLSOLOL÷LQH HWNL HGHQ IDNW|UOHULQ EHOLUOHQPHVL LoLQ uygulanan anket formu MarmDUD hQLYHUVLWHVL |÷UHQFLOHULQH X\JXODQPÕúWÕU .UHGL NDUWÕ VDKLSOLOL÷LQe etki eden faktörler, Bayesci Lojistik UHJUHV\RQ \DNODúÕPÕ LOH DQDOL] edilPLúWLU gQVHO ELOJLOHU \ÕOÕQGD *D]LRVPDQSDúD YH øQ|Q hQLYHUVLWHOHUL LoLQ uygulanan klasik Lojistik UHJUHV\RQ DQDOL]L VRQXoODUÕQGDQ HOGH HGLOPLúWLU. Bayesci Lojistik UHJUHV\RQ \DNODúÕPÕQÕQ \HWHUOL \DNÕQVDPD VD÷ODPDVÕLOHLOJLOL7KXPENXUDOÕL] TÜİK, İstatistik Araştırma Dergisi, Temmuz 2013 TurkStat, Journal of Statistical Research, July 2013 51 Esin AVCI grafL÷L.HUQHO \R÷XQOXN JUDIL÷LYHRWRNRUHODV\RQJUDILNOHULYHULOPLúWLU.ODVLN\|QWHP LOHNDUúÕODúWÕUÕOPDVÕQGD$,&YH%,&NULWHUOHULNXOODQÕOPÕúWÕU. \ÕOÕQGD<D\DUYHDUNDGDúODUÕWDUDIÕQGDQ*D]LRVPDQSDúDYHøQ|QhQLYHUVLWHOHULQGH RNX\DQ |÷UHQFLOHULQ NUHGL NDUW VDKLSOLOL÷LQH HWNL HGHQ IDNW|UOHULQ VDSWDQPDVÕ oDOÕúPDVÕQGDKHULNLQLYHUVLWHYHULOHULQLELUOHúWLUHQ0RGHO-3) klasik Lojistik regresyon analizi sonucunda elde edilen parametre tahmin ve bu tahminlere ait standart hatalar NXOODQÕOarak belirlenen |QVHO ELOJLOHU \DUGÕPÕ\OD X\JXODQDQ %D\HVFL Lojistik regresyon VRQXFXQGD \HWHUOL \DNÕQVDPDQÕQ 7KXPE NXUDOÕ L] JUDIL÷L Kernel \R÷XQOXN JUDIL÷L YH RWRNRUHODV\RQJUDILNOHULLOHVD÷ODQGÕ÷ÕJ|UOPúWU .UHGLNDUWÕVDKLSOLOL÷LQHHWNLHGHQIDNW|UOHULQEHOLUOHQPHVLQGHVÕQÕIG]H\LFLQVL\HW\Dú NDUGHú VD\ÕVÕ |÷UHWLP WU NUHGL-EXUV GXUXPX DQQH YH EDEDQÕQ H÷LWLP GXUXPODUÕ DQQHQLQ oDOÕúPD GXUXPX DLOHQLQ D\OÕN JHOLUL |÷UHQFLQLQ D\OÕN JHOLUL YH KDUFDPD WXWDUÕ gibi sosyo-ekonomik ve demografik göstergeler eOHDOÕQPÕúWÕU %5 önem düzeyine göre belirlenen güven DUDOÕ÷ÕQGDVÕIÕU¶ÕLoHUPH\HQDQODPOÕEXOXQDQ IDNW|UOHULQ VÕQÕI G]H\L FLQVL\HW NUHGL YH\D EXUV DOPD GXUXPX |÷UHQFLQLQ JHOLULQLQ NUHGL NDUW VDKLSOLOL÷LQH |QHPOL HWNLVL ROGX÷X VDSWDQPÕúWÕU 6ÕQÕI G]H\LQGHNL DUWÕú NDW HUNHN |÷UHQFLOHULQ ED\DQ |÷UHQFLOHUH J|UH \DNODúÕN NDW NUHGL YH EXUV DODQODUÕQ DOPD\DQODUDJ|UH\DNODúÕNNDWYH|÷UHQFLQLQJHOLULQGHNLELUELULPOLNDUWÕúÕQ\DNODúÕN NDWYH\DNUHGLNDUWVDKLSOLOL÷LQLDUWWÕUGÕ÷ÕJ|UOPHNWHGLUg÷UHQFLQLQNUHGLNDUWÕVDKLS olmaODUÕQGD NHQGL JHOLULQLQ HWNLOL DQFDN DLOH JHOLU GXUXPXQ HWNLOL ROPDPDVÕQÕQ QHGHQL |÷UHQFLOHULQ\DUÕ]DPDQOÕoDOÕúPDVÕQDED÷ODQDELOLU .ODVLN YH %D\HVFL \DNODúÕPÕQ NDUúÕODúWÕUÕOPDVÕ DPDFÕ\OD $,& YH %,& GH÷HUOHUL heVDSODQPÕú YH HQ NoN $,& YH %,& GH÷HUOHULQLQ %D\HVFL \DNODúÕPD DLW ROGX÷X VDSWDQPÕúWÕU 'ROD\ÕVÕ\OD EX oDOÕúPD LoLQ %D\HVFL \DNODúÕPÕQ WHUFLK HGLOHELOHFH÷L J|VWHUPLúWLU gQVHO ELOJL\H EDúYXUPD HVQHNOL÷L QHGHQL\OH %D\HVFL \DNODúÕP NODVLN \|QWHPOHUH J|UH oldukça DYDQWDMOÕROGX÷X\RUXPX\DSÕODELOPHNWHGLU 5. KAYNAKLAR Acquah, H. D., 2013. Bayesian Lojistic Regression Modelling Via Markov Chain Monte Carlo Algorithm, Journal of Social and Development Sciences, 4(4), 193-197. $NNXú = dHOLN 0 Y., 2004. Lojistik Regresyon ve Diskriminant Analizi Yöntemlerinde Önemli Ölçütler. VII. Ulusal Biyoistatistik Kongresinde sunulan bildiri, 0HUVLQhQLYHUVLWHVL7ÕS)DNOWHVL%L\RLVWDWLVWLN$QDELOLP'DOÕ0HUVLQ Anderson, H. A., 1983. Robust Inference Using Lojistic Models, Bulletin of International Statistical Institute, 48, 25-53. Anderson, J. A., 1979. Multivariate Lojistic Compounds. Biometrika, 66, 17-191. %DúDUÕU*dRNDH÷LúNHQOLVerilerde A\UÕPVDPDSorunu ve Lojistik Regresyon Analizi, (UygulaPDOÕøVWDWLVWLN'RNWRUD7H]L+DFHWWHSHhQLYHUVLWHVL-36, Ankara. 52 TÜİK, İstatistik Araştırma Dergisi, Temmuz 2013 TurkStat, Journal of Statistical Research, July 2013 Investigation of Factors Effective on Credit Card Ownership of Marmara University Students by Bayesian Logistic Regression Marmara Üniversitesi Öğrencilerinin Kredi Kartı Sahibi Olmalarını Etkileyen Faktörlerin Bayesci Lojistik Regresyon Yardımıyla İncelenmesi Cengiz, M. $ 7HU]L ( ùHQHO 7 0XUDW 1 Lojistik Regresyonda Parametre Tahmininde Bayesci bir YDNODúÕP, Afyon Kocatepe Üniversitesi Fen Bilimleri Dergisi, 12, 15-22. Congdon, P., 2006. Bayesian Statistical Modelling, John Wiley & Sons, England. Cornfield, J., 1962. Joint Dependence of the Risk of Coronay Heart Disease on Serum Cholestrol and Sistolic Blood Pressure: A Diskrimant Function Analysis, Federation Proceedings, 21, 58-61. Cox, D. R., 1970. Analysis of Binary Data. London: Chapman and Hall (2nd ed. 1989 with E.J. Snell). dDYXú0 F., 2006. Bireysel FLQDQVPDQÕQTemininde Kredi KDUWODUÕ Türkiye’de Kredi KDUWÕ KXOODQÕPÕ Üzerine bir AUDúWÕUPD, Selçuk Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 15, 173-187. Duffy, D. E., 1990. On Continuity-corrected Residuals in Lojistic Regression, Biometrika, 77, 287-293. (VNDQGDUL)0HVKNDQÕ0 R., 2006. Bayesian Logistic Regression Model Choice Via Laplace-Metropolis Algorithm, Journal of the Iranian Statistical Society (JIRSS), 5(12), 9-24. Grimm, L. G., Yarnold, P. R., 1995. Reading and Understanding Multivariate Statistics, Washington D.C.: American Psychological Association. Hair, J. F., Black, W. C., Babin, B., Anderson, R. E., Tatham, R. L., 2006. Multivariate Data Analysis (6th ed), Upper Saddle River, NJ: Prentice-Hall. Hsu, J. S., Leonard, T., 1995. Hierarchical Bayesian Semiparametric Procedures for Lojistic Regression, Biometrika, 84, 85-93. Ibrahim, J. G., Chen, M. H., Sinha, D., 2001. Bayesian Survival Analysis, SpringerVerlag, New York. .DOD\FÕùSPSS U\JXODPDOÕÇok DH÷LúNHQOLøstatistik Teknikleri, Ankara: Asil <D\ÕQ'D÷ÕWÕP Keskin, D., Koparan, E., 2010. Üniversite Ö÷UHQFLOHULQLQ Kredi KDUWÕ SDKLSOLOL÷LQL Belirleyen Faktörler, (VNLúHKLU 2VPDQJD]L hQLYHUVLWHVL øNWLVDGL YH øGDUL %LOLPOHU Fakültesi Dergisi, 5(1), 111-129. Leech, N.L., Barrett, K.C., Morgan, G.A., 2005. SPSS for Intermediate Statistics: Use and Interpretation (2nd ed), Mahwah, NJ: Lawrence Erlbaum Associates. Lesaffre, E., 1986. Lojistic Discriminant Analysis with Applications in Electrocardiography, Phd Thesis, Katholieke Universiteit Leuven, Belgium, 354. Unpublished. TÜİK, İstatistik Araştırma Dergisi, Temmuz 2013 TurkStat, Journal of Statistical Research, July 2013 53 Esin AVCI 54 TÜİK, İstatistik Araştırma Dergisi, Temmuz 2013 TurkStat, Journal of Statistical Research, July 2013 Investigation of Factors Effective on Credit Card Ownership of Marmara University Students by Bayesian Logistic Regression Marmara Üniversitesi Öğrencilerinin Kredi Kartı Sahibi Olmalarını Etkileyen Faktörlerin Bayesci Lojistik Regresyon Yardımıyla İncelenmesi INVESTIGATION OF FACTORS EFFECTIVE ON CREDIT CARD OWNERSHIP OF MARMARA UNIVERSITY STUDENTS BY BAYESIAN LOGISTIC REGRESSION ABSTRACT Bayesian approach is a method which combines new information obtained from data and previous knowledge. In this study, Bayesian approach, which is an alternative to classical approach, is applied to logistic regression, which explores the effects of covariate(s) on binary dependent variable. To this aim, socioeconomic and demographic factors that are effective on credit card ownership of Marmara University students are examined. Keywords: Credit card ownership, Bayesian logistic regression, WinBUGS TÜİK, İstatistik Araştırma Dergisi, Temmuz 2013 TurkStat, Journal of Statistical Research, July 2013 55 Cilt: 10 Sayı: 02 Kategori: 02 Sayfa: 56-72 ISSN No: 1303-6319 Volume: 10 Number: 02 Category: 02 Page: 56-72 56 TÜİK, İstatistik Araştırma Dergisi, Temmuz 2013 TurkStat, Journal of Statistical Research, July 2013 Modelling the low Birth Weight of New Born Babies with Binary Logistic Regression Based on Mars Method Yeni Doğan Bebeklerin Düşük Doğum Ağırlığının Mars Yöntemine Dayalı İkili Lojistik Regresyonla Modellenmesi yöntemlerden biri çRNGH÷LúNHQOLX\DUOD\ÕFÕ regresyon X]DQÕPODUÕMARS (Multivariate Adaptive Splines) yöntemidir. 'úNGR÷XPD÷ÕUOÕNOÕolarak dünyaya gelen EHEHNOHULOHUOH\HQ\ÕOODUGDVD÷OÕNDoÕVÕQGDQ ED]Õ VRUXQODUOD NDUúÕODúPDNWDGÕU Bu nedenle, ELU EHEH÷LQ GR÷XP D÷ÕUOÕ÷ÕQÕQ GúN GH÷HUGHROXSROPD\DFD÷ÕQÕQWDKPLQLLoLQX\JXQELUPRGHOHLKWL\DoYDUGÕU. Bu modelin ROXúWXUXOPDVÕQÕ LoHUHQ X\JXODPD oDOÕúPDVÕQGD EHEH÷LQ GR÷XP D÷ÕUOÕ÷ÕQÕ etkileyebilecek faktörler, 0$56\|QWHPLQHGD\DOÕORMLVWLNUHJUHV\RQPRGHOLROXúWXUPDN LoLQNXOODQÕOPÕúWÕUdDOÕúPDGD'DQLPDUND8OXVDO'R÷XP*UXEX’QXQKDPLOHOLNWHDWHúYH EXQDED÷OÕ|OGR÷XPODUODLOJLOLoDOÕúPDVÕQDDLWYHULOHULQELUNÕVPÕNXOODQÕOPÕúWÕU. Bebek GR÷XP D÷ÕUOÕNODUÕ ED÷ÕPOÕ GH÷LúNHQ RODUDN VHoLOPLúWLU dDOÕúPDGD GR÷XP \DSDFDN NDGÕQODUGDQ HOGH HGLOHQ YHULOHU NXOODQÕODUDN, EHEH÷LQ GúN GR÷XP D÷ÕUOÕNOÕ ROXS ROPD\DFD÷ÕQD LOLúNLQ PRGHO ROXúWXUXOPXúWXU 2OXúWXUXODQ PRGHO \DUGÕPÕ\OD GR÷XP öncesi bebek do÷XP D÷ÕUOÕ÷Õ LoLQ WDKPLQOHU \DSÕODELOPHVL ve gerekli önlemlerin DOÕQDELOPHVLDPDoODQPÕúWÕU 2. MARS <g17(0ø dRN GH÷LúNHQOL X\DUOD\ÕFÕ regresyon X]DQÕPODUÕ 0$56 )ULHGPDQ WDUDIÕQGDQ ¶OÕ \ÕOlDUÕQ EDúÕQGD JHOLúWLULOPLú, parametrik olmayan bir regresyon yöntemidir. MARS NHOLPHVLDoÕOÕPÕDúD÷ÕGDNLNDYUDPODUÕQEDúKDUIOHULQGHQROXúWXUXOPXúWXU Multivariate (çRNGH÷LúNHQOL: ÇRNER\XWOXYHULOHU]HULQGHLúOHP\DSÕODELOLU|]HOOLNOH ED÷ÕPVÕ]GH÷LúNHQVD\ÕVÕID]ODROGX÷XGXUXPODUGDWHUFLKVHEHELGLU Adaptive (u\DUOD\ÕFÕ): Y|QWHPLQ EDVDPDNODUÕ ILQDO PRGHOLQH XODúDQD NDGDU HOHPH YH VHoPHDúDPDODUÕQGDQROXúXU Regression (regresyon): BD÷ÕPOÕ YH ED÷ÕPVÕ] GH÷LúNHQOHU DUDVÕQGDNL IRQNVL\RQHO LOLúNL\LLIDGHHWPHNWHGLU Splines (X]DQÕPODU): 5HJUHV\RQ HúLWOL÷L Güz bir reJUHV\RQ GR÷UXVX \HULQH ENOPú bir \DSÕ\DVDKLSWLU 0$56 \|QWHPL EDQNDFÕOÕN VLJRUWDFÕOÕN HNRQRPLQLQ \DQÕ VÕUD \DúDP DQDOL]L VRV\DO bilimler gibi ELUoRN DODQGD NXOODQÕOPDNWDGÕU /LWHUDWUGH 0$56 \|QWHPL LOH LOJLOL olarak, Kim (2000JHQoOHULQX\XúWXUXFXNXOODQÕPÕLOHLOJLOL\DSWÕ÷ÕoDOÕúPDVRQXFXQGD ED÷ÕPOÕ GH÷LúNHQLQ NDWHJRULN ROGX÷X GXUXPODUGD GD 0$56¶ÕQ L\L VRQXoODU YHUGL÷LQL J|VWHUPLúWLU Kuhnert, Do vd. (2000) parametrik olmayan CART ve MARS yöntemlerini, parametrik loMLVWLN UHJUHV\RQOD NDUúÕODúWÕUPÕúWÕU 0RWRU ND]DODUÕQGDNL \DUDODQPD YHULOHULQH X\JXODQPÕú RODQ EX oDOÕúPD LoLQ 0$56 PRGHOLQLQ GL÷HU LNLVLQH J|UH GDKD L\L SHUIRUPDQV J|VWHUGL÷L EHOLUWLOPLúWLU $PHULNDQ dHYUH .RUXPD .XUXOXúX (EPA)’ndan 1DVK YH %UDGIRUG ¶XQ \DSWÕ÷Õ oDOÕúPDGD EHOLrli bir bölgedeki bir NXUED÷DWUQQYDUOÕ÷Õ ORMLVWLNUHJUHV\RQYH0$56 \|QWHPL\OHWDKPLQHGLOPLúYHLNL yöntemin soQXoODUÕ GH÷HUOHQGLULOPLúWLU Kolyshkina ve Brookes (2002) sigorta riskini YHUL PDGHQFLOL÷L \DNODúÕPODUÕQÕ 0$56 ve klasik lojistik regresyonla tahmin etmeye oDOÕúPÕúWÕU Dieterle ( ]DPDQD ED÷OÕ DQDOLWLN YHULOHU ]HULQH KD]ÕUODGÕ÷Õ GRNWRUD WH]LQGH \DSD\ VLQLU D÷ODUÕ JHQHWLN DOJRULWPDODU &$57 YH 0$56¶Õ NDUúÕODúWÕUPÕúWÕU Lee, Chiu vd. ( NUHGL VNRUODPD LOH LOJLOL oDOÕúPDODUÕQGD diskriminant analizi, TÜİK, İstatistik Araştırma Dergisi, Temmuz 2013 TurkStat, Journal of Statistical Research, July 2013 57 Soner ÖZTÜRK, Volkan SEVİNÇ ORMLVWLN UHJUHV\RQ &$57 YH 0$56¶ÕQ GR÷UX VÕQÕIODPD RUDQODUÕQÕ YH KDWDODUÕQÕ NDUúÕODúWÕUPÕúODUGÕU Stokes ve Lattyak ( 0$56 \|QWHPLQL HNRQRPHWULN ED]Õ VLVWHP YH \D]ÕOÕPODU LOH JHOLúWLUPLú YH NXOODQPÕúODUGÕU Kriner (2007), \DúDP DQDOizini MARS \|QWHPLQL NXOODQDUDN \DSPÕúWÕU Quiros, Felicisimo vd. (2009) MARS yöntemini, arazi örtüsünün uydu görüntülerinden yararlanarak sÕQÕIODQGÕUÕOPDVÕ LoLQ NXOODQPÕúODUGÕU Mina (2009), yoksulluk profilinin belirlenmesinde MARS yöntemini NXOODQPÕú ve ED]ÕNRúXOODUDOWÕQGDparametrik lojistik regresyondan dahDHWNLOLROGX÷XQX EHOLUWPLútir. Mina ( |]UO NLúLOHULQ Lú VHoLPL LOH LOJLOL \DSWÕ÷Õ oDOÕúPDGD, parametrik ORMLVWLN UHJUHV\RQ YH 0$56 \|QWHPOHULQL NXOODQPÕú YH VRQXoODUÕ GH÷HUOHQGLUPLúWLU Samui ve Kothari ( GHSRODUGDNL EXKDUODúPD ND\ÕSODUÕQÕQ WDKPLQLQL0$56LOH\DSPÕúYHVRQXoODUÕ\DSD\VLQLUD÷ODUÕLOHNÕ\DVODPÕúWÕUTürkiye’de ise Tunay ( 7UNL\H¶GH SDUDQÕQ JHOLU GRODúÕP KÕ]ODUÕQÕQ MARS yöntemiyle tahmini oDOÕúPDVÕQÕ JHUoHNOHúWLUPLúWLU Yerlikaya ( 0$56 ]HULQGH ELU WDNÕP düzenlemeler yaparak, ROXúWXUGX÷X \HQL PRGHOL YHUL PDGHQFLOL÷L X\JXODPDODUÕ LoLQ NXOODQPÕúWÕU .DQ YH <D]ÕFÕ (201 \DNÕW WNHWLPL LoLQ IDNW|UL\HO GHQH\OHUL UHJUHV\RQ D÷DoODUÕ ve MARS yönteminin VRQXoODUÕQÕ NDUúÕODúWÕUPÕúODUGÕU Kayri (2010) internet ED÷ÕPOÕOÕ÷Õ |OoH÷LQL 0$56 \|QWHPLQL NXOODQDUDN DQDOL] HWPLúWLU Tunay (2010) EDQNDFÕOÕNNUL]OHULni ve Türkiye’deki durgunlXNODUÕ0$56 yöntemi LOHWDKPLQHWPLúWLU Topak ( 7UNL\H¶GH NXUXPVDO EDúDUÕVÕ]OÕ÷Õ Podellemek için MARS yöntemini NXOODQPÕúWÕU 2.1 Mars Yöntemi ile Tahmin Parametrik olmayan regresyon yöntemleri, Kernel tahmini, yerel polinom regresyonu veya düzlHúWLUPH X]DQÕPODUÕ \|QWHPOHULQL NXOODQÕU 0$56 \|QWHPL ED÷ÕPOÕ GH÷LúNHQ YH ED÷ÕPVÕ] GH÷LúNHQ NPHVL DUDVÕQGDNL LOLúNL\L G]OHúWLUPH X]DQÕPODUÕQÕ NXOODQDUDN belirleyen bir yöntemdir (Friedman, 1991). 0$56\|QWHPLKHUED÷ÕPVÕ]GH÷LúNHQLQED÷ÕPOÕGH÷LúNHQOHRODQLOLúNLVLQL incelemenin \DQÕ VÕUD ED÷ÕPVÕ] GH÷LúNHQOHULQ ELUELUOHUL DUDVÕQGDNL HWNLOHúimlerini de belirler ve bu HWNLOHúLPOHULQ ED÷ÕPOÕ GH÷LúNHQ ]HULQGHNL HWNLVLQL RUWD\D NR\DU 7XQD\ %X QHGHQOH J|]OHP VD\ÕVÕQÕQ YH ED÷ÕPVÕ] GH÷LúNHQ VD\ÕVÕQÕQ oRN ROGX÷X GXUXPODUGD MARS yöntemi iyi sonuç vermektedir. Matematikte iki tU H÷UL EXOXQPDNWDGÕU %LULQFL WU LQWHUSRODV\RQ H÷ULOHULGLU %X H÷ULOHUGH H÷UL WP YHUL QRNWDODUÕQGDQ JHoPHNWHGLU %X NODVLN H÷UL oL]LPLGLU 'L÷HUL LVH G]OHúWLUPH H÷ULOHULGLU ']OHúWLUPH H÷ULOHULQGH LVH H÷UL YHUL QRNWDODUÕQD \DNÕQ ROPDNWDGÕU 7DP RODUDN bu noktalardan geçmesi gerekmez. Bu anlamda en basit G]OHúWLUPHH÷ULOHULQHSDUoDOÕGR÷UXVDOUHJUHV\RQH÷ULVLdir. ùHNLO 1. 3DUoDOÕGR÷UXVDOUHJUHV\RQH÷ULVL 58 TÜİK, İstatistik Araştırma Dergisi, Temmuz 2013 TurkStat, Journal of Statistical Research, July 2013 Modelling the low Birth Weight of New Born Babies with Binary Logistic Regression Based on Mars Method Yeni Doğan Bebeklerin Düşük Doğum Ağırlığının Mars Yöntemine Dayalı İkili Lojistik Regresyonla Modellenmesi ùHNLO1¶GHVD÷GDNLUHVLPRULMLQDOYHUL\HDLWWLU0RGHOOHPH \DSÕOÕUNHQYHUL\H ait düz bir GR÷UX ROXúWXUPDN yeriQH UHJUHV\RQ GR÷UXVXQXQ bükülmesi VD÷ODQPÕúWÕU Soldaki resimdeNLGR÷UXoQRNWDGDQENOPúWUYHELU0$56X]DQÕPÕ KDOLQHJHOPLúWLU 0$56 SDUoDOÕ GR÷UXVDO UHJUHV\RQ X\JXOD\DUDN HVQHN PRGHOOHU ROXúWXUXU %D÷ÕPVÕ] GH÷LúNHQLQ IDUNOÕ DUDOÕNODUÕQGD D\UÕ UHJUHV\RQ H÷LP GH÷HUOHUL kullanDUDN GR÷UXVDOOÕ÷Õ korur 5HJUHV\RQ GR÷UXVXQXQ H÷LPLQLQ GH÷LúWL÷L YH ELU DUDOÕNWDQ GL÷HULQH JHoLOGL÷L QRNWDODUD G÷P GHQLU .XOODQÕODFDN GH÷LúNHQOHU YH KHU GH÷LúNHQ LoLQ DUDOÕNODUÕQ ELWLú QRNWDVÕDUDúWÕUPDVRQXFXEXOXQXU/HH, Chiu vd., 2004). ùHNLO2øNLG÷PQRNWDOÕSDUoDOÕGR÷UXVDOUHJUHV\RQ|UQH÷L gUQH÷LQ, ùHNLO ¶GH \HU DODQ ve aUDOÕNODUÕ ELUELUiQGHQ D\ÕUDQ LNL WDQH G÷P QRNWDVÕ ROGX÷X J|UOPHNWHGLU 5HJUHV\RQ GR÷UXVXQXQ H÷LPL ELU DUDOÕNWDQ GL÷HULQH JHoWL÷LQGH GH÷LúPHNtedir. Modeldeki dH÷LúNHQOHU HWNLOHúLPOHUL YH G÷P QRNWDODUÕQÕQ NRQXPX, kaba kuvvet \DNODúÕPÕ\OD EUXWH IRUFH DSURDFK NDWVD\ÕODU LVH en küçük kareler (EKK) yöntemiyle EXOXQXU .DED NXYYHW \DNODúÕPÕ WP RODVÕ o|]POHU EXOXQGXNWDQ VRQUD HQ L\L RODQD karar verilen bir yöntemdir (Dieterle, 2003). MARS yöntemLQGH GL÷HU ELU |QHPOL NRQX, temel fonksL\RQODUGÕU Temel fonksiyonlar, GH÷LúNHQ DUDOÕNODUÕQÕQ WDQÕPODQGÕ÷Õ E|OJHVHO PRGHOOHUGLU 7HPHO IRQNVL\RQODU WHN ELU H÷UL IRQNVL\RQX \D GD ELUGHQ ID]OD GH÷LúNHQLQ HWNLOHúLP WHULPL RODELOLU 7HPHO IRQNVL\RQODU G÷P QRNWDODUÕQÕQ EHOLUOHQPHVL DoÕVÕQGDQ |QHPOLGLU 3XW, Massart vd., 7HPHO IRQNVL\RQODU ED÷ÕPOÕ GH÷LúNHQ < YH ED÷ÕPVÕ] GH÷LúNHQOHU ( X 1 , X 2 ,..., X m ) DUDVÕQGDNL LOLúNL\L WHPVLO HGHQ IRQNVL\onlar olarak görev yapar. Bu fonksiyonlar, E0 VDELW SDUDPHWUHVL YH GL÷HU WHPHO IRQNVL\RQODUÕQ D÷ÕUOÕNODQGÕUÕOPÕú WRSODPÕQGDQROXúXU Ŷ M f x E0 ¦ E m Bm X m 1 (1) E0 : sabit terim Bm X : m. temel fonksiyon Em : m. temel fonksiyonun NDWVD\ÕVÕ M 7HPHOIRQNVL\RQVD\ÕVÕ TÜİK, İstatistik Araştırma Dergisi, Temmuz 2013 TurkStat, Journal of Statistical Research, July 2013 59 Soner ÖZTÜRK, olkan SEİNÇ +RNH\ VRSDVÕ WHPHO IRQNVL\RQODUÕ - HSTF (hockey stick basis functions - HSBF), MARS modelinde önemli bir unsurdur. HSTF’ler sürekli ;GH÷LúNHQLQLQG|QúPúKDOL olan X* GH÷HULQL X* max 0, X c , veya max 0, c X (2) biçiminde WDQÕPODU X* ;¶LQ HúLN GH÷HUL RODUDN WDQÕPODQDQ F GH÷HUinden küçük tüm GH÷HUOHULLoLQGH÷HULQLF¶GHQE\N;GH÷HUOHULLoLQVH;GH÷HUOHULQLDOÕUgUQHNRODUDN X, YHDUDVÕQGDGH÷HUOHUDODQED÷ÕPVÕ] bir GH÷LúNHQROVXQ c 10, 20,30,..., 70,80 için X* ¶LQDOGÕ÷ÕGH÷HUOHUùHNLO 3¶GHJ|VWHULOPLúWLU ùHNLO )DUNOÕHúLNGH÷HUOHULFLoLQROXúWXUXODQWemel fonksiyonlar MARS, YHUL VHWLQLQ WP GH÷HUOHUL LoLQ GH÷LúLN F GH÷HUOHULQH NDUúÕOÕN JHOHQ ook VD\ÕGD WHPHOIRQNVL\RQROXúWXUabilir. 0$56LONRODUDNVUHNOLED÷ÕPOÕGH÷LúNHQOHULQWDKPLQLLoLQWDVDUODQPÕúWÕU'DKDVRQUD ikilLNDWHJRULNED÷ÕPOÕGH÷LúNHQOHULoLQGHNXOODQÕOPÕúWÕU6DOIRUG6\VWHPV7XQD\ oDOÕúPDVÕQGD, MARS yönteminin geleneksel regresyon yöntemleri ile parametrik ROPD\DQPRGHOOHULQVWQONOHULQLEDúDUÕ\ODELUOHúWLUHQYHHNRQRPLNGXUJXQOXNODUJLEL LNLOL\DSÕGDNLNDWHJRULNED÷ÕPOÕGH÷LúNHQOHUHUDKDWOÕNODX\JXODQDELOHQ\DSÕVÕQÕQ|QHPOL ELUDYDQWDMROGX÷XQXEHOLUWPLúWLU. .ODVLN PRGHOOHPHGH NDWHJRULN GH÷LúNHQLQ KHU ELU NDWHJRULVL LoLQ NXNOD GH÷LúNHQOHU kümeVLROXúWXUXOXU%XNPHUHJUHV\RQDQDOL]LQGHJLUGLOHURODUDNNXOODQÕOÕU%D÷ÕPVÕ] GH÷LúNHQOHULQ NDWHJRULN ROGX÷X GXUXPODUGD 0$56 GD D\QÕ úHNLOGH NXNOD GH÷LúNHQOHU ROXúWXUXU$QFDNEXNXNODGH÷LúNHQOHULOJLOLGH÷LúNHQLQG]H\OHULQLQEWQGU Hastie ve Tibshirani (1990) MARS yöntemini, ED÷ÕPOÕ GH÷LúNHQLQ LNLOL ROPDVÕ durumunda, DúD÷ÕGDNLformül LOHORJLVWLNUHJUHV\RQDQDOL]LQHX\DUODPÕúWÕU lojit P Y 1 f x H 60 TÜİK, İstatistik Araştırma Dergisi, Temmuz 2013 TurkStat, Journal of Statistical Research, July 2013 (3) Modelling the low Birth Weight of New Born Babies with Binary Logistic Regression Based on Mars Method Yeni Doğan Bebeklerin Düşük Doğum Ağırlığının Mars Yöntemine Dayalı İkili Lojistik Regresyonla Modellenmesi Bu HúLWOLNte f x MARS yöntemi tarafÕQGDQWDKPLQHGLOHQWHPHOIRnksiyonlar kümesini ifade eder. MARS yöntemi ile formül (3) birlikte HOH DOÕQÕUVD DúD÷ÕGDNL formül elde edilir. lojit Pi M E0 ¦ E m Bm X (4) m 1 Takip eden DOW EDúOÕNWD 0$5S yöntemiyle modellemede yer alan basamaklar LQFHOHQPLúWLUø\LELUPRGHOEXoEDVDPDNVRQXFXQGDROXúXU 2.2 MARS Yönteminin BDVDPDNODUÕ Put, Massart vd. (2003)’e göre MARS \|QWHPLQGHHQL\LPRGHOoEDVDPDNWDQROXúDQ bir süreç sonunda elde edilir. %X EDVDPDNODU \DSÕP EXGDPD YH \XPXúDWPD DúDPDODUÕ RODUDNDGODQGÕUÕOÕU 2.2.1 <DSÕPDúDPDVÕFonstructive phase) %XDúDPDGDVDELWWHULPOHEDúOD\DUDNYHVUHNOLRODUDNWemel fonksiyonlar eklenir. Temel IRQNVL\RQODU HNOHQGLNoH NDUÕúÕN YH GH HVQHN ELU PRGHO ROXúXU %X LúOHP NXOODQÕFÕ WDUDIÕQGDQ VUHFLQ EDúÕQGD EHOLUOHQHQ PDNVLPXP WHULP VD\ÕVÕQD XODúDQD NDGDU GHYDP eder. 2.2.2 %XGDPDDúDPDVÕ (pruning phase) øNLQFLDúDPDJHULGR÷UXHOHPHDúDPDVÕGÕU%LULQFLDúDPDGDID]ODVD\ÕGDWHPHOIRQNVL\RQ HNOHQGL÷LLoLQROXúWXUXOan modeODúÕUÕWDKPLQOHPHproblemi\OHNDUúÕNDUúÕ\DNDODFDNWÕU $úÕUÕtahminlemeyi RUWDGDQNDOGÕUPDNLoLQJHULGR÷UXHOHPHLúOHPLQHEDúODQÕU0RGHOLQ NDUPDúÕNOÕ÷ÕQÕQD]DOWÕOGÕ÷ÕDúDPDGÕU0RGHOHHQD]NDWNÕVÕRODQWHPHOIRQNVL\RQODUDWÕOÕU %X DúDPDGD &UDYHQ YH 9DKED WDUDIÕQGDQ JHOLúWLULOHQ *HQHOOHúWLULOPLú dDSUD] Geçerlilik (GÇG) (Generalized Cross-Validation - GCV |OoW NXOODQÕOÕU *d* D\QÕ ]DPDQGDX\XPHNVLNOL÷LNULWHULGLU Y fˆ X 1 ¦ GÇG M N 1 C M N N i M 2 i i 1 (5) 2 Formül (5)’de, 1|UQHNOHPYHULVD\ÕVÕ C M PRGHOGHX\GXUXODQJHoHUOLSDUDPHWUHVD\ÕVÕ (÷HUPRGHOGH0WDQHGR÷UXVDOED÷ÕPVÕ]WHPHOIRQNVL\RQYDUVD CM M dc (6) HúLWOL÷L VD÷ODQÕU Formül (6)’da, c ilHUL GR÷UX RODQ VUHoWH VHoLOHQ G÷P VD\ÕVÕ G LVH her bir WHPHO IRQNVL\RQ RSWLPL]DV\RQXQGDNL PDOL\HWL LIDGH HGHQ ELU GH÷HUGLU 0$56 TÜİK, İstatistik Araştırma Dergisi, Temmuz 2013 TurkStat, Journal of Statistical Research, July 2013 61 Soner ÖZTÜRK, Volkan SEVİNÇ modellerinde genelOLNOHG DOÕQÕU)ULHGPDQWP\DSÕODQoDOÕúPDODUVRQXFXQGD GLoLQHQL\LGH÷HUOHULQ 2 d d d 4 DUDOÕ÷ÕQGDROGX÷XQXEHOLUWPLúWLU 2.2.3 <XPXúDWPDDúDPDVÕ (smoothing phase) 6RQ RODUDN E|OJHVHO VÕQÕUODU LoLQGHNL VUHNVL]OL÷LQ JLGHULOPHVL ve birincil ve ikincil WUHYOHULQVUHNOLOL÷LQLQVD÷ODQPDVÕLoLQ\XPXúDWPDJHUHNOLGLU4XLURVYG., 2009). 0$56¶ÕQ EHOLUWLOHQ EX EDVDPDNODUÕQÕQ |]HWL YH PRGHOOHQPHVL ùHNLO YH ùHNLO ’de gösterilPLútir. ;HNVHQLED÷ÕPVÕ]GH÷LúNHQL<HNVHQLED÷ÕPOÕGH÷LúNHQLJ|VWHUPHNWHGLU. ùHNLO4. OriMLQDOYHULQLQGD÷ÕOÕPJUDIL÷L ùHNLO ¶GH yer alan soldaki fonksiyon, düz tepeli fonksiyon olarak bilinir ve X=30 ile [ G÷P QRNWDODUÕQD VDKLSWLU 6D÷GDNL IRQNVL\RQ LVH J|]OHQHQ YHULQLQ GD÷ÕOÕPÕQÕ göstermektedir. ùHNLO5. MARS modeli YHROXúWXUGX÷XG÷POHU 0$56 LON RODUDN WHN ELU G÷P QRNWDVÕQÕ ; EHOLUOHPLúWLU øOHUL DúDPDGD G÷m VD\ÕVÕDUWWÕNoD0$56ùHNLO5’deNL\DNODúÕPODPRGHOLWDKPLQHWPLúWLU6DOIRUG6\VWHPV 2001). 3. 'hùh.'2ö80$ö,5/,ö,1$ø/øù.ø10$56<g17(0ø1('$<$/, ø.ø/ø/2-ø67ø.5(*5(6<2102'(/ø 'R÷XP D÷ÕUOÕ÷Õ ELU EHEH÷LQ GR÷GX÷X DQGD |OoOHQ D÷ÕUOÕ÷ÕGÕU 'R÷XP D÷ÕUOÕ÷Õ \HQL GR÷DQ |OPOHUL ve bebeklLN G|QHPL KDVWDOÕNODUÕQÕ HWNLOH\HQ faktörlerden biridir. Bu QHGHQOH GR÷XP D÷ÕUOÕ÷Õ YH EXQX HWNLOH\HQ IDNW|UOHU KHU ]DPDQ |QHPOL ELU NOLQLN DUDúWÕUPDNRQXVXROPXúWXU 62 TÜİK, İstatistik Araştırma Dergisi, Temmuz 2013 TurkStat, Journal of Statistical Research, July 2013 Modelling the low Birth Weight of New Born Babies with Binary Logistic Regression Based on Mars Method Yeni Doğan Bebeklerin Düşük Doğum Ağırlığının Mars Yöntemine Dayalı İkili Lojistik Regresyonla Modellenmesi 'úN GR÷XP D÷ÕUOÕ÷Õ 'Q\D 6D÷OÕN gUJW WDUDIÕQGDQ JUDPGDQ GDKD D] RODQ GR÷XPD÷ÕUOÕ÷ÕRODUDNWDQÕPODQPÕúWÕU 'R÷XPD÷ÕUOÕ÷ÕYHJHEHOLNKDIWDVÕFenin veya yeni GR÷DQ |OPOHULQLQ HWNHQOHULQGHQ ELULGLU. %X QHGHQOH GúN GR÷XP D÷ÕUOÕNODUÕ veya SUHPDWUH GR÷XPODU KDIWDGDQ |QFH JHUoHNOHúHQ GR÷XP EX NRQXGDNL DUDúWÕUPDODU için önemli birer veridirler. %HEH÷LQ GúN GR÷XP D÷ÕUOÕNOÕ RODUDN GR÷PDVÕQGD HWNLVL olan etkenler, Kramer (WDUDIÕQGDQDúD÷ÕGDNLPDGGHOHUOHYHULOPLúWLU x x x x x x x x 'R÷XPNXVXUXGDGHQLOHQEeEH÷LQGR÷XPVDOJHQHWLNYH\DSÕVal anomalileri $QQHQLQGR÷XPJHoPLúLönceki öOGR÷XPVD\ÕVÕGúNVD\ÕVÕ $QQHQLQ\NVHNNDQEDVÕQFÕúHNHUNDOSFL÷HUYHE|EUHNKDVWDOÕNODUÕ $QQHQLQDONROX\XúWXUXFXYHVLJDUDDOÕúNDQOÕ÷Õ $QQHQLQJHoLUGL÷LHQIHNVL\RQODU Plasentada görülen sorunlar (bHEH÷H NDQ YH EHVLQ XODúÕPÕQGD VRUXQODUD VHEHS ROPDNWDGÕU Annenin yeterince beslenememesi ve X\JXQNLORGDROPDPDVÕ Sosyoekonomik faktörler (az geliri olan, H÷LWLP G]H\L GúN \DúÕQGDQ küçük veya \DúÕQGDQ E\N DQQHOHrin bu konuda artan riske sahip ROGX÷X VDSWDQPÕúWÕU 8\JXODPD oDOÕúPDVÕ \HQL GR÷DQ EHEHNOHULQ GúN GR÷XP D÷ÕUOÕ÷ÕQD VDKLS ROPD RODVÕOÕNODUÕQÕQ, ikili lojistik regresyon analizi ile 0$56\|QWHPLQHGD\DOÕRODUDNmodel ROXúWXUXOPDVÕQÕ NDSVDPDNWDGÕU %X oDOÕúPD VRQXFXQGD ROXúWXUXODFDN PRdel bir annenin EHEH÷LQLQ GR÷XP D÷ÕUOÕ÷ÕQÕQ GúN ROPDVÕ \D GD ROPDPDVÕ LOH LOJLOL WDKPLQGH EXOXQXODELOHFHNWLU %|\OHFH GúN GR÷XP D÷ÕUOÕNOÕ RODUDN PH\GDQD JHOPH RODVÕOÕ÷Õ EXOXQDQ EHEHN LoLQ |QOHPOHU DOÕQÕODELOHFHNWLU ÇDOÕúPDGD 'DQLPDUND 8OXVDO 'R÷XP *Uubu (DUDG)’nun KDPLOHOLNWH DWHú YH EXQD ED÷OÕ |O GR÷XPODUOD LOJLOL oDOÕúPDVÕQD DLW YHULOHULQ ELU NÕVPÕ NXOODQÕOPÕúWÕU '8'* YH \ÕOODUÕ DUDVÕQGD .000 NDGÕQ ile KDPLOHOL÷LQ LON 12–16 KDIWDVÕQGD ve sonunda J|UúS JHUHNOL YHULOHUL GHUOHPLúWLU Andersen, Vastrup vd. (2002) GHUOHQPLú olan bu verilerden 31 0DUW |QFHVLQH DLW RODQODUÕ kullanarak, |O GR÷XP ED÷ÕPOÕ GH÷LúNHQLQLHWNLOH\HQ, ED÷ÕPVÕ]GH÷LúNHQOHULVDSWDPDoDOÕúPDVÕJHUoHNOHúWLUPLúWLU dDOÕúPDPÕ]GD $QGHUVHQ, Vastrup vd. (¶QLQ HOGH HWWL÷L ED÷ÕPVÕ] GH÷LúNHQOHUGHQ \DUDUODQÕOPÕúWÕU $QFDN EX oDOÕúPDGDQ IDUNOÕ biçimde, ED÷ÕPOÕ GH÷LúNHQ, bebeklerin GR÷XPD÷ÕUOÕ÷Õolarak VHoLOPLúWLU<HQLGR÷DQELUEHEH÷LQD÷ÕOÕ÷Õortalama olarak 2500– 4000 JU DUDVÕQGDGÕU $÷ÕUOÕ÷Õ JUDPdan daha az olan bir bebek GúN GR÷XP D÷ÕUOÕNOÕ RODUDN nitelendirilmektedir. %X QHGHQOH JUDPGDQ GúN RODQ ED÷ÕPOÕ GH÷LúNHQOHU GL÷HUOHUL RODUDN NRGODQPÕúWÕU. dDOÕúPDPÕ]GD \HU DODQ GH÷LúNHQOHUGen annede ilk 17 haftada gözlenen \NVHN DWHú VD\ÕVÕ DQQHQLQ \DúÕ |QFHNL |O GR÷XP VD\ÕVÕ |QFHNL FDQOÕ GR÷XP VD\ÕVÕ JHEHOLN KDIWDVÕ VLJDUD DONRO YH NDKYH NXOODQÕPÕ YH EHEH÷LQ GR÷XP ER\X GH÷LúNHQOHULQLQ GR÷XP D÷ÕUOÕ÷ÕQÕ HWNLOH\HELOHFH÷L GúQFHVL\OH GH÷HUOHQGLUPH\H DOÕQPÕúWÕU ELUH\H DLW YHUL NXOODQÕOPÕúWÕU .XOODQÕODn aday GH÷LúNHQOHUYH NRGODPDLúOHPL Tablo 1¶GHYHULOPLúWLU TÜİK, İstatistik Araştırma Dergisi, Temmuz 2013 TurkStat, Journal of Statistical Research, July 2013 63 Soner ÖZTÜRK, Volkan SEVİNÇ Tablo 1. Uygulama verileri ve kodlDPDLúOHPL %D÷ÕPOÕGH÷LúNHQ $OGÕ÷ÕGH÷HUOHUYHNRGODUÕ 0=DA t 2500 gr Y 'R÷XPD÷ÕUOÕ÷Õ 1=DA<2500 gr %D÷ÕPVÕ]GH÷LúNHQOHU øON KDIWDGDNL yüksek 0,1,2,...... x1 DWHúVD\ÕVÕ $QQHQLQ\DúÕ 0=yas<35 x 2 x3 x4 *HoPLúWHNLGúNVD\ÕVÕ gQFHNL VD\ÕVÕ FDQOÕ 1=yas t 35 GúüN\DSPDPÕúVD GL÷HUG GR÷XP FDQOÕGR÷XP\DSPDPÕúVD x5 'R÷XPGDJHEHOLNKDIWDVÕ GL÷HUG 6UHNOLGH÷LúNHQGLU x6 Sigara NXOODQÕPÕ 0=Yok x7 Alkol tüketimi 1=Var 0=Yok x8 Kahve tüketimi 1=Var 0=Yok Boy 1=Var 6UHNOLGH÷LúNHQGLUFP x9 .ÕVDOWPDVÕ DA DWHú yer Gúük FDQOÕ hafta sigara alkol kahve boy 3.1 Verilerin MARS Yöntemi ile Analizi Verilerin çok dH÷LúNHQOL X\DUOD\ÕFÕ UHJUHV\RQ X]DQÕPODUÕ 0$56 \|QWHPL\OH DQDOL]L D\QÕ DGÕ WDúÕ\DQ 0$56 SDNHW SURJUDPÕ LOH \DSÕOPÕúWÕU %X SURJUDPÕQ 0$56 sürümü, 6DOIRUG6\VWHPVWDUDIÕQGDQJHOLúWLULOHQ6DOIRUG3UHGLFWLYH0RGHOHU%XLOGHUDGOÕ paket program içinde yer DOPDNWDGÕU %X SURJUDP &$57 0$56 &RPELQH 5DQGRPIRUHVW 7UHHQHW JLEL GH÷LúLN SDUDPHWULN ROPD\DQ DQDOL] \|QWHPlerini içeren SDNHW SURJUDPGÕU 0$56 SURJUDPÕQGD YHULOHU JLULOGLNWHQ VRQUD D\QÕ YHULOHUOH ID]OD VD\ÕGDPRGHOROXúWXUXODELOLU%XPRGHOOHUGHQHQL\LRODQÕHQD]X\XPHNVLNOL÷LQHVDKLS RODQGÕU 8\XP HNVLNOL÷L HQ D] RODQ PRGHO LVH HQ GúN *d* GH÷HULQH VDKLS RODQGÕU MARS program oÕNWÕODUÕQGDPRGHOHDLW*d*GH÷HULYHULOPHNWHGLU Maksimum temel IRQNVL\RQ VD\ÕVÕ PDNVLPXP HWNLOHúLP G÷POHU DUDVÕQGDNL en az J|]OHP VD\ÕVÕ G÷P RSWLPL]DV\RQX LoLQ VHUEHVWOLN GHUHFHVL JLEL GH÷HUOHU ROXúWXUXODQ modeli belirler (Tablo 2)%XGH÷HUOHUWDPDPHQX\JXOD\ÕFÕ\DEÕUDNÕOPÕúWÕU 64 TÜİK, İstatistik Araştırma Dergisi, Temmuz 2013 TurkStat, Journal of Statistical Research, July 2013 Modelling the low Birth Weight of New Born Babies with Binary Logistic Regression Based on Mars Method Yeni Doğan Bebeklerin Düşük Doğum Ağırlığının Mars Yöntemine Dayalı İkili Lojistik Regresyonla Modellenmesi Tablo 0$56¶WDPRGHOROXúXPXQGDHWNLOLRODQGH÷HUOHUYHNÕVDOWPDODUÕ MARS’taki iONGH÷HUL .ÕVDOWPDVÕ 0DNVLPXPWHPHOIRQNVL\RQVD\ÕVÕ 15 TFmax 0DNVLPXPHWNLOHúLPVD\ÕVÕ 1 Emax '÷POHUDUDVÕQGDNLHQD]J|]OHPVD\ÕVÕ 0 Omin '÷PRSWLPL]DV\RQXLoLQVHUEHVWOLNGHUHFHVL 3 SD Model tahmininde öncelikle serbestlik derecesi 3 olarak beOLUOHQPLúWLU )DUNOÕ Tfmax, (PD[YH2PLQGH÷HUOHULLoLQ*d*GH÷HUOHULND\GHGLOPLúWLUTablo 3-6). Tablo (PD[ LoLQ*d*GH÷HUOHUL TFmax Omin 15 0 0.04499 20 0.04499 30 0.04508 40 0.04719 50 0.04719 100 0.04912 25 0.04506 0.04512 0.04508 0.04734 0.04734 0.04931 50 0.04542 0.04580 0.04553 0.04802 0.04802 0.04966 Tablo (PD[ LoLQ*d*GH÷HUOHUL TFmax Omin 15 0 0.04522 20 0.04522 30 0.04504 40 0.04735 50 0.04735 100 0.04914 25 0.04476 0.04517 0.04521 0.04734 0.04735 0.04920 50 0.04432 0.04527 0.04531 0.04742 0.04748 0.04938 Tablo (PD[ LoLQ*d*GH÷HUOHUL TFmax Omin 15 0 0.04522 20 0.04522 30 0.04504 40 0.04735 50 0.04735 100 0.04914 25 0.04476 0.04517 0.04521 0.04734 0.04734 0.04918 50 0.04369 0.04546 0.04513 0.04749 0.04754 0.04922 TÜİK, İstatistik Araştırma Dergisi, Temmuz 2013 TurkStat, Journal of Statistical Research, July 2013 65 Soner ÖZTÜRK, Volkan SEVİNÇ Tablo (PD[ LoLQ*d*GH÷HUOHUL TFmax Omin 15 0 0.04522 20 0.04522 30 0.04504 40 0.04735 50 0.04735 100 0.04914 25 0.04476 0.04517 0.04506 0.04734 0.04734 0.04918 50 0.04320 0.04530 0.04525 0.04753 0.04753 0.04922 <DSÕODQ X\JXODPDODU VRQXFXQGD *d* GH÷HULQLQ 7)PD[¶ÕQ YH 2PLQ¶LQ ¶D \DNÕQ ROGX÷XQGD HQ NoN GH÷HUOHUH VDKLS ROGX÷X J|UOPúWU (PD[ GH÷HULQLQ ROGX÷X GXUXPGDLVHEXGH÷HUHQNoNROPDNWDGÕUTablo 6). Tfmax=50, Omin= (PD[ ROGX÷XQGD GH÷LúLN 6' GH÷HUOHUL için hesaplanan GÇG GH÷HUOHUL LQFHOHQGL÷LQGH 6' GH÷HUL D]DOGÕNoD *d* GH÷HULQLQ D]DOGÕ÷Õ YH RSWLPXP modele yakODúÕOGÕ÷ÕJ|UOPúWUTablo7). Tablo'H÷LúLN6'GH÷HUOHULLoLQKHVDSODQDQ*d*GH÷HUOHUL *HQHOOHúWLULOPLú dDSUD] SD *d*'H÷HUL 0 0.04018 1 0.04141 2 0.04234 3 0.04320 *HoHUOLOLN 2OXúWXUXODQ EX PRGHOOHUGHQ HQ NoN *d* GH÷HULQH VDKLS RODQ PRGHO X\JXQ PRGHO RODUDNVHoLOPLúYHEXPRGHOHDLWoÕNWÕODU DúD÷ÕGD\RUXPODQPÕúWÕU 7IPD[ 2PLQ (PD[ YH6' GH÷HUOHULLOH0$56X\JXODQPÕúWÕU MARS yönteminde sÕUDGDQ en küçük kareler (EKK) \|QWHPLQGH ROGX÷X JLEL WHPHO IRQNVL\RQODULOHED÷ÕPOÕGH÷LúNHQDUDVÕQGDNLLOLúNinin derecesini gösteren üç tür R-kare GH÷HULNXOODQÕOPDNWDGÕU: R-Kare%D÷ÕPOÕGH÷LúNHQYHWHPHOIRQNVL\RQODUDUDVÕQGDNLLOLúNLQLQGHUHFHVL%XGH÷HU EDVLW VÕUDGDQ HQ NoN NDUHOHU UHJUHV\RQ DQDOL]L LoLQ KHVDSODQDQ R 2 LOH D\QÕ úHNLOGH KHVDSODQÕU ']HOWLOPLú5-Kare7HPHOIRQNVL\RQODUÕQVD\ÕVÕLoLQG]HOWLOPLúWLU Merkezsel olmayan R-Kare 8\XP L\LOL÷LQL WHVW HWPHN LoLQ NXOODQÕOPDPDOÕGÕU 1DVK ve Bradford, 2001). Modele ait R-kDUHGH÷HUL\DNODúÕNRODUDNEXOXQPXúWXU']HOWLOPLú5-kare 0.64 ve merkezsel olmayan R-NDUHRODUDNEXOXQPXúWXU 8\JXODPDVRQXFXQGDLOHULYHJHUL\HGR÷UXLúOH\HQ\|QWHPOHWHPHOfonksiyonlardan 17 WDQHVLQLQ PRGHO ROXúXPXQD NDWNÕ VD÷ODGÕ÷Õ J|UOPHNWHGLU %X IRQNVL\RQODUÕQ NDWVD\Õ WDKPLQOHULVWDQGDUWKDWDODUÕWYHSGH÷HUOHULJ|UOPHNWHGLUTablo 8). 66 TÜİK, İstatistik Araştırma Dergisi, Temmuz 2013 TurkStat, Journal of Statistical Research, July 2013 Modelling the low Birth Weight of New Born Babies with Binary Logistic Regression Based on Mars Method Yeni Doğan Bebeklerin Düşük Doğum Ağırlığının Mars Yöntemine Dayalı İkili Lojistik Regresyonla Modellenmesi Tablo 0RGHOHNDWNÕVÕRODQWHPHOIRQNVL\RQODUYHGH÷HUOHUL Parametre Tahmin S.H t-'H÷HUL p-'H÷HUL Sabit Temel Fonksiyon 5 Temel Fonksiyon 9 Temel Fonksiyon 11 Temel Fonksiyon 13 Temel Fonksiyon 20 Temel Fonksiyon 21 Temel Fonksiyon 23 Temel Fonksiyon 27 Temel Fonksiyon 29 Temel Fonksiyon 31 Temel Fonksiyon 33 Temel Fonksiyon 35 Temel Fonksiyon 39 Temel Fonksiyon 41 Temel Fonksiyon 43 Temel Fonksiyon 45 Temel Fonksiyon 49 1.00630 0.60325 -0.37637 0.42711 -0.04797 -0.03822 -0.57432 -0.61113 -0.92835 0.44079 0.60825 -0.14866 0.04525 0.02204 0.04300 -0.03130 -0.02329 -0.08965 0.03693 0.08294 0.04868 0.06110 0.01628 0.01477 0.08996 0.08769 0.13938 0.09552 0.09022 0.06755 0.01951 0.00688 0.01453 0.01698 0.00655 0.01298 27.25161 7.27300 -7.73197 6.99032 -2.94576 -2.58753 -6.38400 -6.96930 -6.66081 4.61449 6.74164 -2.20068 2.31965 3.20159 2.95862 -1.84370 -3.55531 -6.90723 0.00000 0.00000 0.00000 0.00000 0.00330 0.00981 0.00000 0.00000 0.00000 0.00000 0.00000 0.02800 0.02057 0.00141 0.00317 0.06553 0.00040 0.00000 0RGHO GH÷HUOHQGLUPHVL LoLQ NXOODQÕODQ ) LVWDWLVWL÷L YH S GH÷HUL RODUDN KHVDSODQPÕúWÕU 7DKPLQ HGLOHQ PRGHO VRQXFXQGD EHEH÷LQ GR÷XP D÷ÕUOÕ÷ÕQÕ, KDIWD GH÷LúNHQLQLQ HWNLOHGL÷LVÕUDVÕ\ODFDQOÕDONRO\DúYHVLJDUDGH÷LúNHQOHULQLQoRNWDQD]DGR÷UXHWNLVLQLQ ROGX÷X J|UOPHNWHGLU Tablo 9). Tablodaki VRQ VWXQ LOJLOL GH÷LúNHQLQ \RNOX÷XQGD PRGHOLQJHQHOX\XPL\LOL÷LQGHQHNDGDUOÕNDzDOPDRODFD÷Õ\HUDOPDNWDGÕU Tablo 9øOLúNLOLGH÷LúNHQOHULQ|QHPL 'H÷LúNHQ Önemi *HQHOOHúWLULOPLú dDSUD] Geçerlilik (GÇG) 'H÷HUL Hafta 100.00000 0.11055 &DQOÕ 18.24723 0.04253 Alkol 17.01658 0.04253 <Dú 16.85816 0.04253 9.55560 0.04253 Sigara 0RGHOLQ ROXúXPXQGD HWNLVL RODQ WHPHO IRQNVL\RQODU YH DoÕNODPDODUÕ Tablo 10’da YHULOPLúWLU TÜİK, İstatistik Araştırma Dergisi, Temmuz 2013 TurkStat, Journal of Statistical Research, July 2013 67 Soner ÖZTÜRK, Volkan SEVİNÇ Tablo 10. Temel fonksiyonlar BF5 = max( 0, HAFTA - 38) BF7 = (SIGARA in ( 0 )) BF8 = (SIGARA in ( 1 )) BF9 = max( 0, HAFTA - 35) BF11 = max( 0, HAFTA - 36) BF13 = max( 0, HAFTA - 37) * BF8 BF15 = (CANLI in ( 0 )) BF17 = (YAS in ( 0 )) BF18 = (YAS in ( 1 )) BF20 = max( 0, 35 - HAFTA) * BF17 BF21 = max( 0, HAFTA - 38) * BF17 BF23 = max( 0, HAFTA - 37) * BF18 BF25 = (ALKOL in ( 1 )) * BF15 BF27 = max( 0, HAFTA - 36) * BF25 BF29 = max( 0, HAFTA - 38) * BF25 BF31 = max( 0, HAFTA - 35) * BF25 BF33 = max( 0, HAFTA - 39) * BF25 BF35 = max( 0, HAFTA - 40) * BF17 BF36 = max( 0, 40 - HAFTA) * BF17 BF39 = (CANLI in ( 0 )) * BF36 BF40 = (CANLI in ( 1 )) * BF36 BF41 = (ALKOL in ( 1 )) * BF40 BF43 = (SIGARA in ( 0 )) * BF41 BF45 = max( 0, HAFTA - 32) * BF7 BF49 = max( 0, HAFTA - 32) * BF17 68 TÜİK, İstatistik Araştırma Dergisi, Temmuz 2013 TurkStat, Journal of Statistical Research, July 2013 Modelling the low Birth Weight of New Born Babies with Binary Logistic Regression Based on Mars Method Yeni Doğan Bebeklerin Düşük Doğum Ağırlığının Mars Yöntemine Dayalı İkili Lojistik Regresyonla Modellenmesi %XWHPHOIRQNVL\RQODUYHNDWVD\ÕODUÕ\ODHOGHHGLOHQmodel LVHDúD÷ÕGDNLJLELRODFDNWÕU Y = 1.00629 + 0.60322 * BF5 - 0.376346 * BF9 + 0.42706 * BF11 -0.0479715 * BF13 - 0.0382146 * BF20 - 0.574262 * BF21 -0.611076 * BF23 - 0.928152 * BF27 + 0.440698 * BF29 + 0.608121 * BF31- 0.148641 * BF33 + 0.0452413 * BF35 + 0.0220369 * BF39 + 0.0430005 * BF41 - 0.0313029 * BF43 - 0.023289 * BF45 - 0.0896456 * BF49; 'R÷UX VÕQÕIODPD RUDQÕ LVH PRGHOLQ X\JXQOX÷XQX \D GD YHULOHULQ ED÷ÕPOÕ GH÷LúNHQLQL DoÕNODPD \]GHVLQL J|VWHUHQ ELU GH÷HUGLU 0RGHOH DLW '62 GH÷HUL RODUDN KHVDSODQPÕúWÕU øOJLOL GH÷LúNHQOHU ED÷ÕPOÕ GH÷LúNHQLQ \DNODúÕN %95’ini DoÕNODPÕúWÕU (Tablo11). 'R÷UX VÕQÕIODPD oL]HOJHOHULQGHQ PRGHOLQ GX\DUOÕOÕ÷Õ VHQVLWLYLW\ YH |]JOO÷ VSHFLILFLW\KDNNÕQGDGD\RUXP\DSÕODELOLU Tablo 11. MARS için sÕQÕIODQGÕUPDoL]HOJHVL Tahmin edilen Gözlenen DA 0.00 $GÕP'$ 850 0.00 1.00 37 toplam 1.00 8 87 858 124 95.418 'X\DUOÕOÕN UHIHUDQV G]H\LQ GR÷UX WDKPLQ HGLOPH GHUHFHVLGLU 0$56 LoLQ UHIHUDQV G]H\ GR÷XP D÷ÕUOÕ÷ÕQÕQ JUDP YH VWQ LIDGH HGHQ YH RODUDN NRGODQPÕú düzeydir. Bu durumda GX\DUOÕOÕN GH÷HULQHVDKLSWLU Özgüllük ise RODUDN NRGODQDQ GR÷XP D÷ÕUOÕ÷ÕQÕQ JUDPGDQ NoN ROGX÷X GH÷HUOHULLIDGHHGHQG]H\LQGR÷UXWDKPLQHGLOPHVLQLQ derecesidir. MARS yöntemiyle \DSÕODQDQDOL]LoLQ|]JOON, 87/124=0.7016 RODUDNKHVDSODQPÕúWÕU 4. SONUÇ VE YORUMLAR 5HJUHV\RQ DQDOL]LQGH DPDo ED÷ÕPOÕ GH÷LúNHQL ED÷ÕPVÕ] GH÷LúNHQOHULQ ELU IRQNVL\RQX úHNOLQGH \D]PDNWÕU 3DUDPHWULN UHJUHV\RQ DQDOL]LQGH |QFHden bilinen modele ait IRQNVL\RQXQSDUDPHWUHOHULQLWDKPLQHWPHNDPDoODQÕU3DUDPHWULNROPD\DQ\|QWHPGHLVH SDUDPHWUH \HULQHGR÷UXGDQIRQNVL\RQODUWDKPLQHGLOLU0RGHOLVHEXIRQNVL\RQODUÕQELU kombinasyonudur. *HUoHNOHúWLULOHQ DUDúWÕUPDGD verilerin MARS yöQWHPLQH GD\DOÕ LNLOL ORMLVWLN UHJUHV\RQ LOH \DSÕODQ DQDOL]i sonucunda GR÷UX VÕQÕIODQGÕUPD RUDQÕ %95.418 olarak EXOXQPXúWXU %X RUDQ ROGXNoD \NVHN ELU RUDQGÕU 2OXúWXUXODQ PRGHOGH JHEHOLN KDIWDVÕ HQ ID]OD HWNL\H VDKLS GH÷LúNHQ RODUDN RUWD\D oÕNPÕúWÕU Tablo $\QÕ úHNLOGH Tablo 10 TÜİK, İstatistik Araştırma Dergisi, Temmuz 2013 TurkStat, Journal of Statistical Research, July 2013 69 Soner ÖZTÜRK, Volkan SEVİNÇ LQFHOHQGL÷L ]DPDQ KDIWD GH÷LúNHQLQLQ WHN EDúÕQD ELU WHPHO IRQNVL\RQ ROXúWXUGX÷X JLEL GL÷HU ELUoRN WHPHO IRQNVL\RQXQ ROXúXPXQGD GD \HU DOGÕ÷Õ J|UOPHNWHGLU +DIWD GH÷LúNHQL VUHNOL GH÷LúNHQ ROGX÷X LoLQ ELUoRN G÷P QRNWDVÕ RUWD\D oÕNPÕúWÕU $QDOL] VRQXFXQGD EHEH÷LQ GR÷XP D÷ÕUOÕ÷ÕQÕ - DUDVÕQGDNL KDIWDODUÕQ HWNLOHGL÷L WHPHO IRQNVL\RQODUGDQ DQODúÕOPDNWDGÕU 0RGHOLQ WHPHO IRQNVL\RQODUÕQÕQ NDWVD\ÕODUÕ LQFHOHQGL÷LQGH HQ E\N NDWVD\ÕODUGDQ ELULVLQLQ \LQH EX GH÷LúNHQH DLW ROGX÷X görülmektedir. %HEH÷LQ GR÷XP D÷ÕUOÕ÷ÕQÕ HWNLOH\HQ ELU GL÷HU |QHPOL GH÷LúNHQ LVH, DQQH DGD\ÕQÕQ GDKD |QFH FDQOÕ GR÷XP \DSÕS \DSPDPDVÕGÕU 'DKD |QFH FDQOÕ GR÷XP \DSPDPÕú ELU ELUH\LQ D\QÕ ]DPDQGD DONRO GH NXOODQÕ\RU ROPDVÕQÕQ EHEH÷LQ GúN GR÷XP D÷ÕUOÕNOÕ ROPDVÕQD VHEHSROGX÷X, QXPDUDOÕWHPHOIRQNVL\RQGDQDQODúÕOPDNWDGÕUTablo 10). <DúGH÷LúNHQLQLQGHEHEH÷LQGR÷XPD÷ÕUOÕ÷ÕQGDHWNLOLROGX÷X DQODúÕOPDNWDGÕU\DúÕQD kadar RODQ \DúODUD DLW QXPDUDOÕ WHPHO IRQNVL\RQXQ GúN GR÷XP D÷ÕUOÕ÷Õna etki HWPHGL÷L 35’LQ ]HULQGHNL \DúODUD DLW QXPDUDOÕ WHPHO IRQNVL\RQGD LVH \Dú GH÷LúNHQLQLQWHPHOIRQNVL\RQNDWVD\ÕVÕNDGDUHtkili ROGX÷XDQODúÕOPDNWDGÕUTablo10). $UDúWÕUPDGD NXOODQÕODQ LON RQ \HGL KDIWDGD DWHúOL KDVWDOÕN JHoLUPH YH NDKYH NXOODQPD GXUXPODUÕ çok düúNPLNWDUGDHWNL\HVDKLSROGXNODUÕLoLQLoLQROXúWXUXODQPRGHOGH \HU DOPDPÕúODUGÕU %XoDOÕúPDQÕQELUGHYDPÕQLWHOL÷LQGHoDOÕúPDGDNXOODQÕODQGH÷LúNHQOHUH DOWHUQDWLI\HQLGH÷LúNHQOHULQYDUOÕ÷ÕYHEHEHNGR÷XPD÷ÕUOÕ÷ÕQDHWNLOHULDUDúWÕUÕODELOLU 5. KAYNAKLAR Andersen A. M. N., Vastrup P., Wohlfahrt J., Amdersen P. K., Olsen J., Melbye M., 2002. Fever in pregnancy and risk of fetal death: a cohort study. Lancet, 360: 15521556. Craven, P., Wahba, G., 1979. Smoothing Noisy Data with Spline Functions. Numer. Math, 31: 377-403. Dieterle, F. J., 2003. Multianalyte Quantifications by Means of Integration of Artificial Neural Networks, Genetic Algorithms and Chemometrics for Time-Resolved Analytical Data. Ph.D. thesis, Universität Tübingen, Tübingen, 183 s. Friedman, J. H., 1991. Multivariate Adaptive Regression Splines (with discussion). Ann. of Statistics, 19: 1-141. Hastie, T. J., Tibshirani, R. J., 1990. Generalized Additive Models. Chapman & Hall/CRC, New York, 335s. Kan, B., <D]ÕFÕ %, 2010. Comparison of the Results of Factorial Experiments, Fractional Factorial Experiments, Regression Trees and MARS for Fuel Consumption Data. WSEAS TRANS. on MAT., 2:110-119. Kayri, M., 2010. The Analysis of Internet Addiction Scale Using Multivariate Adaptive Regression Splines. Iranian J Publ Health, 39: 51-63. 70 TÜİK, İstatistik Araştırma Dergisi, Temmuz 2013 TurkStat, Journal of Statistical Research, July 2013 Modelling the low Birth Weight of New Born Babies with Binary Logistic Regression Based on Mars Method Yeni Doğan Bebeklerin Düşük Doğum Ağırlığının Mars Yöntemine Dayalı İkili Lojistik Regresyonla Modellenmesi Kim, J. H., 2000. MARS Modeling for Ordinal Categorical Response Data: A Case Study. Soongsil University. Kolyshkina, I., Brookes, R., 2002. Data Mining Approaches to Modelling Insurance Risk. Electronic Version, Pricewaterhouse Coopers, New York, 20 s. Kramer, M. S., 1987. Determinants of Low Birth Weight: Methodological Assessment and Meta-analysis. Bull World Health Organ. 1987;65(5):663-737. Kriner, M., 2007. Survival Analysis with Multivariate Adaptive Regression Splines. Dr. Rer. Nat. Universitat Munchen, 101 s. Kuhnert, P. M., Do, K. A., Mc, R., 2000. Combining Non-parametric Models with Logistic Regression: an Application to Motor Vehicle Injury Data. Computational Statistics & Data Analysis, 34: 371-386. Lee, T. S., Chiu, C. C., Chou, Y. C., Lu, C. J., 2004. Mining The Customer Credit Using Classification And Regression Tree and Multivariate Adaptive Regression Splines. Computational Statistics & Data Analysis, Volume 50, Issue 4, 24 February 2006, Pages 1113–1130. Mina, C., 2009. Profiling Poverty with Multivariate Adaptive Regression Splines. PIDS Discussion Paper Series No. 2009-29, 55 s. Mina, C., 2010. Employment Choices of Persons with Disability in Metro Manila. PIDS Discussion Paper Series No. 2010-29, 35 s. Nash, M. S., Bradford, D. F., 2001. Parametric and Nonparametric(MARS; Multivariate AdditiveRegression Splines) Logistic Regressions for Prediction of A Dichotomous Response VariableWith an Example forPresence/Absence of an Amphibian. United States Environmental Protection Agency (EPA), USA, 40s. Put, R., Massart D. L., Heyden V., 2003. An Application of Multi-variate Adaptive Regression Splines (MARS) in QSRR, IEJMD. BioChemPress.com. Quiros, E., Felicisimo, A. M., Cuartero, A., 2009. Testing Multivariate Adaptive Regression Splines (MARS) as a Method of Land Cover Classification of TERRAASTER Satellite Images. Sensors, 9:9011-9028. Salford System, 2001. MARS, User Guide. Cal. Stat. SoftWare, Inc., San Diego, California. Samui, P., Kothari, D.P., 2011. Application of Multivariate Adaptive Regression Splines to Evaporation Losses in Reservoirs, Earthscience, 4:15-20. Stokes, H. H., Lattyak, W. J., 2005. Multivariate Adaptive Regression Spline (MARS) Modeling Using the B34S ProSeries Econometric System and SCA WorkBench. 6FLHQWL¿F&RPSXWLQJ$VVRFLDWHV&RUSV TÜİK, İstatistik Araştırma Dergisi, Temmuz 2013 TurkStat, Journal of Statistical Research, July 2013 71 Soner ÖZTÜRK, Volkan SEVİNÇ Topak, M. S., 2011. An Empirical Study to Model Corporate Failures In Turkey: A Model Proposal Using Multivariate Adaptive Regression Splines (MARS). 1DPÕN Kemal Üniversitesi Sos. Bilim. Metinleri, 15 s. Tunay, K. B., 2001. 7UNL\H¶GH 3DUDQÕQ *HOLU 'RODúÕP +Õ]ODUÕQÕQ 0$56 <|QWHPL\OH Tahmini. 2'7h*HOLúWLUPH'HUJLVL-454. Tunay, K. B., 2010. %DQNDFÕOÕN .UL]OHUL YH (UNHQ 8\DUÕ 6LVWHPOHUL 7UN %DQNDFÕOÕN SeNW|U øoLQ%LU0RGHOgQHULVL%''.%DQNDFÕOÕNYH)LQDQVDO3L\DVDODU'HUJLVL46. Tunay, K. B., 2011. 7UNL\H¶GH 'XUJXQOXNODUÕQ 0$56 <|QWHPL\OH 7DKPLQ YH Kestirimi. 0DUPDUDhQLYHUVLWHVLøø%)'HUJLVL;;;-91. Yerlikaya, F., 2008. A New Contribution to Nonlinear Robust Regression and Classification with MARS and Its Applications to Data Mining for Quality Control in Manufacturing. M.Sc. Thesis, Middle East Technical University, Ankara, 102s. MODELLING THE LOW BIRTH WEIGHT OF NEW BORN BABIES WITH BINARY LOGISTIC REGRESSION BASED ON MARS METHOD ABSTRACT Babies with low birth weight have some health problems in later years. Therefore, it is important to estimate before the birth whether a new born baby will have a low birth weight or not. In order to obtain this estimation, logistic regression model is a suitable choice. Logistic regression analysis is a modelling technique which is used when the dependent variable is categorical. It is also easily interpreted. When the dependent variable has only two categories, the logistic regression is called binary logistic regression. Logistic regression has parametric and nonparametric solutions. MARS method is a nonparametric method which can be used as an alternative to the parametric solutions in the analysis of logistic regression. The nonparametric models require fewer assumptions compared to the parametric ones and they are also more flexible. In the application, a binary logistic regression model has been fitted to estimate whether a new born baby will have a low birth weight or not. The model has been estimated based on the MARS method. In the analysis, data belonging to 982 subjects have been investigated by applying the MARS software. In the conclusion part, the findings are interpreted. Keywords: Low birth weight, Logistic regression, Maximum likelihood, MARS. 72 TÜİK, İstatistik Araştırma Dergisi, Temmuz 2013 TurkStat, Journal of Statistical Research, July 2013 Volume: 10 Number: 02 Category: 02 Page: 73-82 ISSN No: 1303-6319 Cilt: 10 Sayı: 02 Kategori: 02 Sayfa: 73-82 TÜİK, İstatistik Araştırma Dergisi, Temmuz 2013 TurkStat, Journal of Statistical Research, July 2013 73 Yasemin KAYHAN, Süleyman GÜNAY represents the distribution of the p-dimensional observations over two dimensional space. On the second graph, the relations between variables are shown by vectors, and the location of each vector is determined by mapped observations. With this main feature, CoPlot gives researcher an opportunity to make deeper and richer interpretations of the multivariate data (Lipshitz and Raveh, 1998). Several disciplines such as econometrics (Huang and Liao, 2012), medicine (Bravata et al., 2008), computer science (Talby et al., 1999), management science (Weber et al., 1996) require the analysis of complex multivariate data often coming from large data sets describing numerous variables for many subjects, and the multivariate nature of these data make it difficult to assess the associations of the predictors and the outcomes of interest. So, CoPlot can be seen as a valuable exploratory analysis tool in such analyses. The objectives of this paper are simply trying to introduce the CoPlot and presenting an application of this method on a demographic data. Although CoPlot have been used previously in several disciplines, it has not been used on demographic data sets. So, this study can be considered as useful in the sense that there are not many applications of CoPlot available in the literature. Analyzing Turkey Demographic and Health Survey 2008 data set with only CoPlot map does not give enough evidence to make any conclusion in general. To get deeper understanding on the issues investigated, more works on detailed statistical analysis and inferences would be needed. In the following section, general description and methodology of CoPlot are given. In section 3, an application of CoPlot on a part of Turkey Demographic and Health Survey 2008 data set is presented. By using an original data set, interpretive superiority of CoPlot over MDS is displayed. Some concluding remarks are given in the final part. 2. GENERAL DESCRIPTION OF COPLOT The final product of CoPlot is a simple picture of the multidimensional dataset. With this plot, one can observe: the similarity between the observations, the correlations among the variables and the mutual relationships between the observations and the variables. The main advantage of CoPlot over a MDS is that the clusters of observations which are highly characterized by a particular variable is mapped together and located in the same direction as that of the variable’s vector (Bravata et al., 2008). CoPlot analysis is performed in four steps. MDS analysis is executed in the first three steps, and in the last step the variables’ vectors are placed on top of the obtained MDS graph. Let’s assume that X is an nxp data matrix. The rows of this matrix are assumed as the observations and will be denoted as n points on two dimensional space. The columns of the data matrix correspond to the variables which are exhibited by p vectors on CoPlot map. Step 1: Standardization of the Data Matrix The dissimilarities between the observations are transformed into distances by using City-Block distance in CoPlot. That is why the variables measured on different scales affect the distance values evaluated by City-Block in such a way that the largest variance variable will dominate the distance measure (Borg, 2005). So the data matrix X is transformed into matrix Z as follows, 74 TÜİK, İstatistik Araştırma Dergisi, Temmuz 2013 TurkStat, Journal of Statistical Research, July 2013 An Application of CoPlot on Turkey Demographic and Health Survey 2008 Data Türkiye Nüfus ve Sağlık Araştırması 2008 Verisi Üzerinde bir CoPlot Uygulaması Zij x Xj ij Sj , i 1, 2, , n ; j 1, 2, , p (1) where X j and S j represent mean and standard deviation of the j-th column of X , respectively. Step 2: Creating distance matrix At this step, dissimilarities between the observations are transformed into distances by using a proper distance function. The distance between each pair of observations is denoted in a symmetric Dnxn d ij matrix. To generate Dnxn , 2-combination of n, C n, 2 , different dij distances are calculated as follows, p d ij ¦Z ik Z jk ! 0 (2) k 1 Step 3: Mapping Distances The representation of n observations on two-dimensional space is generated during this step. If the rank-order of the proximities implies that the distances must have the same rank-order as proximities, we speak of non-metric MDS. In non-metric MDS, it is accepted that rank-order of the distances between the observations are informative. In this case, disparities (dˆij ) which are obtained from Euclidean distances of MDS coordinate matrix Y are assigned to the proximities in such a way that these values display the same rank-order as the data (Kruskal, 1964a; Borg, 2005). The aim of non-metric MDS is to obtain a coordinate matrix Y such that the distance between rows i and j of Y, dij Y , matches disparities as closely as possible. Namely, MDS tries to minimize the following cost function, ˆ Y V 2 d, ¦¦ w dˆ n i 1 i 2 j ij ij d ij Y 2 (3) This function is known as raw-Stress introduced by Kruskal (1964a), and the value of the function measures the quality of MDS representation. The wij is a user defined weight that should be non-negative and relates to missing information. The minimization of this function has no closed form solution, so it must be solved by iterative algorithms. Within these iterative algorithms, one of them is known as SMACOF (De Leeuw, 1977). By using this iterative majorization algorithm, optimal Y can be obtained. Step 4: Adding Vectors At this step, vectors corresponding to the variables are drawn onto the map obtained from Step 3. For each variable, CoPlot produces a vector coming up from the center of mass of the points denoted on the MDS map. TÜİK, İstatistik Araştırma Dergisi, Temmuz 2013 TurkStat, Journal of Statistical Research, July 2013 75 Yasemin KAYHAN, Süleyman GÜNAY To find the direction of the vector j, initial angle between the j-th vector and the x axis is assumed to be zero. Then projections of all points on to the vector are calculated. The goal is to find the angle which maximizes the correlation between n projected scores and the z-score values for variable j. The angle which makes the correlation maximum decides the direction of the vector for variable j. This procedure is separately performed for all variables in the data set (Lipshitz and Raveh, 1998). This vector representation has some advantages for the interpretation of the data. By considering the correlation values of the vectors, it may be decided that which variables should be kept in graphical representation or discarded. The vectors for highly correlated variables are located in the same direction. The vectors for highly negatively correlated variables are located along the same axis but in opposite directions. Two vectors which are orthogonal to each other imply that corresponding variables are not correlated. Obviously, the main advantage of this representation is to allow the simultaneous consideration of both variables and observations. 3. APPLICATION For a better explanation of the procedure, some applications of the use of CoPlot are given in this section. The used data set, Turkey Demographic and Health Survey - 2008, is taken from Hacettepe University Institute of Population Studies (TDHS-2008, with the permission number 2012/8). 2,473 women who have terminated their pregnancy within the duration of their marriage are selected. Respondents (observations) are separated with respect to 12 regions. Table 1 represents the number of respondents within corresponding regions. Table 1. Number of respondents from each region Regions Number of Respondents Istanbul 187 West Marmara 134 East Marmara 199 Aegean 199 Central Anatolia 191 Mediterranean 333 West Black Sea 232 East Black Sea 124 West Anatolia 160 North East Anatolia 188 Central East Anatolia 204 South East Anatolia 322 Ten variables such as; respondent’s current age (1), number of household member (2), wealth index which is an indicator of the level of wealth (3), total children ever born (4), age of respondent at 1st birth (5), age of respondent at first marriage (6), years since first marriage (7), partner’s educational attainment (8), partner’s age (9), number of living children (10) are selected from the survey data set. Observations are classified on the MDS and CoPlot maps with respect to the respondent’s educational attainment as 76 TÜİK, İstatistik Araştırma Dergisi, Temmuz 2013 TurkStat, Journal of Statistical Research, July 2013 An Application of CoPlot on Turkey Demographic and Health Survey 2008 Data Türkiye Nüfus ve Sağlık Araştırması 2008 Verisi Üzerinde bir CoPlot Uygulaması follows; not educated women – square shaped points, highest educated women – cross shaped points, and the rest of the women – circle shaped points. Obtained Figure 1 and Figure 2 for the first region (Istanbul) represent distinction between MDS and CoPlot, and display what is gained in interpretability. Figure 1 shows the map produced by MDS of the ten variables describing 187 respondents using City-Block distance to calculate the dissimilarities between the observations. Figure 1(a) shows the embedding of 187 observations in a two dimensional space, and high educated women and not educated women generate two different clusters. In Figure 1(b), each variable is shown as a point and the points are arranged in such a way that their distances correspond to the correlations. That is, two points are close to each other (such as Wealth Index and Number of Household Members), if their corresponding correlation is high. However, one cannot decide the direction of this correlation. Conversely, Wealth Index and Number of Household Members are found as highly negatively correlated variables, see Figure 2. With MDS analysis, it is possible to obtain a graph that displays the relations between either the observations or the relations between variables, but seeing the observations and variables at the same graph simultaneously is not possible. MDS (V1=0.15482) MDS (V1=0.01912) Age of Respondent at 1 st Birth Age at 1 st M arriage Y ears Since 1 st M arriage Number of Household M embers Wealth Index Partner's Educational Attainment Total Children Ever Born Number of Living Children Current Age Partner's Age Figure 1. MDS representations of observations (a) and variables (b) for Istanbul The map of Coplot is a simple picture of the multivariate data. From Figure 2, the following results can be concluded: Ages of the women who live in Istanbul are generally the same with the ages of their husband (1 and 9). Number of living children is highly correlated with the number of total children ever born (4 and 10). So it can be thought that child mortality is not high in this region. Age of 1-st marriage and age of 1st birth are close to each other (5 and 6). So it can be said that women got pregnant when they got married. From the vectors 2 and 8, it is said that well educated husband do not prefer to live with big families. As the distribution of the observations and the directions of the vector are considered together, it can be said that, well educated women prefer to become mother at later age, and well educated women are richer. Not educated women have more children, and they live with crowded families. It is obvious that CoPlot map of the data set gives much more information. TÜİK, İstatistik Araştırma Dergisi, Temmuz 2013 TurkStat, Journal of Statistical Research, July 2013 77 Yasemin KAYHAN, Süleyman GÜNAY CoPlot (V1=0.15482) 1(0.93558) 9(0.89522) 7(0.91047) 3(0.65769) 5(0.66184) 6(0.62672) 8(0.52303) 10(0.90381) 4(0.90025) 2(0.73542) Figure 2. CoPlot representation of Istanbul The following findings with CoPlot about rest of the regions are indicated by Figure 3 and Figure 4: For Aegean region, obtained map, therefore the comment, is nearly same as Istanbul. For Central Anatolia, variables 1, 7 and 9 are correlated. It may be concluded that not educated women got married at an early age with peers. For Central East Anatolia, not educated women rate is high relative to Istanbul, Aegean and Central Anatolia. For East Marmara, high educated women’s number of living children and number of total children ever born are low (4 and 10 are in the opposite direction of cross-shaped cluster). Similar to Central East Anatolia, in Mediterranean region, the number of living children and the number of total children ever born are high for not educated women (4 and 10 are in the same direction of square-shaped cluster). For East Blacksea, high educated women get married and be mother at a late age. Similar comments can be given for the rest of the regions. We do not claim that a single map can be sufficient for these comments. These results need to be discussed sociologically and/or psychologically in details and need to be extended with more comparative statistical analysis. However, CoPlot is useful to give a researcher insight into understanding the possible relations in the data and for further analysis. CoPlot (V1=0.16481) 9(0.9098) 1(0.9014) CoPlot (V1=0.17752) 3(0.70608) 8(0.78411) 3(0.76993) 2(0.71411) 9(0.91484) 1(0.89821) 7(0.955) 8(0.66242) 6(0.60104) 7(0.9087) CoPlot (V1=0.15787) 10(0.90694) 4(0.90813) 5(0.30491) 5(0.6123) 6(0.27918) 6(0.66882) 4(0.88739) 2(0.31934) 4(0.81346) 10(0.78742) 10(0.85019) 5(0.64563) 8(0.51342) 3(0.61925) 7(0.93969) 1(0.90639) 9(0.88252) 2(0.62877) Figure 3. CoPlot maps of Aegean, Central Anatolia and Central East Anatolia 78 TÜİK, İstatistik Araştırma Dergisi, Temmuz 2013 TurkStat, Journal of Statistical Research, July 2013 An Application of CoPlot on Turkey Demographic and Health Survey 2008 Data Türkiye Nüfus ve Sağlık Araştırması 2008 Verisi Üzerinde bir CoPlot Uygulaması East Marmara (V1=0.17094) Mediterrenean (V1=0.16736) 5(0.72167) 2(0.59963) 6(0.66288) 3(0.56584) East Blacksea (V1=0.16464) 2(0.67658) 9(0.89828) 1(0.93556) 8(0.51308) 7(0.92481) 10(0.84737) 10(0.85925) 4(0.87435) 4(0.83631) 4(0.87891) 6(0.66387) 5(0.64301) 8(0.6391) 3(0.62658) 8(0.30979) 10(0.87723) 7(0.9425) 9(0.90151) 1(0.90858) 5(0.80678) 2(0.68818) 7(0.95493) 3(0.52456) 6(0.83655) 9(0.88283) 1(0.93568) South East Anatolia (V1=0.17139) North East Anatolia (V1=0.16425) 1(0.94826) 9(0.90533) 3(0.80409) 2(0.65414) 8(0.67391) 5(0.57594) 7(0.94282) West Anatolia (V1=0.16976) 2(0.7423) 10(0.87342) 6(0.55491) 10(0.89602) 4(0.90149) 4(0.86959) 10(0.88091) 4(0.88083) 6(0.51167) 2(0.73907) 1(0.89558) 3(0.68467) 10(0.828) 7(0.94185) 5(0.63106) 9(0.9013) 3(0.47927) 1(0.90515) 9(0.92552) 3(0.72243) West Blacksea (V1=0.16954) 4(0.82587) 6(0.55792) 8(0.68832) 9(0.90104) West Marmara (V1=0.18282) 8(0.49258) 6(0.5713) 7(0.94191) 8(0.59184) 2(0.61163) 7(0.94968) 5(0.57231) 5(0.46709) 1(0.9207) 10(0.85445) 4(0.86133) 2(0.5725) 7(0.89344) 8(0.58641) 9(0.92443) 3(0.4966) 1(0.91408) 5(0.66641) 6(0.65308) Figure 4. CoPlot maps of 8 regions Kruskal-stress, V1 , describes how well the map represents the observations in lower dimension. Generally MDS representations having Kruskal stress value 0.10 are accepted as fair and over 0.20 as poor (Kruskal, 1964b). To improve the goodness of fit, investigating the scree plot may be helpful. For example, from Figure 4, West Marmara has the highest V1 value. Figure 5 is the scree plot of this region for 30, 90 and 134 observations. For 30 observations, since V1 is almost 0.15, two dimensional MDS representation of the region can be accepted as fair. For 134 observations, to reach a fair representation at least 3 dimensions are needed. It is obvious that, V1 decreases with decreasing number of observations. From Figure 4, it can be seen that, some of these ten variables do not have high correlation coefficient values for every region. For example, at East Black Sea, correlation coefficient values of vectors 3 and 8 are low (0.52456 and 0.30979, respectively). In CoPlot map, low correlation coefficient value, namely less than 0.70, implies that that variable is not interpretive. From Figure 6, when these two vectors are TÜİK, İstatistik Araştırma Dergisi, Temmuz 2013 TurkStat, Journal of Statistical Research, July 2013 79 Yasemin KAYHAN, Süleyman GÜNAY discarded from the CoPlot analysis, it is seen that correlation coefficient values of the rest of the variables are increasing and the V1 is reducing. Therefore, it can be suggested that vectors with low correlation coefficients should be omitted from the analysis. Scree Plot - West Marmara 0.35 n=30 n=90 n=134 0.3 0.25 0.2 0.15 0.1 0.05 0 1 2 3 4 5 6 Figure 5. Scree plot for West Marmara East Blacksea (V1=0.16464) East Blacksea Reduced (V1=0.11648) 2(0.67658) 6(0.84574) 9(0.88955) 5(0.81543) 7(0.95115) 10(0.85925) 4(0.87435) 8(0.30979) 5(0.80678) 4(0.88367) 7(0.95493) 10(0.87847) 3(0.52456) 6(0.83655) 9(0.88283) 1(0.93631) 2(0.70636) 1(0.93568) Figure 6. Effect of reducing the low correlated variables on CoPlot for East Black Sea 4. CONCLUSION CoPlot is a graphical representation of a multivariate data set by projecting onto the two-dimensional space. It provides the possibility to analyze the observations and variables on the same graph. Previously, CoPlot has been applied to data sets from different disciplines (Raveh, 2000; Bravata et al., 2008). In this study, it has been applied to a demographic data for the first time. The purpose of this study is to show how to use CoPlot for a demographic data set. Our analysis of the demographic data suggests that CoPlot may be a useful analyzing tool for exploring the relation between observations and variables in multivariate data. At the application part of this study, it can be seen that with a simple analysis one can roughly get the picture of the regions, 80 TÜİK, İstatistik Araştırma Dergisi, Temmuz 2013 TurkStat, Journal of Statistical Research, July 2013 An Application of CoPlot on Turkey Demographic and Health Survey 2008 Data Türkiye Nüfus ve Sağlık Araştırması 2008 Verisi Üzerinde bir CoPlot Uygulaması and with these pictures similarities or dissimilarities between the regions would be observed. In CoPlot analysis, there are two goodness of fit measures such as Kruskall raw stress value and Pearson correlation coefficient. These measures enable the user whether to keep or delete specific variables and observations from the map. Possible problems and solutions of the problems such as low goodness of fit or correlation coefficient value are also discussed in the application part. Besides, the superiority of CoPlot on the visual interpretation of multivariate data is emphasized. 5. REFERENCES Borg, I., Groenen, P. J. F., 2005. Modern Multidimensional Scaling, 2nd edition, Springer. Bravata, D. M., Shojania, K. G., Olkin, I., Raveh, A., 2008. CoPlot: A Tool for Visualizing Multivariate Data in Medicine, Statistics in Medicine, 27, 2234-2247. De Leeuw, J., 1977. Application of Convex Analysis to Multidimensional Scaling, In: J. Barra et al. Recent Developments in Statistics, 133-145. Hastie, T., Tibshirani, R., Friedman, J., 2008. The Elements of Statistical Learning, 2nd edition. Huang, H., Liao, W., 2012. A CoPlot-based Efficiency Measurement to Commercial Banks, Journal of Software 7:10, 2247-2251. Kruskal, J. B., 1964a. Nonmetric Multidimensional Scaling: A Numerical Method, Psychometrika, 29:2, 115-129. Kruskal, J. B., 1964b. Multidimensional Scaling by Optimizing Goodness of Fit to A Nonmetric Hypothesis, Psychometrika, 29:1, 1-27. Lipshitz, G., Raveh, A., 1998. Socio-economic Differences Among Localities: A New Method of Multivariate Analysis, Regional Studies, 32:8, 747-757. Raveh, A., 2000. CoPlot: A Graphic Display Method for Geometrical Representations of MCDM, European Journal of Operational Research, 125, 670-678. Talby, D., Feitelson, D. G., Raveh, A., 1999. Comparing Logs and Models of Parallel Workloads Using the CoPlot Method, Lecture Notes in Computer Science 1659, 43-66. Weber, Y., Shenkar, O., Raveh, A., 1996. National and Corporate Cultural Fit in Mergers/Acquisitions: An Exploratory Study, Management Science 42:8, 1215-1227. TÜİK, İstatistik Araştırma Dergisi, Temmuz 2013 TurkStat, Journal of Statistical Research, July 2013 81 Yasemin KAYHAN, Süleyman GÜNAY 7h5.ø<(1h)869(6$ö/,.$5$ù7,50$6,9(5ø6ø h=(5ø1'(%ø5&23/278<*8/$0$6, ÖZET dRN ER\XWOX |OoHNOHPHQLQ ELU X]DQWÕVÕ RODQ &R3ORW \|QWHPL J|]OHPOHU DUDVÕQGDNLYHGH÷LúNHQOHUDUDVÕQGDNLLOLúNLOHULD\QÕgrafik üzerinde inceleme IÕUVDWÕYHULU CoPlot, birbiri üzerine çizdirilen iki grafikten ROXúXU øONJUDILNQ VD\ÕGD oRN GH÷LúNHQOL J|]OHPLQ LNL ER\XWOX X]D\GDNL GD÷ÕOÕPÕQÕ J|VWHULU øNLQFLJUDILNKHUELULELUGH÷LúNHQLWHPVLOHGHQSVD\ÕGDRNWDQROXúXU. CoPlot VD\HVLQGH DUDúWÕUPDFÕODU WHN ELU JUDILN LOH oRN GH÷LúNHQOL YHUL NPHVL KDNNÕQGD GDKD GHWD\OÕ \RUXPODU \DSDELOLUOHU &R3ORW NROD\ DQODúÕODELOLU ROGX÷X LoLQ VRV\R-HNRQRPL HNRQRPL WÕS JLEL oHúLWOi disiplinlerde NXOODQÕOPÕúWÕU, ancak GHPRJUDILN oDOÕúPDODUGD NXOODQÕOPDPÕúWÕU Bu oDOÕúPDGD &R3ORW NÕVDFD DoÕNODQDFDN YH “Türkiye Demografik YH 6D÷OÕN Anketi 2008” YHUL NPHVLQLQ ELU SDUoDVÕ ]HULQGH EDVLW ELU X\JXODPDVÕ VXQXODFDNWÕU &R3ORW \|QWHPLQLQ oRN GH÷LúNHQOL YHUi kümesini görsel olarak \RUXPODPDVWQO÷EX|]JQYHULNPHVLLOHYXUJXODQDFDNWÕU Anahtar Kelimeler: Kruskal raw stress, Çok boyutlu ölçekleme, Scree plot. 82 TÜİK, İstatistik Araştırma Dergisi, Temmuz 2013 TurkStat, Journal of Statistical Research, July 2013 DANIŞMA KURULU ÜYELERİ - ADVISORY BOARD MEMBERS TÜRKİYE İSTATİSTİK KURUMU İSTATİSTİK ARAŞTIRMA DERGİSİ Journal of Statistical Research Cilt-Volume: 10 Sayı-Number: 02 Temmuz-July 2013 ISSN 1303-6319 TÜRKİYE İSTATİSTİK KURUMU Turkish Statistical Institute Ali YAZICI Alper GÜVEL Asaf Savaş AKAT Aşır GENÇ Aydın ÖZTÜRK Ayşe GÜNDÜZ HOŞGÖR Bedriye SARAÇOĞLU Coşkun Can AKTAN Deniz GÖKÇE Ekrem ERDEM Ercan UYGUR Erdem BAŞCI Erinç YELDAN Erol TAYMAZ Eser KARAKAŞ Fatih ÖZATAY Fatin SEZGİN Fikri AKDENİZ Fikri ÖZTÜRK Gülay BAŞARIR KIROĞLU Güven SAK Haluk LEVENT Hamza EROL İlhan TEKELİ İmdat KARA İnsan TUNALI Levent KANDİLLER Mehmet KAYTAZ Meltem DAYIOĞLU TAYFUR Metin TOPRAK Mustafa ACAR Mustafa AYTAÇ Nihat BOZDAĞ Onur BASKAN Orhan GÜVENEN Ömer Faruk ÇOLAK Ömer L. GEBİZLİOĞLU Özkan ÜNVER Öztaş AYHAN Savaş ALPAY Seyfettin GÜRSOY Süleyman GÜNAY Turan EROL Ümit OKTAY FIRAT Yasin AKTAY Yılmaz AKDİ Atılım Üniversitesi Çukurova Üniversitesi Bilgi Üniversitesi Selçuk Üniversitesi Ege Üniversitesi Orta Doğu Teknik Üniversitesi Gazi Üniversitesi Dokuz Eylül Üniversitesi Bahçeşehir Üniversitesi Erciyes Üniversitesi Türkiye Ekonomi Kurumu T.C. Merkez Bankası Bilkent Üniversitesi Orta Doğu Teknik Üniversitesi Bahçeşehir Üniversitesi TOBB Ekonomi ve Teknoloji Üniversitesi Bilkent Üniversitesi Çukurova Üniversitesi Ankara Üniversitesi Mimar Sinan Güzel Sanatlar Üniversitesi TOBB Ekonomi ve Teknoloji Üniversitesi Galatasaray Üniversitesi Çukurova Üniversitesi Orta Doğu Teknik Üniversitesi Başkent Üniversitesi Koç Üniversitesi Yaşar Üniversitesi Işık Üniversitesi Orta Doğu Teknik Üniversitesi İstanbul Üniversitesi Aksaray Üniversitesi Uludağ Üniversitesi Gazi Üniversitesi Ege Üniversitesi Bilkent Üniversitesi Gazi Üniversitesi Kadir Has Üniversitesi Ufuk Üniversitesi Orta Doğu Teknik Üniversitesi SESRTCIC Bahçeşehir Üniversitesi Hacettepe Üniversitesi Ankara Strateji Enstitüsü Marmara Üniversitesi Selçuk Üniversitesi Ankara Üniversitesi
Benzer belgeler
PDF ( 2 )
oDOÕúPDGD NRORQ YH NDQ NDQVHUL JHQ GL]LOLPL YHUL
NPHOHUL NXOODQPÕúODUGÕU 6ÕQÕIODQGÕUÕFÕ RODUDN ,%
& &1 YH 1DLYH %D\HV NXOODQGÕNODUÕ oDOÕúPDGD
YHGR÷UXOXNR...
- Economic Research Forum (ERF)
"Eğitim ve İşgücüne Katılım." ("Education and Labor Force Participation.") In Temel Eğitim: Bilim,
Eğitim ve Toplumsal Gelişme, Türkiye Bilimler Akademisi Bilimsel Toplantı Serileri No: 8
(Publishe...
SANA Y İ - Samsun Ticaret ve Sanayi Odası
%XoDOÕúPDPÕ]GD, 6DPVXQ¶XQ\ÕOODULWLEDUL\OHVRV\RHNRQRPLNGXUXPXQXJ|]OHU|QQHVHUPH\HoDOÕúWÕN+HU\ÕO
KD]ÕUODGÕ÷ÕPÕ]UDSRUXPX]XQøOLPL]DGÕQDELUoRNoDOÕúPD\DND\QDNRODFD÷ÕQÕXPX\RUX]
%LQOH...