n-boyutlu Dijital Görüntülerin Homoloji Grubu
Transkript
n-boyutlu Dijital Görüntülerin Homoloji Grubu
21. Ulusal Matematik Sempozyumu Bildiriler Kitabı B.1-13 n ∗ † ‡ n n M SS18 ∗ † ‡ M SS18 Z Zn n q = (q1 , ..., qn ) ∈ Z n Zn 1 ≤ l ≤ n p = (p1 , ...., pn ), |pi − qi | = 1 l |pj − qj | = � 1 i j p q p j = qj cl cl κ κ � � � n n−t κ ∈ 3n (n ≥ 2), 3n − r−2 − 1(2 ≤ r ≤ n − 1, n ≥ 3), 2n(n ≥ 1) t=0 Ct 2 Z Z2 Z3 a, b ∈ Z, a ≤ b [a, b]Z = {z ∈ Z : a ≤ z ≤ b} c1 := 2 c1 := 4 c2 := 8 κ κ (X, κ) ⊂ Z ε ε∈N lκ (x0 , x) x0 n x0 κ x κ Nκ (x0 , ε) = {x ∈ X | lκ (x0 , x) ≤ ε} ∪ {x0 } xi Zn κ ∀x, y ∈ X x = � y xi+1 κ X X f :X→Y f (x1 ) X κ κ0 κ X ⊂ Zn0 Y ⊂ Zn1 , (X, κ0 ) (Y, κ1 ) U f (U ) Y κ1 (κ0 , κ1 ) f : X → Y X f (x0 ) f (x1 ) κ1 κ x = x0 y = xr X X ⊂ Zn i = 0, 1, . . . , r−1 {x0 , x1 , . . . , xr } (κ0 , κ1 ) {x0 , x1 } κ0 κ f (x0 ) = c1 := 6 c2 := 18 (Y, κ1 ) f c3 := 26 f −1 (κ0 , κ1 ) f : (X, κ0 ) → (κ1 , κ0 ) (κ0 , κ1 ) R Z [1, 3]Z = {1, 2, 3} [2, 5]Z = {2, 3, 4, 5} (2, 2) 2 3 f, g : (X, κ0 ) → (Y, κ1 ) H : X × [0, m]Z → Y f g (κ0 , κ1 ) ∀x ∈ X ∀x ∈ X m f �(κ0 ,κ1 ) g H(x, 0) = f (x) H(x, m) = g(x) Hx : [0, m]Z → Y (2, κ1 ) ∀t ∈ [0, m]Z (κ0 , κ1 ) ∀t ∈ [0, m]Z , Hx (t) = H(x, t) Ht : X → Y ∀x ∈ X, Ht (x) = H(x, t) (X, κ) ⊂ Zn f : [0, m]Z −→ X κ (2, κ) f (i) x f (0) = x f (m) = y f (0) = f (m) f y κ j = i±1 f (j) κ mod m f : [0, m − 1]Z −→ X ⊂ Z2 κ (2, κ) {f (0), f (1), . . . , f (m − 1)} M SC8 M SC4 M SC8� x ∈ X (X, κ) y, z ∈ X X κ X κ κ • | X̄ |x x Dxx • κ̄ κ �= 3n − 2n − 1 x Nκ̄ ∩ C xx �= ∅ X κ C xx κ̄ κ κ X̄ = Zn − X | X |x := N26 (x, 1) − {x} y ∈ Nκ ∩ X κ κ (κ, κ̄) ∈ {(κ, 2n), (2n, 3n − 1)} x∈X x X (X, κ) ⊂ Zn , n ≥ 3 X • κ Nκ̄ ∩ Dxx �= ∅ κ X (κ, κ̄) = (3n − 2n − 1, 2n) • X κ • x∈X | X |x | X |x κ X � M SS18 1X f :X→Y f ◦ g �(κ1 ,κ0 ) 1Y f (X, κ0 ) (κ0 , κ0 ) � A ⊂ X = ∀a ∈ A r ◦ i(a) = a X κ0 κ M SS18 M SS6 g ◦ f �(κ0 ,κ1 ) (κ1 , κ0 ) (κ0 , κ1 ) g : Y → X (κ0 , κ1 ) X (X, κ0 ) κ0 i : A �→ X κ0 r:X →A P = {p0 , p1 . . . , pm } ⊂ (Zn , κ) P (κ, m) κ0 ti ∈ Z {p0 , p1 , . . . , pm } m � ti pi = 0 i=1 ve m � i=1 ti = 0 ise t0 = t1 = · · · = tm = 0 dir. i, j ∈ {0, 1, . . . , m} i �= j P = �p0 , p1 . . . , pm � pi pj κ m 2, 2, 8, 26 P = {p0 , p1 . . . , pm } ⊂ (Zn , κ) K (κ, m) s∈K s {p0 , p1 . . . , pm } s, t ∈ K s s∩t s t (K, κ) (K, κ) (K, κ) |K| |K| = � s∈K (κ, 0) s. (X, κ0 ) h : |K| −→ X (κ0 , κ1 ) (K, κ1 ) X P ⊂ (Zn0 , κ0 ) Q ⊂ (Zn1 , κ1 ) P Q (κ0 , κ1 ) P = {p0 , p1 , . . . , pm } (κ0 , m) (κ1 , m) Q = {q0 , q1 , . . . , qm } h : (P, κ0 ) −→ (Q, κ1 ) pi �→ h(pi ) = qi pi ∈ P Cqκ (K) p̂i pi (K, κ) (K, κ) ⊂ Zn � (κ0 , κ1 ) (κ, q) m κ ∂q : Cqκ (K) −→ Cq−1 (K) ∂q (< p0 , p1 , . . . , pq >) = m≥q �� q i i=0 (−1) 0, ∂q−1 ◦ ∂q = 0 < p0 , p1 , . . . , p̂i , . . . , pq >, m ≥ q m<q �p0 , p1 , . . . , pq � ∈ Cqκ (K) q � ∂q−1 ◦ ∂q (�p0 , p1 , . . . , pq �) = ∂q−1 ( (−1)i �p0 , . . . , p�i , . . . , pq �) i=0 = q−1 � j=0 = � q � (−1) ( (−1)i �p0 , . . . , p�j , . . . , p�i , . . . , pq �) j i=0 i+j (−1) i<j + � j�i = (−1)i+j �p0 , . . . , p�j , . . . , p�i , . . . , pq � � i<j = 0. �p0 , . . . , p�i , . . . , p�j , . . . , pq � [(−1)i+j + (−1)i+j+1 ]�p0 , . . . , p�i , . . . , p�j , . . . , pq � (K, κ) m C∗κ (K) ∂m+1 ∂m−1 ∂ ∂ ∂ m 1 0 κ κ 0 −→ Cm (K) −→ Cm−1 (K) −→ · · · −→ C0κ (K) −→ 0 (K, κ) m Zqκ (K) = Ker ∂q Bqκ (K) = Im ∂q+1 κ κ q. q. Hqκ (K) = Zqκ (K)/Bqκ (K) f : X → Y Hqκ0 (X) ∼ = Hqκ1 (Y ) κ (κ0 , κ1 ) q. ∀m ≥ q f : X → Y (κ0 , κ1 ) f x 1 , x2 ∈ X x 1 ⇔ f (x1 ) f (x2 ) κ1 f (x1 ) = f (x2 ) κ0 m≥q�0 �p0 , p1 , . . . , pq � ∈ Cq (X) φ : Cqκ0 (X) −→ Cqκ1 (Y ), x2 κ0 φ(�p0 , p1 , . . . , pq �) = �f (p0 ), f (p1 ), . . . , f (pq )� φ f κ0 κ1 ∼ Cq (X) = Cq (Y ) Hqκ0 (X) ∼ = Hqκ1 (Y ). (X, κ) � Z, q = 0 Hq (X) = 0, q �= 0. X = {x0 } m≥q >0 Cqκ (X) = 0 C0κ (X) (κ, 0) C0κ (X) ∼ ∂1 : 0 −→ C0κ (X) ∼ =Z =Z ∼ Im ∂1 = 0, ve Ker ∂0 = Z κ Hqκ (X) ∼ = X X Hqκ (X) (κ, q) q=0 =0 ∂0 : C0κ (X) ∼ = Z −→ 0 κ ∼ H0 (X) = Z {Xλ : λ�Λ} � X Hqκ (Xλ ). λ κ � Z, q = 0, 1 Hq (X) = 0, q �= 0, 1. X = {x0 , x1 . . . , xq } ⊂ Z2 κ xi xj κ κ ⇔ i = j ± 1 mod q C0κ (X) = {�x0 �, �x1 �, �x2 �, . . . , �xq �} ∼ = Zq+1 C1κ (X) = {�x0 , x1 �, �x1 , x2 �, . . . , �xq , x0 �} ∼ = Zq+1 m>q>1 Cqκ (X) = 0 Hqκ (X) = 0 ∂ ∂ ∂ 2 1 0 0 −→ C1κ (X) −→ C0κ (X) −→ 0 Im ∂2 = 0 Ker ∂0 = Zq+1 ∂1 (a0 �x0 , x1 � + a1 �x1 , x2 � + . . . + aq �xq , x0 �) = a0 (x1 − x0 ) + a1 (x2 − x1 ) + . . . + aq (x0 − xq ) Im ∂1 = Zq ∂1 (a0 �x0 , x1 � + a1 �x1 , x2 � + . . . + aq �xq , x0 �) = 0 a0 (x1 − x0 ) + a1 (x2 − x1 ) + . . . + aq (x0 − xq ) = 0 (aq − a0 )x0 + (a0 − a1 )x1 + . . . + (aq−1 − aq )xq = 0 Ker ∂1 = Z a0 = a1 = . . . = aq H1κ (X) = Z = H0κ (X). X κ0 κ1 Hq (X) Hq (Y ) Y 3.11 M SC8� = {(1, 0), (0, 1), (−1, 0), (0, −1)} � M SC8 �(8,8) {∗} p 1 < p2 H18 (M SC8 ) = Z H18 (X) H18 ({∗}) H18 ({∗}) = 0 X = {po = (0, 0), p1 = (1, 0), p2 = (1, 1)} 8 8 C0 (X) (X, 8) {�p0 �, �p1 �, �p2 �} , C18 (X) C28 (X) � {�p0 p1 �, �p1 p2 �, �p0 p2 �} {�p0 p1 p2 �} C08 (X) ∼ = Z3 , C18 (X) ∼ = Z3 , ve C82 (X) ∼ = Z. p0 < ∂ ∂ ∂ ∂ 3 2 1 0 0 −→ C28 (X) −→ C18 (X) −→ C08 (X) −→ 0. Ker ∂2 = 0, Ker ∂1 = Z2 , Ker ∂0 = Z3 , Im ∂2 = Z, Im ∂1 = Z2 � Z, q = 0, 1 Hq8 (X) = 0, q �= 0, 1. Im ∂3 = 0, M SS18 ∼ = {c0 = (0, 0, 1), c1 = (−1, 1, 1), c2 = (−2, 0, 1), c3 = (−2, −1, 1) c4 = (−1, −2, 1), c5 = (0, −1, 1), c6 = (−1, 0, 0), c7 = (−1, −1, 0) c8 = (−1, 0, 2), c9 = (−1, −1, 2)} C018 (M SS18 ) {�c0 �, �c1 �, . . . , �c9 �} C118 (M SS18 ) (18, 0) {�c0 c1 �, �c1 c2 �, �c2 c3 �, �c3 c4 �, �c4 c5 �, �c5 c0 �, �c6 c7 �, �c8 c9 �, �c9 c0 �, �c0 c6 �, �c1 c9 �, �c6 c1 �, �c2 c8 �, �c7 c2 �, �c3 c8 �, �c7 c3 �, �c4 c8 �, �c7 c4 �, �c5 c9 �, �c6 c5 �, �c2 c6 �, �c5 c8 �} C218 (M SS18 ) (18, 1) {�c0 c1 c9 �, �c0 c6 c1 �, �c0 c6 c5 �, �c9 c0 c5 �, �c3 c4 c8 �, �c7 c3 c4 �, �c2 c3 c8 �, �c7 c2 c3 �, �c1 c2 c6 �, �c2 c6 c7 �, �c4 c5 c8 �, �c5 c8 c9 �} (18, 2) ∂ ∂ ∂ ∂ 3 2 1 0 0 −→ C28 (M SS18 ) −→ C18 (M SS18 ) −→ C08 (M SS18 ) −→ 0. Im ∂2 ∼ = Z12 Ker ∂2 = 0 Im ∂1 ∼ = Z9 Ker ∂1 ∼ = Z13 , Ker ∂0 ∼ = Z10 , Im ∂3 = 0 � Z, q = 0, 1 Hq18 (M SS18 ) = 0, q = � 0, 1. 15th
Benzer belgeler
Aşk Oyunu - Kenan Doğulu
Aşk oyunu buna derler güzelim
Gm7
Seçmelisin birini
Fm
Bir şöyle bir böyle derken
Cm
G
Cm
Kaçırıp harcarsın sevgileri
Ab
Yeni aşk caydırır çoğu zaman aldatır
Bb
Gm
Gelen gideni aratır
Fm
Aşk oyunu ...
Cutting and Grooving Toolholder Kesme ve Kanal Katerleri
- R / L 154 Serisi için Kesici Uçlar
- R / L 154 Series for Insert ........................................................................................................... 74
- TDKR / L D›fl Kana...
01.09.2016 FLAT
YAŞAR UNIVERSITY SoFL ENGLISH PREPARATORY CLASS
01.09.2016 FLAT SEATING ARRANGEMENT
THE EXAM WILL BE CONDUCTED IN SELÇUK YAŞAR CAMPUS IN BORNOVA
STUDENTS ARE REQUIRED TO BE IN THEIR RESPECTIVE CLAS...