FATIGUE CRACK PROPAGATION BEHAVIOR OF BRAZED STEEL
Transkript
FATIGUE CRACK PROPAGATION BEHAVIOR OF BRAZED STEEL
FATIGUE CRACK PROPAGATION BEHAVIOR OF BRAZED STEEL JOINTS Dr. Tanya Aycan Aycan Başer EMPA-Swiss Federal Laboratories for Materials Testing and Research EMPALaboratory for Joining Interface and Technology, Dübendorf, Switzerland Materials Science & Technolog y Outline Introduction •Mechanical properties of materials • What is fatigue? • Why brazing? • Problems occurred during brazing • Application area of brazing Materials and Methods • Base material and filler metals • Brazing and heat treatment • Experimental procedures Results and discussion • Fatigue Crack Propagation (da/dN-ΔK) Curves • Microstructural Investigations • Fractographic Investigations Brazing Quality • Effect of shield gas on mechanical properties • Effect of sample geometry on mechanical properties CERNTR, 09/03/11 Introduction MALZEMELERİN MEKANİK ÖZELLİKLERİ GERILIM-GERINIM DIYAGRAMI 2000 x kopma dayanimi () Elastik bolge Stress / MPa 1500 Cekme dayanimi GEVREK-SUNEK DAVRANIS x Akma dayanimi 1000 500 Plastik bolge 0 0 2 4 6 8 10 12 Strain / % Cekme testi CERNTR, 09/03/11 14 16 18 20 () Introduction YORULMA NEDİR? Malzemeyi zorlayan gerilmeler zaman icinde degisecek olursa malzeme cekme deneyinde elde edilen kopma degerinin altinda bir gerilmede sunek de olsa plastik sekil degistirmeden kirilabilir. Bu olaya yorulma denir. Yukleme ve bosalmanin periyodik olarak cok sayida tekrari sonucunda malzemede yipranmalar meydana gelir. Bunun nedeni yukun siddetinden cok onun periyodik olarak uzun bir sure uygulanmasidir. İc mekanizmasi oldukca karisik olan bu olaya malzemenin yorulmasi denir. Yorulma 3 asamada gerceklesir: 1-Catlak baslangici 2-Catlak ilerlemesi 3-Kirilma CERNTR, 09/03/11 Introduction WHY BRAZING? Welding fusion takes place with melting of both the base metal and usually a filler metal. To join metals by applying heat, sometimes with pressure and sometimes with an intermediate or filler metal having a high melting point. Brazing is a process for joining similar or dissimilar metals using a filler metal and heating them the liquidus of the filler metals above 840°F (450°C), and below the solidus of the base metals Soldering has the same definition as brazing except for the fact that the filler metal used has a liquidus below 840°F (450°C) and below the solidus of the base metals. Brazing process is used because of the compressor impeller geometry Defects such as incomplete gap filling, pores or cracks may be formed during brazing and they can act as stress concentration sites in the brazing zone. Under cyclic mechanical loading, fatigue cracks can initiate and propagate from these defects, leading to spontaneous failure. CERNTR, 09/03/11 Brazing Introduction Brazing is a quick and low-cost brazing method to produce strong joints and it is used in the aerospace and other industries as well as for power generation, e.g. turbine parts or compressor impellers. /www.nasa.org/ /www.airbus.com/ /www.geae.com/ /www.manturbo.com/ CERNTR, 09/03/11 Materials and Method Base material and filler metals The soft martensitic stainless steel X3CrNiMo13-4 was used as base material. Chemical composition of X3CrNiMo13-4 Element Min. Max. C Si Mn P S 0.05 0.70 1.50 0.04 0.01 Cr Mo N Ni 12.00 0.30 0.02 3.50 14.00 0.70 4.50 As filler metal, foils of the binary alloy Au-18Ni with a thickness of 100 μm were applied (Melting temperature is around 800 °C). Brazing and heat treatment Brazing was performed in an industrial shielding gas (93 vol.-% Ar, 7 vol.-% H2) furnace at a temperature of 1020°C for 20 minutes. After brazing, the specimens were tempered at 520 °C for 5.5 h in nitrogen atmosphere. CERNTR, 09/03/11 Materials and Method Experimental procedures Fatigue crack propagation tests were performed on a resonant testing machine. Geometry of the DCB specimen (90 x 60 x 8 mm) Set-up of the fatigue crack propagation test ASTM E647 Fractured specimens were investigated by SEM. CERNTR, 09/03/11 Results • Fatigue Crack Propagation (da/dN-ΔK) Curves 1E-4 The Paris equation: da/dN [m/cycle] 1E-5 da CK n dN 1E-6 1E-7 da: difference of crack length dN: difference of number of cycles C,n: experimentally measured material constants 1E-8 1E-9 R = 0.1 R = 0.3 R = 0.5 R = 0.7 1E-10 1E-11 1 10 100 1/2 K [MPa m ] KI F a a 8 13 . 25 12 h Bh0.5 h CERNTR, 09/03/11 2 0.5 Calculated C and n parameters at different R values R C n 0.1 1.309E-22 11.17 0.3 4.071E-23 12.17 0.5 7.234E-22 12.64 0.7 8.489E-21 12.81 da/dN [m/cycle] Results The Paris Exponent 1E-5 1E-6 1E-7 1E-8 1E-9 R = 0.1 R = 0.3 R = 0.5 R = 0.7 1E-10 1E-11 1 10 1/2 K [MPa ] 9 (1993) 2765. R. H. Dauskardt, Acta Metall Mater. m Vol 41 CERNTR, 09/03/11 Material n Metals 3-4 Ceramics -50 Brazed components 11-13 ? SEM Taramali elektron mikroskobu Çalışma Prensibi Taramalı Elektron Mikroskobu üç temel kısımdan oluşmaktadır: Optik Kolonda elektron demetinin kaynağı olan elektron tabancası, elektronları numuneye doğru hızlandırmak için yüksek gerilimin uygulandığı anot plakası, ince elektron demeti elde etmek için yoğunlaştırıcı mercekler, demeti numune üzerinde odaklamak için objektif merceği, bu merceğe bağlı çeşitli çapta apatürler ve elektron demetinin numune yüzeyini taraması için tarama bobinleri yer almaktadır. Numune hucresine numune yerlestirilir. Görüntü sisteminde elektron demeti ile numune girişimi sonucunda oluşan çeşitli elektron ve ışımaları toplayan dedektörler, bunların sinyal çoğaltıcıları ve numune yüzeyinde elektron demetini görüntü ekranıyla senkronize tarayan manyetik bobinler bulunmaktadır. Nasil goruntu elde edilir? Taramalı Elektron Mikroskobunda (SEM) görüntü, yüksek gerilim ile hızlandırılmış elektronların numune üzerine odaklanması, bu elektron demetinin numune yüzeyinde taratılması sırasında elektron ve numune atomları arasında oluşan çeşitli girişimler sonucunda meydana gelen etkilerin uygun algılayıclarda toplanması ve sinyal güçlendiricilerinden geçirildikten sonra bir katot ışınları tüpünün ekranına aktarılmasıyla elde edilir. CERNTR, 09/03/11 Results •Microstructural Investigations SEM-cross section X3CrNiMo13-4 steel Ni-rich Solid solution Au-18Ni braze Diffusion zone 100 µm CERNTR, 09/03/11 Au-rich Solid solution 20 µm Results • Microstructural Investigations SEM-cross section 20 µm 20 µm Crack tip 20 µm CERNTR, 09/03/11 5 µm Results •Microstructural Investigations SEM-cross section CERNTR, 09/03/11 200 µm 200 µm 100 µm 20 µm Results • Microstructural Investigations SEM-cross section Pre-damaged zones well ahead of the crack tip Crack tip 32 µm 20 µm CERNTR, 09/03/11 95 µm 20 µm Results • Fractographic Investigations SEM-cross section CERNTR, 09/03/11 200 µm 20 µm 20 µm 50 µm Results • Fractographic Investigations SEM stereo 200 µm pores 3 mm The stepped nature of the fracture pattern is clearly evident CERNTR, 09/03/11 200 µm Fractographic Investigations Brittle fracture ductile fracture transcrystalline steel Steel wire Al alloy 1018 steel BMG Cu alloy CERNTR, 09/03/11 Results • Fractographic Investigations Brittle or ductile? CERNTR, 09/03/11 Results • Fractographic Investigations 50 µm 20 µm Plastic deformation features containing ductile dimples CERNTR, 09/03/11 Discussion Damage and Fracture Behaviour of Brazed Joints Under Cyclic Loading X3CrNiMo13-4 notch Au-18Ni X3CrNiMo13-4 • After crack initiation, high stresses can lead to the formation of cavities well ahead of the crack tip. • New cavities develop and grow every loading cycle. • The fatigue crack then propagates along these predamaged zones and coalescence and final failure occurs. High Paris exponent, n, was explained by the triaxial stress state in the filler metal, which is a result of the different elastic-plastic material properties of the filler metal and the base material. CERNTR, 09/03/11 Brazing quality Defects such as incomplete gap filling, pores or cracks may be formed during brazing and they can act as stress concentration sites in the brazing zone. Under cyclic mechanical loading, fatigue cracks can initiate and propagate from these defects, leading to spontaneous failure. Therefore, defect assesment of brazed components should be considered. 200 µm CERNTR, 09/03/11 Brazing quality Brazed steel plates of different batches The addition of hydrogen to the argon allows removing the oxide film on the stainless steel surface, which is essential for filler metal wetting. BUT.... CERNTR, 09/03/11 brazed steel plates shielding gas Batch A 93 vol.-% Ar, 7 vol.-% H2 Batch B, C 93 vol.-% Ar, 7 vol.-% H2 Batch D, E 100 vol.-% H2 Batch F, G 100 vol.-% H2 Brazing quality (93 vol.-% Ar, 7 vol.-% H2) 100 µm (100 vol.-% H2) 100 µm CERNTR, 09/03/11 Materials and Method Base material and filler metals The soft martensitic stainless steel X3CrNiMo13-4 was used as base material. As filler metal, foils of the binary alloy Au-18Ni with a thickness of 100 μm were applied. Brazing and heat treatment Brazing was performed in an industrial shielding gas (93 vol.-% Ar, 7 vol.-% H2 and 100 vol.-% H2 ) furnace at a temperature of 1020°C for 20 minutes. After brazing, the specimens were tempered at 520 °C for 5.5 h in nitrogen atmosphere. Experimental procedures Fatigue tests were performed on a standard electro-mechanical and servohydrolic testing machine. Fractured specimens were investigated by SEM. Geometry of the t-joint specimen (t=16mm, W=8 mm) CERNTR, 09/03/11 standart electro-mechanical testing machine Servohydrolic testing machine Brazing quality brazing σnom = 700 MPa σnom = 650 MPa σnom = 700 MPa N = 8304 N = 11787 N = 8642 crack standart round specimen (Ø1=5 mm, Ø2=4 mm) Brazing zone ! In general, fracture occured on the base material instead of the brazing zone (100 vol.-% H2) Specimen geometry shielding gas Rm [MPa] Base material - 975±25 93 vol.-% Ar, 7 vol.-% H2 882±15.7 100 vol.-% H2 1120±4.8 100 vol.-% H2 1084±3.6 T-joint Standart round CERNTR, 09/03/11 The addition of hydrogen to the argon allows removing the oxide film on the stainless steel surface Joint strength was improved under 100% H2 atmosphere Brazing quality S-N curves T-joint-defect free-93 vol.-% Ar, 7 vol.-% H2 T-joint-defect free-100 vol.-% H2 round shape 100 vol.-% H2 1200 1100 1000 nom, max (MPa) 900 800 700 600 500 400 300 200 2 10 3 4 10 10 Nf 5 10 Nu=20 000 cycles • The only difference in between these specimens is different shielding gases. • Brazing quality was improved under 100 vol.-% H2 • Fracture occurred on the base material in specimens which were brazed under 100 vol.-% H2 CERNTR, 09/03/11 Results Fractographic Investigations- Comparison stereo SEM σnom = 400 MPa N = 5630 (93 vol.-% Ar, 7 vol.-% H2) The step fractured pattern 3 mm 200 µm Stronger bonding was obtained and better interface reaction occured under 100% H2 atmosphere σnom = 650 MPa N = 11787 The step fractured pattern could not be observed 3 mm CERNTR, 09/03/11 200 µm (100 vol.-% H2) TEŞEKKÜRLER CERNTR, 09/03/11 Additional--I Additional Table 1. Chemical composition of X3CrNiMo13-4. Element C Si Mn P S Min. Max. 0.05 0.70 1.50 0.04 0.01 Cr Mo N Ni 12.00 0.30 0.02 3.50 14.00 0.70 4.50 Table 2. Mechanical properties of X3CrNiMo 13-4 and X3CrNiMo13-4 – Au-18Ni braze joints. Rp0.2 [MPa] X3CrNiMo-13-4 Rm [MPa] 920 ± 5 975 ± 25 17.5 ± 2.5 X3CrNiMo13-4 -AuNi18 923 ± 7 976 ± 15 CERNTR, 09/03/11 A5 [%] 6 ± 0.5 τe [MPa] τmax [MPa] KIc [MPa m0.5] 620 ± 5 660 ± 10 ~270 245 ± 10 539 ± 7 49 ± 1.5 Additional--II Additional The stress intensity for mode I loading, KI, as a function of the specimen geometry and the applied load can be calculated according to; F a a K I 0.5 8 13.25 12 h Bh h 2 0.5 where F is the applied force, B and h the specimen geometry and a the total crack length measured from the load initiation point. CERNTR, 09/03/11 Results • Fatigue Crack Growth Curves 40 ΔF1, ΔF2, ΔF3=constant ΔF1 = 6.8 kN ΔK1 = 23 MPa m1/2 30 20 batch 1 batch 2 batch 3 10 a [mm] 0 40 ΔF2= 5.7 kN ΔK2= 19 MPa m1/2 30 20 batch 1 batch 2 batch 3 10 0 40 ΔF3= 4.6 kN ΔK3= 16 MPa m1/2 30 20 batch 1 batch 2 batch 3 10 0 CERNTR, 09/03/11 0 75 150 3 N (10 ) 225 300 Results • Average of Fatigue Crack Growth Curves (batch 1, 2 and 3) 35 30 a (mm) 25 20 15 10 F1=6.8 kN F2=5.7 kN F3=4.6 kN 5 0 0 50 100 150 3 N [10 ] 200 250 300 The fatigue crack growth rate of brazed components is extremely sensitive to the load range. CERNTR, 09/03/11 Additional--III Additional Nucleation based theory for ductile fracture under high triaxial stress Nucleation based theory for ductile fracture under high triaxial stress Mechanism of ductile fracture in pure silver under high-triaxial stress states under static loading (a) A few nanometer-sized cavities nucleate with small plastic strain. (b) Additional nucleation occurs with a small additional macroscopic strain. (c) At a critical stage, cavities get sufficiently close, and there is a coalescence between the small nanometer-sized cavities, and larger cavities form. (d) Additional nucleation occurs in regions near the cavities and further interlinkage occurs. (e) The interlinkage of larger cavities through continued nearby nucleation leads to final failure. M. C. Tolle, M. E. Kassner, Acta Metall. Mater. Vol 43 (1995) 287. CERNTR, 09/03/11 Additional--IV Additional Damage and Fracture Behaviour of Brazed Joints Under Cyclic Loading ΔK2 a1 Δa BULK MATERIALS ΔK1 ΔK1 < ΔK2 Δa` >> Δa X3CrNiMo13-4 BRAZED JOINTS Au-18Ni a1 Δa` ΔK1 ΔK2 X3CrNiMo13-4 CERNTR, 09/03/11 ΔK1 < ΔK2 CERNTR, 09/03/11
Benzer belgeler
PASLANMAZ ÇEL K BAZI ORTAK SINIFLARDA NOM NAL KOMPOS
Nominal bileşimler Bu tabloda verilmiştir. Bu spesifikasyon amaçlı kullanılmamalıdır. Tam bileşimi, bir referans, uygun
spesifikasyonuna yapılmalıdır.
Bir kompozisyon aralığı verilir sürece% içeriğ...
Şiirlerden oluşan e-kitap dosyasını indirmek için buraya tıklayın
Bir sanci olsun sadik yare,
Ayak uclarimdan baslayarak
Top atislari,21 pare.
Uyutuversin sevgi denen marjinal yatak,
Bereketli gozlerle kavusayim,
Ben cocuk aromali bir temasayim...
'Merhumu bir fa...