Radar Kavrami
Transkript
Radar Kavrami
5/10/2013 Ankara Radar Systems and Remote Sensing Research Group TOBB ETÜ – Turgut Özal - Bilkent TOBB UNIVERSITY OF ECONOMICS AND TECHNOLOGY DERS 2 Radar Kavramı Yrd. Doç. Dr. Sevgi Zübeyde Gürbüz ELE 465: Radar Sinyal İşleme Temelleri ELE 565: Radar ve Sonar Sistemleri Tipik bir Radar Sistemi 2 Ankara Radar Systems and Remote Sensing Research Group © SZG 2012 1 5/10/2013 Radar Konfigürasyonları 3 Monostatik Radar: Bistatik Radar: Aynı antenden sinyal alıp veiliyor. Alıcı ve verici konumları farklı Multistatik Radar: Birden fazla sayıda farklı konumları olan alıcılar ve vericiler Ankara Radar Systems and Remote Sensing Research Group © SZG 2012 Menzil Ölçümü 4 Zaman gecikmesinden menzil hesaplanır. Monostatik radar için 2 R c t R c t 2 Ankara Radar Systems and Remote Sensing Research Group © SZG 2012 2 5/10/2013 Menzil Çözünürlüğü 5 İki hedefi birbirinden ayırt edebildiğimiz maksimum menzil farkı. Yansımaların Menzil zaman farkı: çözünürlüğü: Ankara Radar Systems and Remote Sensing Research Group © SZG 2012 Açısal Çözünürlük 6 Ankara Radar Systems and Remote Sensing Research Group © SZG 2012 3 5/10/2013 Doppler Etkisi 7 Eğer radar ile hedefin arasında bir relatif hız farkı mevcut ise, Doppler effektinden dolayı gönderilen sinyalin frekansı (Ft) alınan sinyalin frekansından (Fr) farklı olacak. Doppler kaydırması: radara doğru hareket eden b,r hedefin hızı c: ışığın hızı v: 1 v c Fr Ft 1 v c Ankara Radar Systems and Remote Sensing Research Group © SZG 2012 Düşük hız için basitleştirelim... 8 Hedefin hızı ışığın hızına göre her zaman çok küçüktür, dolayısıyla binomial açılımıyla basitleştirebiliriz: 1 Fr 1 v c 1 v c Ft 1 v c 1 v c v c 2 1 2 v c 2 v c 2 F t F t Ankara Radar Systems and Remote Sensing Research Group © SZG 2012 4 5/10/2013 Düşük hız yakınsaması... 9 v/c çok küçüktür dolayısıyla Fr 1 2 v c Ft Doppler kaydırması frekansı farkı olduğu için FD 2v 2v Ft c t Hedef radara doğru hareket ediyorsa, hız pozitif olarak alınmaktadır. Ankara Radar Systems and Remote Sensing Research Group © SZG 2012 Radar radiyal hızı ölçer... 10 y Doppler etkisi hedefin radiyal hız bileşeni tarafından belirlenir v v FD 0 boresight direction = 90º FD 2v cos x radar antenna Ankara Radar Systems and Remote Sensing Research Group © SZG 2012 5 5/10/2013 Örnek Doppler Sorusu An airborne radar is traveling north at 200 m/s. A target approaches from the NE, also traveling at 200 m/s. The radar is X band (10 GHz). What is the Doppler shift of the echo? 200 m/s 11 Ankara Radar Systems and Remote Sensing Research Group © SZG 2012 Cevap: m 0 20 An airborne radar is traveling north at 200 m/s. A target approaches from the NE, also traveling at 200 m/s. The radar is X band (10 GHz). What is the Doppler shift of the echo? total closing velocity = 200 + 200cos(45°) = 341.4 m/s = c/F= 3x108/1x1010 = 0.03 m FD = 2v/ = 2(341.4)/0.03 = 22.76 kHz 200 m/s /s 12 Ankara Radar Systems and Remote Sensing Research Group © SZG 2012 6 5/10/2013 Bant Genişliğin Doppler Etkisi 13 Radar sinyalleri saf sinüslerden oluşmamakadır, sonlu bir bant genişliğine sahipler. Bant genlişliği genellikle en fazla merkez frekansın %10’u dır. Dolayısıyla önemsenmesi gereken bir etki yaratmamaktadır. Br 1 2 v c Bt Ankara Radar Systems and Remote Sensing Research Group © SZG 2012 Uygulamaya Göre Radar Türleri 14 Ankara Radar Systems and Remote Sensing Research Group © SZG 2012 7 5/10/2013 Radar Frekansları 15 Ankara Radar Systems and Remote Sensing Research Group © SZG 2012 Radar Bant Tanımları 16 Ankara Radar Systems and Remote Sensing Research Group © SZG 2012 8 5/10/2013 Darbe Şekline Göre Radar Türleri 17 Ankara Radar Systems and Remote Sensing Research Group © SZG 2012 Darbe Doppler Radar 18 Radar, periyodik olarak bir ötüş sinyali göndermektedir. Ankara Radar Systems and Remote Sensing Research Group © SZG 2012 9 5/10/2013 Darbe Tekrarlama Aralığı (PRI) 19 Ankara Radar Systems and Remote Sensing Research Group © SZG 2012 Belirsizliği Olmayan Maksimum Menzil 20 Ankara Radar Systems and Remote Sensing Research Group © SZG 2012 10 5/10/2013 Belirsizlik Olunca... 21 ...menzil hatalı algılanır... Ankara Radar Systems and Remote Sensing Research Group © SZG 2012 Minimum Algılama Menzili 22 Radar sinyali gönderirken genellikle aynı antenden herhangi bir yansımayı alamaycağından dolayı, monostatik bir radarin minimum algılama menzili: Rmin c 2 Ankara Radar Systems and Remote Sensing Research Group © SZG 2012 11 5/10/2013 Alınan Sinyal Sadece Hedeften Değil 23 Received signal is a superposition of several components: target echoes (direct and multipath) clutter surface (ground, sea) weather (clouds, rain) noise external (cosmic noise) internal (shot, thermal, etc.) jamming electromagnetic interference TV stations cell phones (EMI) Ankara Radar Systems and Remote Sensing Research Group © SZG 2012 24 RADAR ERİM DENKLEMİ Ankara Radar Systems and Remote Sensing Research Group © SZG 2012 12 5/10/2013 Radar Erim Denklemi 25 Ankara Radar Systems and Remote Sensing Research Group © SZG 2012 Radar Erim Denklemi 26 Ankara Radar Systems and Remote Sensing Research Group © SZG 2012 13 5/10/2013 Hedeften Saçılım 27 Ankara Radar Systems and Remote Sensing Research Group © SZG 2012 Antenin Alım Alanı 28 Ae is NOT the physical area of the antenna. It is a fictional area that accounts for the amount of incident power density captured by the receiving antenna. Ankara Radar Systems and Remote Sensing Research Group © SZG 2012 14 5/10/2013 Kayıplar 29 Received power calculation so far is for an ideal radar in free space with no processing to increase sensitivity Real systems suffer losses in duplexers, waveguide, power dividers, radome, etc. represented by a system loss factor Ls Also suffer atmospheric propagation losses function of range with R in meters, loss factor a in dB/km, we have La R 10a R 5000 Ankara Radar Systems and Remote Sensing Research Group © SZG 2012 Atmosferik Kayıplar 30 Low frequencies propagate further higher power devices available Source: EW and Radar Systems Engineering Handbook, Naval Air Warfare Center, Weapons Division. See http://ewhdbks.mugu.navy.mil/ High frequencies narrower beams give better resolution Ankara Radar Systems and Remote Sensing Research Group © SZG 2012 15 5/10/2013 Yağış Kayıpları Etkilemektedir 31 Source: EW and Radar Systems Engineering Handbook, Naval Air Warfare Center, Weapons Division. See http://ewhdbks.mugu.navy.mil/ Becomes very significant at MMW frequencies Limits radar range Ankara Radar Systems and Remote Sensing Research Group © SZG 2012 Noktasal Hedef İçin Radar Erim Denklemi Adding in loss factors gives: Pr 32 2 2 PG t 4 R 4 Ls La R 3 W Note for a point target, received power decreases as R4: Doubling range while maintaining received power requires 16x (12 dB) transmitted power increase, or 4x (6 dB) antenna gain increase 4x antenna area increase Ankara Radar Systems and Remote Sensing Research Group © SZG 2012 16 5/10/2013 Birimlere Dikkat! 33 Pr 2 2 PG t 4 3 R Ls La R 4 W All terms in the range equation are in linear units However, parameter values are often provided in dB units e.g. antenna gain is 30 dBm, atmospheric loss is 1 dB/km, etc. So don’t forget to do your unit conversions! Ankara Radar Systems and Remote Sensing Research Group © SZG 2012 Örnek 34 X band (10 GHz) = 3x108/10x109 = 3 cm Transmitted power Pt = 1 kW Beamwidth (azimuth and elevation) = 1º G = 26,000/(1)(1) = 26,000 = 44 dB Jumbo jet aircraft: RCS = 100 m2 Range R = 10 km What is received power Pr? 12 orders of magnitude! 1,000 20,000 0.03 100 5.18x109 Watts Pr 3 4 4 10,000 2 2 Ankara Radar Systems and Remote Sensing Research Group © SZG 2012 17 5/10/2013 Alıcı Gürültüsünü de Ekleyelim 35 Ankara Radar Systems and Remote Sensing Research Group © SZG 2012 Maksimum Sezim Erimi 36 Pt G 22 Pr Pn 4 2 R 4 Ls La ( R)kT0 BF Rmax Pt G 2 2 P 2 4 L L ( R)kT BF r s a 0 P n min 1 4 Ankara Radar Systems and Remote Sensing Research Group © SZG 2012 18 5/10/2013 Distributed Target Form of the Radar Range Equation 37 Range equation so far is for “point targets” target small compared to resolution cell We are also interested in “distributed targets” surface clutter: scattering from a homogeneous area ground, sea clutter volume clutter: scattering from a homogeneous volume weather (rain, clouds, hail, etc.) smoke, chaff, etc. Ankara Radar Systems and Remote Sensing Research Group © SZG 2012 Approach 38 Approach based on a differential scattering element differential area or volume is the scatterer have to combine contributions from each differential scattering element Still start with transmitted isotropic power density: Pt W/m 2 2 4 R Ankara Radar Systems and Remote Sensing Research Group © SZG 2012 19 5/10/2013 Transmitted Power Density 39 No longer assume single scatterer in direction of peak antenna gain; so must account for antenna gain in direction of each scatterer of interest to get transmitted power density Qt , PP t , 4 R 2 W/m 2 Assume P(0,0) = G Ankara Radar Systems and Remote Sensing Research Group © SZG 2012 Differential Received Power 40 At every (azimuth,elevation) (,), we get backscatter based on the local differential RCS again assume isotropic re-radiation weighted by the effective aperture (thus the antenna pattern) again on receive account for system and atmospheric losses again dPr 2 PP , 2 d R, , t 4 3 R 4 Ls La R Ankara Radar Systems and Remote Sensing Research Group © SZG 2012 20 5/10/2013 Total Received Power 41 Integrate over 3-D space to obtain generalized radar range equation: Pr Pt 2 4 3 Ls V P 2 , d R, , R 4 La R note that integrating power assumes noncoherent combination of scattering element contributions However, scatterers in all of 3-D space don’t contribute to receiver output at the same time Ankara Radar Systems and Remote Sensing Research Group © SZG 2012 Total Power from a Resolution Cell 42 Only scattering elements within a resolution cell radians contribute to receiver output radians at a given instant: R m Pr Pt 2 4 Ls 3 V R0 ,0 ,0 P 2 , R 4 La R d R , , V(R0,0,0) is the differential scattering volume centered at nominal coordinates (R0,0,0) Check against point scatterer equation: Ankara Radar Systems and Remote Sensing Research Group © SZG 2012 21 5/10/2013 Point Scatterer 43 Point scatterer implies differential scatterer modeled by an impulse function: d R, , D R R0 , 0 , 0 dV Results in generalized point target range equation: 2 PP 0 , 0 2 t Pr W 3 4 4 R0 Ls La R0 identical to previous version if 0 = 0 = 0 P 0 ,0 G Ankara Radar Systems and Remote Sensing Research Group © SZG 2012 44 RADAR KESİTİ RADAR CROSS SECTION (RCS) Ankara Radar Systems and Remote Sensing Research Group © SZG 2012 22 5/10/2013 RCS Tanımı 45 Suppose power density on a target is Qt W/m2; backscattered power density is Qb W/m2; and backscattered power is Pb W incident Note that Qt and Qb are the measurable quantities Pb must satisfy Qb Pb 4 R 2 W/m 2 Ankara Radar Systems and Remote Sensing Research Group © SZG 2012 RCS Tanımı 46 RCS is the fictional area that accounts for Pb: Pb Qt W 4 R 2 Qb Qt Therefore Thus RCS is the fictional area that accounts for the relative value of backscattered power density in terms of the incident power density assuming isotropic reradiation of backscatter Ankara Radar Systems and Remote Sensing Research Group © SZG 2012 23 5/10/2013 RCS Tanımı 47 RCS usually defined in terms of electric field amplitude, not power Also take limit as R to remove dependence on range then RCS depends only on scatterer characteristics E 2 4 lim R R Et b 2 2 Backscattered E-field amplitude Transmitted E-field amplitude Ankara Radar Systems and Remote Sensing Research Group © SZG 2012 Tipik RCS Değerleri 48 Target RCS, m2 RCS, dBsm Conventional unmanned winged missile 0.5 -3 Small single-engine aircraft 1 0 Small fighter aircraft or 4-passenger jet 2 3 Large fighter aircraft 6 8 Medium bomber or jet airliner 20 13 Large bomber or jet airliner 40 16 Jumbo jet 100 20 Small open boat 0.02 -17 Small pleasure boat 2 3 Ankara Radar Systems and Remote Sensing Research Group © SZG 2012 24 5/10/2013 Tipik RCS Değerleri 49 Target RCS, m2 RCS, dBsm Cabin cruiser 10 10 Large ship at zero grazing angle 10,000+ 40+ Pickup truck 200 23 Automobile 100 20 Bicycle 2 3 Human 1 0 Bird 0.01 -20 Insect 0.00001 -50 Ankara Radar Systems and Remote Sensing Research Group © SZG 2012 Bir Kürenin Radar Kesiti 50 Three regions, depending on relative size of sphere and wavelength For radius r >> r2 10 RCS Normalized to r2 (dB) 0 -10 -20 Mie aspect and (resonance) Rayleigh Optical -30 frequency Region Region Region independence makes this a 10-1 100 101 102 good calibration Sphere Circumference in Wavelengths, 2(r/) target Ankara Radar Systems and Remote Sensing Research Group © SZG 2012 25 5/10/2013 Basit Şekillerin Radar Kesiti 51 Ankara Radar Systems and Remote Sensing Research Group © SZG 2012 Gerçek Hedeflerin Radar Kesiti 52 Ankara Radar Systems and Remote Sensing Research Group © SZG 2012 26 5/10/2013 Stealth Teknoloji 53 F-117 Nighthawk İlk Uçuş: 1981 Adet: 54 B-2 Spirit Ilk Uçuş: 17 Temmuz 1989, Adet: 21 Nukleer ve Konvansiyonel Bombalar Ankara Radar Systems and Remote Sensing Research Group © SZG 2012 Yeni Nesil Stealth 54 F-35 Joint Strike Fighter (JSF) Üretim aşamasında F-22 Raptor Ilk Uçuş: 1997 Hizmete 2004 yılında girmiş Ankara Radar Systems and Remote Sensing Research Group © SZG 2012 27 5/10/2013 Chinese Stealth J-31 55 İlk Uçuş: 31 Ekim 2012 Ankara Radar Systems and Remote Sensing Research Group © SZG 2012 Stealth Yöntemler 56 Şekil yüzey olmayacak – daha çok yansıtır Veya F-117 gibi yansımları her yöne saçacak şekilde seçilmeli Kapılar ve panellerin birleştiği hatlar hafif oyulmuştur uzun çizgiler oluşturmamak için Eğimli arka kanatlar uçağın düzlükleri gizliyor Düz Ankara Radar Systems and Remote Sensing Research Group © SZG 2012 28 5/10/2013 Şekil Tasarımına Devam 57 Angular Air Intakes The air intakes on the F-117 and B-2 are carefully shielded since their large scoop-like shape tends to create what radar scientists call corner reflectors--shapes that can reflect radar much more strongly than a flat plane. Hiding the air intake in the structure works to obscure it from enemy radar, but the F-22 uses a more advanced trick where the intakes are, like the tail fins, arranged at peculiar angles that avoid forming corner reflectors. Ankara Radar Systems and Remote Sensing Research Group © SZG 2012 Stealth Yöntemler 58 Radar Emici Malzemeler Metal yerine karmaşık malzemeler Hem daha dayanıklı hem radar yansıması daha az Ankara Radar Systems and Remote Sensing Research Group © SZG 2012 29 5/10/2013 F-22 Malzeme Tasarımı 59 Materials: Carbon-fiber composites Magnetic ferrite-based substance RAM makes object appear smaller Ankara Radar Systems and Remote Sensing Research Group © SZG 2012 Problems with RAM 60 Must be defect free Risk during in-flight fueling High maintanence Affected by weather Reason for why B-2 stationed only in US Ankara Radar Systems and Remote Sensing Research Group © SZG 2012 30 5/10/2013 Infrared Signature, Supercruise Engines 61 The F-117 and B-2 hid their engine exhaust from infrared sensors (on missiles and other surveillance systems) by venting the jet plume through louvers and over the body of the aircraft. The F-22 can't do this trick, as its more powerful supersonic-capable engines make the effect harder. Instead it uses a slightly masked exhausts, and a technique called supercruise, which means it can break the sound barrier without needing the infra-red give away of reheat. This lowers its infra red signature a lot. Ankara Radar Systems and Remote Sensing Research Group © SZG 2012 J-20 versus F-22 Exhausts 62 Big cylindrical engines give off a lot of infra-red heat, this is BAD Ankara Radar Systems and Remote Sensing Research Group © SZG 2012 31 5/10/2013 Steath and Detection Range 63 Ankara Radar Systems and Remote Sensing Research Group © SZG 2012 Counterstealth 64 Ankara Radar Systems and Remote Sensing Research Group © SZG 2012 32 5/10/2013 Kaynakça 65 Mark Richards ve C.J. Baker’in sunumları Kitaplar Ankara Radar Systems and Remote Sensing Research Group © SZG 2012 33
Benzer belgeler
Line Card - ROM Elektronik
Coilcraft was founded in 1945 as a custom coil
maker for the television set manufacturers
clustered around the Chicago area. Today,
Coilcraft produces inductors for a long list of
customers in elec...
Kullanımına İzin Verilen Yem Katkı Maddeleri Kayıt Listesi
Tüm Hayvan Türleri veya
kategorileri
Tüm Hayvan Türleri veya
kategorileri
Tüm Hayvan Türleri veya
kategorileri
Tüm Hayvan Türleri veya
kategorileri
Tüm Hayvan Türleri veya
kategorileri
Tüm Hayvan T...
LigoDLB PRO
when doing antenna alignment. Supported pole diameters
are from 25 mm (0.98 inch) to 75 mm (2.95 inches). All
devices have an IP-67 enclosure and integrated surge
suppression to provide best in cla...