BALLSCREW CATALOG
Transkript
BALLSCREW CATALOG
BALLSCREW CATALOG ISO 9001 CERTIFIED PRECISION MOTION INDUSTRIES, INC. 4, LANE 241, CHUNG SHAN RD., SHEN KANG HSIANG, TAICHUNG HSIEN 429, TAIWAN TEL: +886-4-2528-2984 FAX: +886-4-2528-3392 E-mail: [email protected] http://www.pmi-amt.com The World's Best Ballscrews You Can Trust BET/MD01/06.01 1. Introduction 1 2. Features of PMI Ballscrews 3 3. Lead Accuracy and Torque 3.1 Lead accuracy 5 3.2 Preloading torque 7 3.3 Tolerances on various areas of PMI Ballscrew 8 4. Design of Screw Shaft 4.1 Production limit length of screw shaft 9 4.2 Method for mounting 10 4.3 Permissible axial load 11 4.4 Permissible rotation speed 11 4.5 Notes on screw shaft design 12 5. Design of Ball Nut 5.1 Selecting the type of Nut 5.2 Calculating the axial load 5.3 Notes on Ball Nut design 13 13 14 6. Rigidity 6.1 Axial rigidity 15 6.2 Positioning accuracy 19 7. Life 7.1 Life of Ballscrew 20 7.2 Fatigue life 20 7.3 Permissible load on grooves 21 7.4 Materials and hardness 21 7.5 Heat Treating Inspection certificate 22 7.6 Lubrication 24 7.7 Dustproof 24 8. Driving Torque 8.1 Operating torque of Ballscrew 8.2 Driving torque of motor 25 9. Selecting Correct Type of Ballscrew 27 10. Nomenclature of PMI Ballscrew 10.1 Nomenclature of external circulation Ballscrew 10.2 Nomenclature of internal circulation Ballscrew 28 11. Sample Process of Selecting the Type of Ballscrew 11.1 C utting machine 11.2 High speed porterage apparatus 11.3 Vertical porterage apparatus 12. PMI Ballscrew with Hollow Cooling System 13. PMI Precision Ground Ballscrew 13.1 External ball circulation 13.2 Internal ball circulation 13.3 High lead 14. Rolled Ballscrew 25 29 31 36 39 43 47 69 80 87 INTRODUCTION PMI was established in 1990. It has been concentrated in manufacturing of Ballscrew since then. It is PMI's important achievement as to produce high speed Ballscrews with specially designed ball recirculating tube to ensure balls smooth running during recirculation, hence to reduce noise. Also the special hollow cooling system to help Ballscrews to be easily controlled in temperature raise at low cost. In 2003, PMI established its subdivision company- Advanced Motion Technologies, Corp. (AMT) and started to produce the Linear Guideways. The superior techniques, good quality and high production efficiency have made PMI one of the leading Linear motion system manufacturers in the world. 1 PMI basic information Capital: NT$ 281,000,000. Employees: 240 persons (2005.12) Location: SHEN KANG HSIANG, TAICHUNG HSIEN, TAIWAN The history of PMI: 1990 Company was established with capital of NT$ 7,000,000. 1991 Produced the first Ballscrew (commercial grade.) 1995 Capital Increased to NT$ 40,000,000. Started to produce precision ground Ballscrew. 1996 The first high precision Japanese Mitsui Seiki grinding machine joined production line. 1997 ISO 9001 certified. 1998 Capital increased to NT$ 120,000,000. 1999 Capital increased to NT$ 180,000,000. 2000 Started to produce rolled Ballscrew. 2002 Capital increased to NT$ 225,000,000. 2003 Established subdivision company-Advance Motion Technologies Corp. (AMT) and started to produce Linear Guideways. Capital increased to NT$ 281,000,000. 2 FEATURES of BALLSCREWS (1) High reliability: PMI has accumulated many years experience in production managing. It covers the whole production sequence, from receiving the order, designing, material preparation, machining, heat treating, grinding, assembling, inspection, packaging and delivery. The systemized managing ensures high reliability of PMI Ballscrews. (2) High accuracy: PMI Ballscrews are machined, ground, assembled and Q.C. inspected under the constant temperature control (20 certificate. ) to ensure high precision of Ballscrews. Fig.2.1 accuracy inspection BALLSCREW INSPECTION CERTIFICATE Inspected by HEWLETT PACKARD Laser Measuring System Lead Error( m) Travel (mm) :Means where is Max.e and Min.e :Means where is Max.e300 and Min.e300 Cumulative representative lead T+E:-27.90 m T relative lead deviation e: 4.84 m Total Lead deviation in random 300mm e300: 4.01 m Preload torque(without wipper)Tq:3.0-3.9Kgf-cm ACCURACY GRADE: C1 REMARK: INSPECTOR: Fig.2.1 Accuracy inspection certificate. (3) Long durability: PMI Ballscrews are made of German Alloy steels, which are well quenching and tempering treated for good rigidity, along with suitable surface hardening to ensure long durability. 3 (4) High working efficiency: Balls are rotating inside the Ballscrew nut to offer high working efficiency. Comparing with the traditional ACME screws, which work by friction sliding between the nut and screw, the Ballscrews needs only 1/3 of driving torque. It is easy to transmit linear motion into rotation motion. (5) No backlash and with high rigidity: The Gothic profile is applied by PMI Ballscrews. It offers best contact between balls and the grooves. If suitable preload is exerted on Ballscrew hence to eliminate clearance between the ball nut and screw and to reduce elastic deformation, the ballscrew shall get much better rigidity and accuracy. Fig.2.2 Gothic arch thread 4 LEAD ACCURACY AND TORQUE 3.1 Lead Accuracy Travel length L + Nominal Travel 0 Specified Travel e (T+E) (T+E) a - p T Lead Deviation PMI's precision ground Ball Screws are controlled in accordance with JIS B 1192. The permissible values and each part of definitions are shown below. e E 1 Rev. e 300 300mm Actual Travel Cumulative Representative Lead Fig.3.1 Technical Terms Concerning the Lead Table3.1 Terms Cumulative representative lead. A straight line representing the tendency of the cumulative actual lead. This is obtained by least square method and measured by laser system. Permissible value. Actual value. Specified travel. This value is determined by customer and maker as it depends on different application requirements. Accumulated reference lead deviation. This is allowable deviation of specified travel. It is decided by both of the accuracy grade and effective thread length. Total relative lead variation Maximum width of variation over the travel length. Lead deviation in random 300 mm. Lead deviation in random 1 revolution 5 rad. Effective thread length (mm) Table 3.2 Accumulated reference lead deviation ( E) and total relative variation (e) GRADE OVER UP TO C0 C1 C2 C3 C4 C5 E e E e E e E e E e E e 315 4 3.5 6 5 5 7 12 8 12 12 23 18 315 400 5 3.5 7 5 7 7 13 10 14 12 25 20 400 500 6 4 8 5 8 7 15 10 16 12 27 20 500 630 6 4 9 6 9 7 16 12 18 14 30 23 630 800 7 5 10 7 10 7 18 13 20 14 35 25 800 1000 8 6 11 8 11 8 21 15 22 16 40 27 1000 1250 9 6 13 9 13 9 24 16 25 18 46 30 1250 1600 11 7 15 10 15 10 29 18 29 20 54 35 1600 2000 18 11 18 11 35 21 34 22 65 40 2000 2500 22 13 21 13 41 24 40 25 77 46 2500 3150 26 15 25 15 50 29 48 29 93 54 3150 4000 32 18 30 18 62 35 57 34 115 65 4000 5000 36 21 76 41 69 40 140 77 5000 6300 85 48 170 93 C6 C7 C10 0.025 0.050 0.120 300mm 300mm 300mm Table 3.3 Accuracy grade Variation in random 300 mm (e300) and wobble (e2 ) e 300 C0 C1 C2 C3 C4 3.5 5 3.5 5 7 8 12 C0 C1 C2 C3 C4 3 4 3 4 8 C5 C6 18 18 C7 50 25 50 6 4 6 8 6 3.2 Preloading Torque The preloading torque of the Ball Screw is controlled in accordance with JIS B 1192. Starting actual torque Reference torque Actual torque fluctuation (-) Torque fluctuation (+) (-) Mean actual torque Nut effective moving distance 0 Actual torque fluctuation (-) Nut effective moving distance Reference torque Friction torque Actual torque (-) (+) Starting actual torque Actual torque Torque fluctuation Fig.3.2 Technical terms concerning preload Preload : The goal in preload is to clear axial play and increase rigidity of Ballscrew. Reference to P.17 Preload torque : Torque needed to continuously turn a Ballscrew with preload with no other load applied to it. Reference torque : Preload torque set as a goal. Torque fluctuation : Fluctuation from a goal value of the preload torque. Defined as positive or negative in respect to the reference torque. Rating of torque fluctuation : Rating on reference torque and torque fluctuation. Actual torque : Preloaded dynamic torque measured by using an actual value of Ball Screw. Mean actual torque : In the effective thread length, the net reciprocate to measure the maximum actual torque and minimum actual torque are doing count mean. Actual torque fluctuation Rating g of Actual torque q fluctuation 7 : In the effective thread length, the net reciprocate to measure the maximum fluctuant value. : Rating on mean actual torque and actual torque fluctuation. Table3.4 Allowable range of preload torque Effective Thread Length (mm) Reference torque 4000 or less (kgf . cm) OVER OR LESS 4 2 Over 4000 but less than 10000 Slenderness ratio: 60 or less Accuracy grade Slenderness ratio: 40 or less Accuracy grade Accuracy grade C0 C1 C3 C5 C0 C1 C3 C5 C1 C3 C5 ̈́30% ̈́35% ̈́40% ̈́50% ̈́40% ̈́40% ̈́50% ̈́60% 4 6 ̈́25% ̈́30% ̈́35% ̈́40% ̈́35% ̈́35% ̈́40% ̈́45% 6 10 ̈́20% ̈́25% ̈́30% ̈́35% ̈́30% ̈́30% ̈́35% ̈́40% ̈́40% ̈́45% 10 25 ̈́15% ̈́20% ̈́25% ̈́30% ̈́25% ̈́25% ̈́30% ̈́35% ̈́35% ̈́40% 25 63 ̈́10% ̈́15% ̈́20% ̈́25% ̈́20% ̈́20% ̈́25% ̈́30% ̈́30% ̈́35% 63 100 ̈́15% ̈́15% ̈́20% ̈́20% ̈́25% ̈́25% ̈́30% Reference torque -0.5 TP = 0.05 ( tan ) × Fao×l .................................................... (3.1) Here TP : Reference torque ( kgf . cm) l : Lead : Lead angle ( kgf ) Fao : Preload ( cm ) 3.3 Tolerances on Various Areas of PMI Ballscrew 5 A-A' 4 6 2 B-B' B-B' 2 2d 0 A-A' 2d 0 2d 0 2d 0 1 1 B-B' B-B' A' A 2d 0 2d 0 3 B-B' A 1 A-A' A' B' B-B'' Those on above are samples of accuracy of tolerance on various areas of PMI Ball Screw. : Perpendicularity Ъ:Radial runout ˂˂: Parallel A : Reference Accuracy on various areas of PMI Ballscrew has to measure items: 1. Radial run-out of the circumference of the screw shaft supported portion in respect to the B-B' line. 2. Perpendicularity of the screw shaft supported portion end face to the B-B' line. 3. Radial run-out of the nut circumference in respect to the A-A' line. 4. Perpendicularity of the flange mounting surface to the A-A' line. 5. Parallelism between the nut circumference to the A-A' line. 6. Overall radial run-out to the A-A' line. Note: The mounting surface of the Ball Screw is finished to the accuracy specified in JIS B1192-1997. 8 DESIGN of SCREW SHAFT 4.1 Production Limit Length of Screw Shaft Production limit length of precision ground Ballscrew: When screw shaft O.D. is 10 mm , Limit length of Ballscrew is 400 mm. When screw shaft O.D. is 80 mm , Limit length of Ballscrew is 6000 mm. Note: Please contact with our sales people in case a very high dm . n value is required. Production limit length of rolled Ballscrew: When screw shaft O.D. is 14 mm , Limit length of Ballscrew is 1000 mm. When screw shaft O.D. is 50 mm , Limit length of Ballscrew is 3000 mm. Note: Please contact with our sales people in case a special type is required. 9 4.2 Method for Mounting The permissible axial load and permissible rotational speed vary with the screw-shaft mounting method used, so the mounting method should be determined in accordance with the operating conditions. Diagrams 4.1 through 4.3 illustrate a typical method for mounting a screw shaft. Permissible rotational speed Fixed Fixed Permissible axial load Fig.4.1 Mount method : fixed-fixed Permissible rotational speed Fixed Supported Permissible axial load Fig.4.2 Mount method : fixed-supported Permissible rotational speed Fixed Free Permissible axial load Fig.4.3 Mount method : fixed-free 10 4.3 Permissible Axial Load (1) Buckling load The Ballscrew to be used should not buckle under the maximum compressive load applied in its axial direction. The buckling load can be calculated by using equation (4.1): NEI L2 dr4 L2 (kgf ) (4.1) Here: : Safety factor ( =0.5) : Young's modulus (E=2.1×104kgf / mm2) (2) Permissible tensile-compressive load of the screw shaft Where the axial load is exerted on the Ballscrew, the screw shaft to be used should be determined in consideration of the permissible tensile-compressive load that can exert yielding stress on the screw shaft. The permissible tensile-compressive load can be calculated using equation (4.2). : Minimum geometrical moment of inertia of the dr 4 /64 mm 4 ) : Screw shaft thread minor diameter (mm) L : Distance between mounting positions (mm) screw shaft cross section (I= m , N : Coefficient depending on the mounting method supported-supported m=5.1 (N=1) fixed-supported m=10.2 (N=2) fixed-fixed m=20.3 (N=4) fixed-free m=1.3 (N=1/4) (4.2) Here: P: Permissible tensile-compressive load (kgf ) : Permissible tensile-compressive stress (kgf/ mm 2) dr: Screw-shaft thread minor diameter (mm) 4.4 Permissible Rotational Speed (1) Critical rotation speed: When the rotation speed of driving motor coincides with the natural frequency of feed system (mainly the ballscrew), the resonance of vibration shall be triggered. This rotation speed is then called critical rotation speed. It shall make bad quality machining, since there is wave shape surface on the workpiece. It may also cause damage of machine. Hence it is very important to prevent the resonance of vibration from happening. We choose 80% of critical rotation speed as allowable speed. It is shown as formula (4.3). It may be required to have additional supports in between the ends bearing supports to make the natural frequency of Ballscrew to be higher and hence to raise the allowable rotation speed. 11 EIg n= =f dr L2 107 (rpm) (4.3) Here: n : Permissible rational speed (rpm) : Safety factor ( =0.8) : Young's modulus (E=2.1×104 kgf / mm2) : Minimum geometrical moment of inertia of the screwshaft cross section (I= dr 4 /64 mm 4 ) : Screw-shaft thread minor diameter (mm) L : Distance between mounting positions (mm) g : Gravitation acceleration ( g=9.8×103 mm/s 2) : Specific gravity ( =7.8×10 -6 kgf/mm 3) : Coefficient depending on the mounting method supported-supported fixed-supported fixed-fixed fixed-free f=9.7 f=15.1 f=21.9 f=3.4 (2) dm . n Value of Ballscrew: dm is the PCD (pitch circle diameter) of screw shaft, and n is the maximum rotation speed. The dm.n value relates and affects the noise, temperature raise, working life, balls circulation of the ballscrew. In general cases, the dm.n value is limited as follows: (See Note one) Precision ground: dm . nЉ70000 Rolled : dm . nЉ50000 Note one: These dm . n values are for reference only. In fact, the dm.n value shall be decided by the ways of end supporting and the distance between them. Note two: Please contact with our sales people in case a very high dm . n value is required. With better manufacturing technology currently, the dm.n value is no longer limited as above. It is even higher than 100,000. (See Note two) 4.5 Notes on Screw shaft design (1) Through end thread: For the Ballscrews with internal ball circulation Ballnut, it is required to have at least one end with complete thread to the end of Ballscrew for Ballnut assembly to screw shaft. If it is impossible for through end thread, it is required to have at least one end with complete tread and the journal area is with diameter to be 0.2mm smaller than the diameter of thread root area. (2) Machine design for the area of Ballnut and ends area of Ballscrew: It is very important to check if there is enough space for assembly of Ballscrew onto the machine during machine design. In some cases, there is not enough space for assembly and the Ballnut has to be disassembled from the screw shaft for easier work. It may cause problems, such as the balls falling out from Ballnut, worse accuracy of squareness and roundout of Ballnut, change of preload and damage to external ball circulating tubes. In some more serious cases, the ballscrew may be damaged and not to be used. Please contact with our people if said above disassembling is required. (3) Not effective hardened area: The threads on screw shaft are hardened by induction hardening. It shall cause about 15mm at both ends of thread area are not hard enough. It is required to pay attention during machine design for the effective thread length of travel. (4) Extra support unit for long ballscrew: For a long ballscrew, the bending due to self weight might happen. It may cause radial direction load to ballscrew. The radial direction vibration during rotation might also be more serious. To prevent these problems from happening, it may be required to have extra supports for ballscrew in between the existing supports at both ends. There are two types of supports; one is movable to move along the Ballnut. The other one is fixed type; it is located in a fixed position. The Table must be designed not to hit with this support during moving. 12 DESIGN of BALLNUT 5.1 Selecting the Type of Nut (1) Type: Selecting the type of Nut, please consider the accuracy; dimension (The length of Nut; internal diameter; external diameter), preload and the date of delivery. (2) Circulation: a. External ball circulation Advantages: Lower noise due to longer ball circulation paths Offers smoother ball running. Offers better solution and quality for long lead or large diameter ballscrews. (3) Effective turns: Selecting effective turns have to consider motion; life and rigidity. Refer to the Table 5.1. (4) Flange: PMI have three standard type (A type, B type and C type) Please make selection by area space for nut installation. PMI can also make special flange as per customers' requests. (5) Oil hole: Standard nuts have oil hole. Please dimension in the diagram to manufacture. b. Internal ball circulation Advantages: Good for limited space of machine. Better structure for small lead or small diameter ballscrews. Table5.1 The character of effective turns Character External ball circulation Motion 1.5 circuit x2 row, 1.5 circuit x3 row, 2.5 circuit x1 row 1 circuit x3 row, 1 circuit x4 row Rigidity 2.5 circuit x2 row, 2.5 circuit x3 row 1 circuit x6 row 5.2 Calculating the Axial Load 5.2.1 Horizontal reciprocating moving mechanism Fa: Axial load Motion direction W2 Sliding resistance W1 Fig.5.1 Horizontal reciprocating moving mechanism 13 Internal ball circulation For reciprocal operation to move work horizontally (back and forth) in an conveyance system, the axial load (Fa) can be gotten using the following equations: Fa1=Ӵ×mg+ f + ma .............( 5.1) Constant speed (leftward) Fa2=Ӵ×mg+ f ..................... ( 5.2) Deceleration (leftward) Fa3=Ӵ×mg+ f - ma ..............( 5.3) Acceleration (rightward) Fa4=-Ӵ×mg- f - ma .............( 5.4) Constant speed (rightward) Fa5=-Ӵ×mg- f .....................( 5.5) Fa6=-Ӵ×mg- f +ma ..............( 5.6) Deceleration (rightward) Acceleration (leftward) Here: a : Acceleration V max a= t V max : Rapid feed speed t : time m : Total weight ( table weight + work piece weight ) : Sliding surface friction coefficient f : Non-load resistance 5.2.2 Vertical reciprocating moving mechanism V max : Rapid feed speed t : time Deceleration (upward) Acceleration (downward) Constant speed (downward) w Sliding resistance Here: a : Acceleration V max a= t Constant speed (upward) Fa: Axial load Deceleration (downward) Fa1=mg +Ӵ×mg+ f + ma ........( 5.7) Fa2=mg +Ӵ×mg+ f ................( 5.8) Fa3=mg +Ӵ×mg+ f - ma .........( 5.9) Fa4=mg -Ӵ×mg- f - ma ..........( 5.10) Fa5=mg -Ӵ×mg- f ..................( 5.11) Fa6=mg -Ӵ×mg- f +ma ..........( 5.12) Acceleration (upward) Motion direction For reciprocal operation to move work vertically (up and down) in an conveyance system, the axial load (Fa) can be gotten using the following equations: m : Total weight ( table weight + work piece weight ) : Sliding surface friction coefficient f : Non-load resistance Fig.5.2 Vertical reciprocating moving mechanism 5.3 Notes on Ball Nut Design Abnormal load: (torsional load or radial load) When Ballscrew takes only axial load, the best performance of it shall be found; the balls on the groove in between the Ballnut and screw shaft shall evenly take the load and rotate smoothly. In case there is torsional load or radial load on Ballnut, this kind load shall be taken unevenly by some balls only. It shall badly affect Ballscrew performance and even shorten ballscrew life. It is recommended to pay more attention to the mechanism design and Ballscrew assembly. 14 RIGIDITY 6.1 Axial Rigidity "Lost Motion" shall happen due to weakness of rigidity of screw shaft and mating components of it. In order to get good positioning accuracy, it is necessary to consider axial and torsional rigidity of screw shaft and mating components of it. 6.1.1 Axial rigidity of the feed-screw system Let the axial rigidity of a feed-screw system be K. Then, the elastic displacement in the axial direction can be obtained using equation (6.1): Fa .......................................................... = (6.1) KT 1 1 1 1 1 ......................... = + + + (6.2) KT KS KN KB KH Here : Feed-screw system elastic displacement in the axial direction ( m) Fa: Axial load ( kgf ) K T : Axial rigidity of the feed-screw system (kgf/ m) K S: Axial rigidity of the screw shaft (kgf/ m) K N : Axial rigidity of the Nut (kgf/ m) K B: Axial rigidity of the support bearing (kgf/ m) K H : Rigidity of the Nut Bracket and support bearing bracket (kgf/ m) (1) Axial rigidity of Screw shaft: K S The axial rigidity of a screw shaft varies depending on the shaft mounting method. E -3 ........................................... KS = A× (6.3) x ×10 a. For fixed-supported Here K S : Axial rigidity of Screw shaft (kgf/ m) cross-sectional area A : Screw shaft (A= dr 2/4 mm 2 ) E : Young's modulus (E=2.1×10 4 kgf/mm 2 ) x : Distance between mounting positions (mm) b. For fixed-fixed A×EL KS = ×10-3 ...........................................(6.4) x(L-x) Here K S : Axial rigidity of Screw shaft (kgf/ m) L : Distance between mounting positions (mm) Note: Which x=L/2, KS becomes the minimum and the elastic displacement in the axial direction the maximum. 15 (2) Axial rigidity of Nut: K N a. Non-preload type Computation of the elastic displacement can be using equation (6.1): 1/3 Q2 C = ( )........................(6.5) Dw Here : A constant (reference: CЍ2.4) : Contact angle of ball and grooved : Ball diameter (mm) : Load of each balls (Q=Fa/Z . sin kgf ) : Number of balls : A coefficient of accuracy and inter conformation Dimension tables include theoretical axial rigidity values when the axial load with a magnitude of 30% of the basic dynamic load rating (Ca) is exerted on the Nut. These values, don't consider the rigidity of the Nut mounting brackets. Therefore, as a general rule, take 80% of the values given in the table. When the axial load with a magnitude other than 30% of the basic dynamic load rating (Ca) is exerted on the Nut, rigidity value can be calculated using equation (6.6). 1/3 Fa ................................(6.6) KN = 0.8×K 0.3Ca Here K : Rigidity value given in the dimension table (kgf/ m) Fa : Axial load (kgf ) Ca : Basic dynamic load rating (kgf ) b. Preloaded type (3) Axial rigidity of support bearing: KB Dimension tables include theoretical axial rigidity values when the axial load with a magnitude of 10% of the basic dynamic load rating (Ca) is exerted on the Nut. These values, don't consider the rigidity of the Nut mounting brackets. Therefore, as a general rule, take 80% of the values given in the table. When the axial load with a magnitude other than 10% of the basic dynamic load rating (Ca) is exerted on the Nut, rigidity value can be calculated using equation (6.6). KN = 0.8 × K Fao ×Ca The axial rigidity of the support bearings for the Ball Screw varies by bearing type. A typical calculation for determining the axial rigidity of an angular ball bearing can be made using equation (6.8). KB = 3Fao ............................................... (6.7) ao Here ao : Displacement in the axial direction. 1/3 ao = .....................................(6.7) 2 Fao Q= . Z Here K : Rigidity value given in the dimension table (kgf/ m) Fao: Preload : A coefficient of rigidity Q2 Dw 1/3 ....................................(6.8) : Initial contact angle of the support bearing Da : Ball diameter of the support bearing Q : Load of each balls Z : Number of balls (4) Axial rigidity of nut bracket and support bearing bracket : KH Take this into consideration in the design of your system. Setting the rigidity as high as possible. 6.1.2 Torsional rigidity of the feed-screw system The factors of positions error caused by twisting are: 1. Torsional deformation of screw shaft. 2. Torsional deformation of coupling. 3. Torsional deformation of motor. But above deformations are too small in general machine (non-high speed machine), they are then ignored. 16 6.1.3 Ball Screw's preload and effect In order to get high positioning accuracy, there are two ways to reach it. One is commonly known as to clear axial play to zero. The other one is to increase Ballscrew rigidity to reduce elastic deformation while taking axial load. Both two ways are done by preloading. (1) Methods of preloading a. Double-nut method: b. Single-nut method: A spacer inserted between two nuts exerts a preload. There are two ways for it. One is illustrated in Fig.6.1. That is to use a spacer with thickness complies with required magnitude of preload. The spacer makes the gap between Nut A and B to be bigger, hence to produce a tension force on Nut A and B. It is called "extensive preload". As that illustrated on Fig. 6.3, using oversize balls onto the space between Ballnut and screw to get required preload. The balls shall make four-point contact with grooves of Ballnut and screw. Lead Lead Nut Direction of tension Nut A Direction of tension Nut B Spacer Screw Screw Fig.6.3 Four-point contact preload Fig.6.1 Extensive preload Illustrated in Fig.6.2, is using a thinner spacer. The thickness complies with required magnitude of preload. The spacer is smaller than the gap between Nut A and B, compressing Nut A and B on opposite direction to preload Ball Screws. It's called "compressive preload". Direction of compression Nut A Direction of compression Spacer There is another way for single nut Ball Screw preloading. That is to shift a very little distance, which complies with required magnitude of preload, on one lead of Ballnut as that illustrated on Fig. 6.4. to preload Ball Screw. Direction of tension Lead Direction of tension Lead + offset Lead Nut Nut B Nut Screw Screw Fig.6.2 Compressive preload 17 Fig. 6.4 Lead offset preload Nut A (2) Relation between preload force and elastic deformation Fig 6.5, Nuts A and B are assembled with preloading spacer. The preload forces on Nut A and B are Fao, but with reversed direction. The elastic deformation on both Nuts are . Spacer Fao Nut B Fao Then there is a external axial force Fa applied to Nut A as shown on Fig 6.6. The deformation of Nut A and B becomes: Fa+Fp The load in nut A and nut B are: FA=Fao+Fa-Fa'=Fa+Fp FB=Fao- Fa'=Fp Fa Fig.6.5 Double-nut positioning preload Displacement of Nut B Displacement of Nut A Axial load Fa It means Fa is offset with an amount Fa' because of the deformation of Nut B decreases. As a result, the elastic deformation of Nut A is reduced. This effect shall be continued until the deformation of Nut B becomes zero, that is, until the elastic deformation caused by the external axial force equals , and the preload force applied to Nut B is completely released. The formula related the external axial force and elastic deformation is shown as below: 2/3 Fp Fa Fao Fp 2/3 Displacement 2/3 F l = 2.8Fao Ѝ 3Fao Nut A Nut B Fig.6.6 Positioning preload diagram Shown on Fig 6.7, with the axial load to be three times as the preload, the elastic displacement for the non-preloaded ball Nut is two times as that of the preloaded Nut. Nonpreload Elastic Displacement Therefore, the preload amount of a ballscrew is recommended to set as 1/3 of its axial load. Too much preload for a Ballscrew shall cause temperature raise and badly affect its life. However, taking the life and efficiency into consideration, the maximum preload amount of a Ballscrew is commonly set to be 10% of its rated basic dynamic load. Parallel Preload 0 Fao FЍ3Fao Axial load Fa Fig.6.7 Elastic Displacement of the Ball Screw 18 6.2 Positioning Accuracy 6.2.1 Causes of error in positioning accuracy Lead error and rigidity of feed system are common causes of feed accuracy error. Other causes like thermal deformation and feed system assembly are also playing important roles in feed accuracy. 6.2.2 Selecting the lead accuracy Refer to page 5, the Specified travel line should coincide with the nominal travel line. However, in order to compensate either the elongation caused by the thermal expansion during machine operating or the shortening of length due to external load, the specified travel may be set to be positive or negative to the Nominal travel. Machine designer can show the value of Specified travel on the drawing for our manufacturing, or, we can help to decide it based on our more than ten years experience. There is another way to compensate thermal effect by "pretension" to Ballscrew. Generally, the pretension force shall elongate the Ballscrew to be equivalent to the thermal expansion at about 2-3 . 6.2.3 Considering thermal displacement If the screw-shaft temperature increases during operation, the heat elongates the screw shaft, thereby reducing the positioning accuracy. Expansion and shrinkage of a screw shaft due to heat can be calculated using equation (6.10). ......................................... (6.10) Here : Thermal displacement ( ) : Thermal-expansion coefficient ( : Screw-shaft temperature change ( : Ballscrew length (mm) ) (2) Compulsory cooling: Ballscrew with hollow cooling. Lubrication liquid or cooling air can be used to cool down external surface of Ballscrew. ) That is to say, an increase in the screw shaft temperature of 1 expands the shaft by 12 per meter. The higher the Ballscrew speed, the greater the heat generation. Thus, temperature increases reduce positioning accuracy. Where high accuracy is required, anti-temperature-elevation measures must be provided as follows: 19 (1) To control temperature: Selecting appropriate preload. Selecting correct and appropriate lubricant. Selecting larger lead for the Ballscrew and decrease the rotation speed. (3) To keep off effect upon temperature raise: Set a negative cumulative lead target value for the Ballscrew. Warm up the machine to stable machine's operating temperature. Pretension by using on Ballscrew while installing onto the machine. LIFE 7.1 Life of the Ballscrew Even though the Ballscrew has been used with correct manner, it shall naturally be worn out and can no longer be used for a specified period. Its life is defined by the period from starting use to ending use caused by nature fail. a. Fatigue life - Time period for surface flaking off happened either on balls or on thread grooves. b. Accuracy life - Time period for serious loosing of accuracy caused by wearing happened on thread groove surface, hence to make Ballscrew can no longer be used. 7.2 Fatigue Life The basic dynamic rate load (Ca) of the Ballscrew is used to calculate its fatigue life when it is operated under a load. 7.2.1 Basic dynamic rate load Ca The basic dynamic rate load (Ca) is the revolution of 106 that 90% of identical Ballscrew units in a group, when operated independently of one another under the same conditions, can achieve without developing flaking. 7.2.2 Fatigue life (1) Calculating life: There are three ways to show fatigue life: a. Total number of revolutions. b. Total operating time. c. Total travel. Ca L= Fa fw L 60 n L×l LS = 10 6 Lt = 3 10 .....................................(7.1) 6 .................................................(7.2) ..................................................(7.3) Here L : Fatigue life (total number of revolutions) L t : Fatigue life (total operating time) L s : Fatigue life (total travel) Ca : Basic dynamic rate load Fa : Axial load n : Rotation speed l : Lead f w : Load factor (refer to Table 7.1) Table7.1 Load factor f w Vibration and impact Light Medium Heavy Velocity (V) fw V<15 (m/min) 1.0~1.2 15<V<60 (m/min) 1.2~1.5 V>60 (m/min) 1.5~3.0 Too long or too short fatigue life are not suitable for Ballscrew selection. Using longer life make the Ballscrew's dimensions too large. It's an uneconomical result. Following table is a reference of the Ballscrew's fatigue life. Machine center ................................20,000 hours Production machine .........................10,000 hours Automatic controller ........ ................15,000 hours Surveying instruments .....................15,000 hours 20 (2) Mean load: When axial load changed constantly. It is required to calculate the mean axial load (Fm) and the mean rotational speed (Nm) for fatigue life. Setting axial load (Fa) as Y-axis; rotational number (n.t) as X-axis. Getting three kind curves or lines: a. Gradational variation curve (Fig.7.1) Mean load can be calculated by using _equation (7.4): 1 3 F13.n1 .t1 + F23.n2 .t2 + .....+ Fn3.nn .tn ...........................(7.4) Fm = n1 .t1 + n2 .t2 + .....+ nn .tn Mean rotational speed can be calculated by using equation (7.5): Nm = n1 .t1 + n2 .t2 + .....+ nn .tn t1 + t2 + .....+ tn Axial load (kgf ) Rotation speed (rpm) F1 F2 n1 n2 t1 t2 Fn nn tn ............................................(7.5) b. Similar straight line (Fig.7.2) When mean load variation curve like similar straight line. Mean rotational speed can be calculated using equation (7.6) Fm=1/3(Fmin + Fmax) ....................................................... (7.6) F F Fmax F1 F2 Fm Fm Fn Fmin 0 0 n 1t 1 n 2t 2 n nt n Fig. 7.1 Gradational variation curve's load Fig. 7.2 Similar straight line's load c.Sine curve there are two cases (Fig.7.3) 1. When mean load variation curve shown as the diagram below. Mean rotational speed can be calculated by using equation (7.7-1): Fm= 0.65Fmax ................................................................ (7.7-1) 2. When mean load variation curve shown as the diagram below. Mean rotational speed can be calculated by using equation (7.7-2): Fm= 0.75Fmax ............................................................... (7.7-2) F F Fmax Fmax Fm Fm 0 0 Fig. 7.3-1 Variation like Sine curve's load (1) 21 Time Ratio (%) Fig. 7.3-2 Variation like Sine curve's load (2) 7.2.3 Affection of installation errors When twist load or radial load is applied to Ballscrew, there shall be bad effect on ballscrew operation and its life, It is required to make the feed system (Ballscrew, support bearings, Guideways) to be more rigid. Hence to reduce. installation errors. Ballscrews must be meticulously installed onto the Yoke (bracket) of machine to achieve precise pallelism and squareness along moving direction of moving parts. It is very important to ensure minimum backlash happens. 7.3 Permissible Load on Thread Grooves Even though the Ballscrew is seldom operated and is operated under low velocity, it is required to make the maximum load to be far smaller than its rated basic static load when making selection. 7.3.1 Basic static rate load Co The basic static rate load is the static load with a non-varying direction and magnitude that makes the sum of the permanent deformation of the rolling elements and raceway 0.0001 times the rolling element diameter. With the Ball Screw, the basic static rate load is defined in relation to the axial load. 7.3.2 Permissible axial load F max =Co / f s Here f s: Static safety factor General industrial machine ...............................1.2~2 Machine tool .....................................................1.5~3 7.4 Material and Hardness Material and Hardness of PMI Ballscrews refer to Table 7.2 Table7.2 Material and hardness of PMI Ballscrews Denomination Material Heat treating Hardness (RHC) Precision ground 50CrMo4 QT Induction hardening 58~62 Rolled S55C Induction hardening 58~62 Nut SCM420H Carburized hardening 58~62 22 7.5 Heat Treating Inspection Certificate PRECISION MOTION INDUSTRIES, INC. REPORT FOR HEAT A TREATING A INSPECTION SPECIMEN# 8040 CUSTOMER P.O.NUMBER PRODUCT BALL SCREW 980405-1 MATERIAL A 50CrMo4 QT 980405-2 HEAT A TREAT A INDUCTION SURFACE F HARDENING ITEM INSPECTION DATA HARDNESS 58-62 HRC AT SURFACE F CASE DEPTH 2.0mm BELOW THREAD ROOT MICRO- Martensite IN SURFACE F AREA STRUCTURE Sorbite IN CORE AREA TEMPERING AT 160 DEGREES CELCIUS SPECIFICATIO A N R25-5T4-FSI-300-395-C3 R25-5T4-FSI-500-600-C3 HEAT A TREATED A ARE (SEE SKETCH) HARDNESS INSPECTED EVERY R 0.5mm(SERIES 2) HARDNESS INSPECTED EVERY R 0.5mm(SERIES 1) DEPTH Series 1 Series 2 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 717 738 735 744 741 746 733 725 276 276 262 733 730 728 728 725 712 255 267 283 HV VS. HRC HV HRC MICROSTRUCTURE X500 Series 1 Series 2 800 700 600 500 400 300 200 100 0 0 1 2 3 4 5 6 7 8 9 10 11 DEPTH(EACH SCALE=0.5mm) REMARKS 23 P PASS OR NOT Q.C.CHIEF 12 13 14 15 800 780 760 740 720 700 690 680 670 660 650 640 630 620 610 600 590 580 570 560 540 520 500 480 460 440 420 400 380 360 340 320 300 280 260 240 INSPECTOR 64.0 63.3 62.5 61.8 61.0 60.1 59.7 59.2 58.8 58.3 57.8 57.3 56.8 56.3 55.7 55.2 54.7 54.1 53.6 53.0 51.7 50.5 49.1 47.7 46.1 44.5 42.7 40.8 38.8 36.6 34.4 32.2 29.8 27.1 24.0 20.3 7.6 Lubrication Lithium base lubricants are used for Ballscrew lubrication. Their viscosity are 30~40 cst (40 ) and ISO grades of 32~100. Selecting: 1. Low temperature application: Using the lower viscosity lubricant. 2. High temperature, high load and low speed application: Using the higher viscosity lubricant. Table7.3 Checking and supply interval of lubricant Manner checking interval checking item Supply or replacing interval Automatic interval oil supply every week To supply on each check, its volume depends on oil tank Oil volume and purity capacity. Lubricating grease Within 2-3 months after starting operation of machine Foreign matter Normally supply once a year as per the result of check Oil bath everyday before operation of machine Oil surface To supply as per wasting condition 7.7 Dustproof Same as the rolling bearings, if there is the particles such as chips or water get into the ballscrew, the wearing problem shall be deteriorated. In some serious cases, ballscrew shall then be damaged. In order to prevent these problems from happening, there are wipers assembled at both ends of ball nut to scrape chips and dust. There is also the "O-Ring" at the wipers to seal the lubrication oil from leaking from ball nut. 24 DRIVING TORQUE 8.1 Operating Torque of Ballscrew (1) Normal Drive Rotational motion converted to linear motion is called normal drive. The torque required can be obtained by using equation (8.1) Ta = Fa×l ................................................(8.1) (2) Reverse operation: Linear motion converted rotational motion is called reverse operation motion. The torque required can be obtained using equation (8.2): Tb = Here Ta :Normal operation torque Fa :Axial load l :Lead :Normal efficiency Here :Reverse operation torque :Reverse efficiency .............................................(8.2) (3) Preload torque: Friction torque due to preload on the Ballscrew, The torque required can be obtained by using equation (8.3): Tp = k × Fa×l .............................................(8.3) Here Tp :Preload torque Fao:Preload k :Coefficient of preload torque see equation (3.1) 8.2 Drive Torque of Motor (1) Driving torque at constant speed: The torque can counteract load and let Ballscrew to rotate uniformly is called driving torque for constant speed. Driving torque = preloading torque + friction torque for axial load + friction torque for bearing. T1 = k × Fao×l + Fa×l + TB × N1 ............................................. (8.4) N2 Here T1 :Driving torque at constant speed Fao :Preload Fa :Axial load F :Cutting resistance W TB N1 N2 :Guiding surface friction coefficient :Total weight ( Working table weight + Working object weight ) :Friction torque for bearing :Gear one :Gear two In general, driving torque of constant speed motion shall not over than 30% of rated torque of motor. 25 Cutting direction Cutting resistance W Sliding resistance Gear two Gear one Fig.8.1 Cutting machine diagram (2) Driving torque at constant acceleration: The torque required to counteract load and to let Ballscrew to rotate at constant acceleration is driving torque at constant acceleration. T2 = T1 + J . w ........................................................ (8.5) 2 N1 × [JG2+JSH+Jw+JC ] ..................... (8.6) N2 J = JM + JG1 + Jw = W g 2 l ........................................................ (8.7) Here T2 :Driving torque at constant acceleration w :Motor's angular acceleration J :Total inertial JM :Inertial of motor JG1 :Inertial of gear one JG2 :Inertial of gear two JSH Jw JC W l g :Inertial of screw shaft :Inertial of moving parts (Ballscrew, Table) :Inertial of Coupling :Total weight :Lead :Gravitational acceleration Cylindric inertia (Ballscrew, gear) J = 4 32 g × D ×L GD 2 = 4 g × J = 8 (kgf .cm . sec )...............................(8.8) 2 D4 × L (kgf . cm ) ..........................(8.9) 2 Here :Specific gravity. (specific gravity of steel = 7.8x10-3 kgf / cm3) :Diameter of cylinder :Length of cylinder 26 SELECTING CORRECT TYPE of BALLSCREW Operating conditions Lead Accuracy P.5 1 Determine Lead accuracy Determine axial play Precision ground Ballscrew ( High precision) Rolled Ballscrew ( Low precision) Design of Screw Shaft P.9 Selecting shaft length 2 Selecting Lead 3 Selecting shaft diameter 4 Determine shaft support method Examine permissible axial load Examine permissible rotation speed Design of Ball Nut P.13 5 No No 3 ( 4 ) 3 ( 2 , 4 ) 5 ( 2 , 3 ) 1 ( 3 5 ( 2 , 3 ) 2 ( 3 , 5 ) Selecting the Nut type Calculate rigidity in shaft axial direction Calculate Nut rigidity Calculate support-bearing rigidity Rigidity P.15 No Examine the rigidity Examine the positioning accuracy Life P.20 No No Calculate the service life No Driving Torque P.25 Examine the driving torque Selecting motor Examine the lubrication and contamination protection 27 , 4 , 5 ) NOMENCLATURE OF PMI BALLSCREW 10.1 Nomenclature of External Circulation Ballscrew 4R50-10B2-2FSWC-1000-1500-0.018R Rolled (Not marked for precision ground Ballscrews) Accuracy grade Overall length Thread length Refer to P.30 for this special code W : External ball circulation (immersion type) P.48 V : External ball circulation (extrusive type) P.59 C : ACME thread K : End cap type ball recirculation S : Single nut D : Double nut O : Lead offset preloaded Ballnut F : Ballnut with face to face flanges F : Flange type R : None flange type S : Square Ballnut D : Double flange Ballnut Number of pairs of Nut on one screw shaft (Not marked for single pair of Nut, no matter if it's single nut or double nut) Quantity of circulation tubes A: 1.5 circuits Effective ball circuits B: 2.5 circuits C: 3.5 circuits Lead Screw nominal O.D. Thread direction Number of Thread (Not marked for regular single thread) Type:FDWC Type:DFWC Type:FSWC Type:FOWC Type:RSWC Type:SSWC 28 10.2 Nomenclature of Internal Circulation Ballscrew 4R32-10T4-2FSIC-1050-1500-0.018R Rolled (Not marked for precision ground Ballscrews) Accuracy grade Overall length Thread length Refer to P.30 for this special code Internal ball circulation P.70 S: D: O: F: F: R: S: D: Single nut Double nut Lead offset preloaded Ballnut Ballnut with face to face flanges Flange type None flange type Square Ballnut Double flange Ballnut Number of pairs of Nut on one screw shaft (Not marked for single pair of Nut, no matter if it's single or double nut) Quantity of circulation deflectors (or inserts) T: Number of circuit = 1 circuit Lead Screw nominal O.D. Thread direction Number of Thread (Not marked for regular single thread) Type:RDIC Type:FDIC Type:FSIC Type:DFIC 29 Table10.1 Special code C Precision ground threads E E type ball circulation tube (PMI's patent) W Rolled threads Q Self lubrication B Retainer ( Located in between balls) T Ballnut rotation ( Instead of regular screw shaft rotation type Ballscrew ) D E type tube + Self lubrication F E type tube + Retainer J E type tube + Self lubrication + Retainer 30 SAMPLE PROCESS of SELECTING the TYPE of BALLSCREW 11.1 Cutting Machine Cutting direction Cutting resistance W1 + Sliding resistance W2 Fig.11.1 Cutting machine 1. DESIGN CONDITIONS: Table weight: Work piece weight: Max. travel: Rapid feed speed: Life: Sliding surface friction coefficient: N max = 2000 rpm ̈́0.030/1000ʳmm (no load) ̈́0.005ʳmm (no load) 0.02 mm (no load) 1100 kgf 800 kgf 1000 mm 14 m/min 25000 h 0.1 Driving motor: Positioning accuracy: Repeatability accuracy: Lost motion: Axial load (kgf ) Feed speed Time Cutting resistance Sliding resistance mm/min ratio(%) 2. MECHANICAL CONDITIONS: Calculation data Kinds of operation ʳ ʳ ʳʳ Rapid feed 0 190 14000 30 Light cutting 500 190 600 55 Heavy cutting 950 190 120 15 ϨʳSliding resistance: Fa = (W1+W2) =0.1x(1100+800) =190 (kgf ) 3. Items to be decided: 1. Screw nominal O.D., Lead, Type of Nut 2. Accuracy grade 3. Thermal displacement 4. Driving motor 31 1. Selecting Screw nominal O.D., Lead, Nut (3) Selecting the type of nut (1) Lead ( l ) The highest rotation speed of motor V max 14000 lЊ = = 7 (mm) N max 2000 In case stiffness is a major concern, lost motion becomes less important, following specifications are to be selected: External circulation Ballscrew Type: FDWC ϥ Number of circuit: Bx2 or Bx3 ϥ ϥ ϨLead have to be 7 mm or more. ( As per PMI catalog: select 8 and 10 mm for further analysis) (kgf ) The value of Ca can be found as per this catalog: (2) Basic dynamic rate load (Ca) Calculation data Kinds of operation Axial load Screw nominal Feed speed l=8 l = 10 N1 = 1750 N 1 = 1400 Time O.D. (mm) Lead 8 (mm) Lead 10 (mm) Bx2 Bx2 Bx3 ratio (%) 32 3210 4660 t 1 = 30 36 3265 4930 5220 Bx3 Rapid feed F1 = 190 Light cutting F2 = 690 N2 = 75 N 2 = 60 t 2 = 55 40 3410 Heavy cutting F3 = 1140 N3 = 15 N 3 = 12 t 3 = 15 45 3650 5175 5480 7760 50 3900 5520 5790 8200 Calculation of mean load and mean rotation Mean load Mean rotation F13.n1 .t1 + F23.n2 .t2 + .....+ Fn3.nn .tn n1 .t1 + n2 .t2 + .....+ nn .tn n1 .t1 + n2 .t2 + .....+ nn .tn Nm = t1 + t2 + .....+ tn Fm = Lead l (mm) 8 10 Mean load Fm (kgf ) 330 330 Mean rotation Nm (rpm) 569 455 Calculation of basic dynamic rate load Ca Fa fw L Lt = 60N m L = _1 3 (4) Selecting screw shaft diameter Ballscrew shaft diameter can be decided by critical rotation speed of high speed feed. Assume both of the supporting ends are fixed. So the permissible rotational speed : n= EIg =f dr L2 107 2 dr Њ n×L 10-7 f L = Max. stroke + Nut length/2 + unthread area length = 1000 + 100 + 200 = 1300 (mm) Screw shaft supported method is fixed-fixedʳ 3 10 6 ʳf = 21.9 When l =8 (mm) .................... dr Њ13.5 (mm) If the highest rotational speed reaches 1750 rpmʿ screw shaft diameter at thread root area must be bigger than 14 mm. Ϩ So screw shaft diameter shall be ranged in between 20 and 50 mm. As per design Conditions: L t = 25000 (hours) f w = 1.2 When l =8 (mm) ............ CaЊ3756 (kgf ) When l =10 (mm) .................... dr Њ10.8 (mm) If the highest rotational speed reaches 1400 rpmʿ screw shaft diameter at thread root area must be bigger than 11 mm. Ϩ So screw shaft diameter shall be ranged in between 16 and 50 mm. If life > 25000 (hours) is needed, Ca must be > 3756 (kgf ) When l =10 (mm) ............. CaЊ3487 (kgf ) If life > 25000 (hours) is needed, Ca must be > 3487 (kgf ) (5) Considering rigidity By initial conditions: Lost motionΚ0.02 mm (no load) Assume total displacement of components (including screw shaft, ballnut and support bearing) of feed system is 0.016mm. Thus the unilateral elastic displacement of feed system is 32 a. Axial rigidity of the screw shaft: KS ϨWith the condition of Elastic displacement of the screw shaft: Make following selection by ignoring the bearing rigidity, economical and safety consideration: KS = A E L 10-3 x (L x ) 40-FDWC-10B2 Type of BallscrewΚ The smallest elastic displacement is in the middle of screw shaft. Screw shaft diameterΚ40 ( mm) From following diagramʳUsing xЈLS ˂2, LeadΚ Fa/2 Fa 10 ( mm) Fa/2 (6) Length of Ballscrew: L =Max. travel + Nut length + Unthreaded area length (including journal ends length) = 1000 + 180 + 100 = 1280 Ls/2 (mm) Ls=1300 KS = Ѝ1300 ( mm) Ls/2 (7) Preliminary check: a. Fatigue life 2 dr E 10-3 LS Lt = LS = Fa = Fa 2LS 103 KS dr E Ca Fm fw 3 4700 = 330 1.2 HereʳFa is sliding resistance of 190 (kgf ) The results are in the table 11.2. 1 60n 6 10 3 10 6 1 60 455 Ѝ61000 (hours) >25000 (hours) b. Axial rigidity of the nut: Kn b. Permissible rotational speed Elastic displacement of the nut: Setting the preload to be 1/3 of maximum axial load. n = f dr2 107 L = 4540 (rpm) Fao = Fmax 3 = 1140 3 =380 (kgf ) 1/ 3 Kn = 0.8 K Critical speed of screw shaft is 4540 (rpm). It is much bigger than the maximum rotational speed of design. So the Ballscrew selected is safe. Fao Ca = 0.1, then Ln = Fa Kn The results are in the table 11.2. Table11.2 ʳʳ Nut model no. 33 Screw dr Ca K 32-FDWC-10B2 27.05 4660 36-FDWC-10B2 31.05 40-FDWC-10B2 Nut Total Ks Ls Kn Ln L 125 37.1 5.1 93.0 2.0 7.1 4930 138 48.9 3.9 101.2 1.9 5.8 35.05 5220 151 62.3 3.0 108.7 1.7 4.7 45-FDWC-10B2 38.05 5480 167 73.5 2.6 118.3 1.6 4.2 50-FDWC-10B2 42.05 5790 182 89.7 2.1 126.5 1.5 3.6 (2) Driving torque: 2. Selecting lead accuracy Positioning accuracy required: ̈́0.030/1000 mm (Max. travel) Refer to table 3.2, accumulated reference lead deviation (̈́E) and total relative variation (e) Accuracy grades: C4 3. Considering thermal displacement According to the load capability of support bearings, make the specified travel (T) compensation to be a. Thermal displacement: 4L 0.047×2.1×104× ×27.052 = 4×1300 = 436 ( kgf ) Specified Travel (T) : -0.047/1300 (kgf ). -0.047 (mm) 436 4. Selecting driving motor <Required specifications> 1. The highest rotation speeds is 1500 rpm. 2. Time required to reach highest rotational speed is within 0.15 sec. (1) Inertial a. Screw shaft: ×D4×L GDS2 = = 8 380×1.0 2Ӹ =18.1 (kgf .cm) k = 0.3 Fao= Fmax/3 = 0.3× = 190×1.0 2 ×0.9 = 33.6 (kgf .cm) b. Pretension force: 8 -3 ×7.8×10 a. Preloading torque Fao×l TP = k× b. Friction torque Rapid feed: Fa×l Ta = = 12.0×10-6×3×1300 = 0.047 (mm) Stretching: works at constant speed, the torque caused by angular acceleration is then neglected. E = ̈́ 0.025/1250 ( mm) e = 0.018 ( mm) Pretension force: In this case, the time sharing of machine working at acceleration condition is limited. Assuming the machine Light cutting: 690×1.0 Tb= 2 ×0.9 = 122.1 (kgf .cm) Heavy cutting: 1140×1.0 Tc= 2 ×0.9 = 201.7 (kgf .cm) The maximum required driving torque is preloading torque plus friction torque of heavy cutting. TL=Tp+Tc = 219.8 (kgf .cm) ×44×130 = 101.9 ( kgf . cm2 ) b. Moving parts: GDw2 = W = l 2 ( 1100+800 )× 1.0 2 = 192.5 ( kgf .cm2 ) c. Coupling: 2 GDJ = 40 (kgf .cm2) d. Total of inertial: GDL2=GDS2+GDw2+GDJ2 = 334.4 (kgf .cm2) 34 (3) Selecting driving motor 5. Calculating the stress of the Ballscrew Fmax F d r2/4 A <Selecting conditions> a. The highest rotation speed: N max Њ1500 (rpm ) b. Rated torque: T M ЇT L c. Rotor inertia: J M ЊJ L б3 The specifications required for driving motor are then decided as per above conditions. Ϩ Motor specifications: W M =3.6 (KW ) Output Highest rotation speeds N max =1500 (rpm ) Rated torque T M =22.6 (N . m ) Rotor inertia 2 GD M =750 (kgf . cm 2 ) is screw shaft thread root diameter) dr=40+1.4-6.35=35.05 (mm) Tmax=TL=219.8(kgf.cm)=21540 (N.mm) (35.054) =148167 (mm4) J= = 32 32 2 = + 2 = 11.9×106 N/m2 rotation speed J × ×f T'M -TL 60 50CrMo4 steel tension strength is 1.1×108 N/m2 ˑ Yield strength is 0.9×108 N/m2 ˑ Here J: T' M T L: f: ( dr = 2.91 N/mm2 = 2.91×10 6 N/m2 (4) Check required time period for reaching highest t a= = 1140×9.8×4 ×35.052 = 11.56 N/mm2 = 1.16×10 7 N/m2 = T×r J 21540×20 = 148167 Ϩ So the Ballscrew selected is safe. Total inertia = 2×T M 6. Calculating the buckling load of the screw shaft Rotation Torque (rapid) nEI L2 Safe factor (choose 1.4 for this case) ( 274.3+750 ) × 2 ×1400 × 1.4 4 × 980 × ( 2 × 230 - (18.1+33.6 ) ) 60 = 0.13 (sec) < 0.15 (sec) ta = dr4 L2 = 20.3× 35.054 ×103 11002 =25300 (kgf )Ї Fmax (1140 kgf ) Ϩ So the Ballscrew selected is safe. Ϩ Thus above motor specifications match design needs. 11.2 High Speed Porterage Apparatus (Horizontal application) Motion direction W2 Sliding resistance W1 Fig.11.3 High speed porterage apparatus 35 1. DESIGN CONDITIONS: W 1 = 50 kgf Table weight: W 2 = 25 kgf Work piece weight: S max = 1000 mm Max. travel: V max = 14 m/min Rapid feed speed: L t = 25000 hours Life: Guiding surface friction coefficient: = 0.01 N max = 3000 rpm Driving motor: ̈́ 0.10/ at max. travel Positioning Accuracy: ̈́ 0.01 mm Repeatability Accuracy: (2) Initial selection of screw shaft length: L= Max. travel + Nut length + Unthreaded area length (including journal ends length) =1000 + 100 + 100 =1200 (mm) (3) Selecting screw shaft diameter Ballscrew shaft diameter can be decided by critical rotation speed of high speed feed. Assume the supporting ends are fixed-supported. So the permissible rotational speed : n= 2. MOTION CONDITIONS: EIg =f dr L2 107 2 dr Њ n×L 10-7 f L V (m/min) x=1000mm = Max. travel + Nut length/2 + Unthread area length = 1000 + 50 + 100 = 1150 (mm) Screw shaft support method is fixed-supported ʳf = 15.1 50 dr Њ21.9 (mm) 2 3 1 If the high rotational speed is 2500 rpm, Diameter at thread root area must be bigger than 22 mm. t4=0.3 t5=0.9 t6=0.3 Ϩ So Screw-shaft diameter shall be ranged in between 25 and 36 mm. 0 t (sec) t1=0.3 t2=0.9 t3=0.3 6 4 (4) Considering service life First to analyze Fig.11.4 (V-t diagram) The speed line is a straight one, hence it is a constant acceleration, periodically reciprocating motion. 5 1.5(s) Maximum velocity: V max = 50 (m/min) = 0.83 (m/s) Acceleration time: t 1 = 0.3 (s) 1.75(s) 1.75(s) t=3.5s / T Fig.11.4 Porterage apparatus v-t diagram 3. Items to be decided 1. Screw nominal O.D., Lead 2. Accuracy grade 3. Type of nut 4. Driving motor Deceleration time: t 3 = 0.3 (s) a. Running distance during acceleration x1 = V0 + V ×t = 2 b. Running distance during constant speed x2 = V . t = 0.83×0.9=0.75 (m) = 750 (mm) c. Running distance during deceleration x3 = V0 + V ×t = 2 d. The line segment 1. Selecting Screw nominal O.D., Lead (1) Lead ʻ l )Κ The highest rotation speed of motor V max 50000 = = 17 (mm) 3000 N max ϨLead have to be 18 mm or more. lЊ 0+0.83 ×0.3= 0.125 (m) =125 (mm) 2 0.83+0 ×0.3= 0.125 (m) =125 (mm) 2 1 Vmax = 0.833 = 2.8 (m/s 2) t1 0.3 F1 = (W1 + W2 )×g + (W1 +W2 )×a1 a1 = = 0.01×(50+25)×9.8+(50+25)×2.8 = 217 (N) N1 = nmax 2 = 2500 2 = 1250 (rpm) ( As per PMI catalog : select 8 and 10 mm for further analysis) If lead is 20 mm, the highest rapid feed speed 50 m/min shall be reached as long as the motor rotates at 2500 rpm. 36 e. The line segment 2 3. Selecting Ballscrew type F2 = f = (W1+W2)×g = 0.01× (50 + 25)× 9.8 = 7.35 (N ) N2 = 2500 (rpm) Considering operation conditions, effective turns of A1 is selected. Selecting following type: R25-20A1-FSWE-1000-1160-0.018 Screw-shaft support method is fixed-supported f. The line segment 3 F3 = (W1+W2)×g + (W1+W2)×a3 = 0.01×(50+25)×9.8+(50+25)×(-2.8) = -203 (N) N3 = nmax 2 = 2500/2 = 1250 (rpm) 4. Selecting driving motor < Required specifications> Whence the relationship between the applied axial load, running distance, time and mean rotation can be as follows: 2. Time required to reach highest rotational speed is within 0.30 sec. (1) Inertial a. Screw shaft: Axial load Running distance Time 217 125 0.3 1250 JS H = 2. Constant speed forward 7.35 750 0.9 2500 = 3. Deceleration forward -203 125 0.3 1250 4. Acceleration returning -217 125 0.3 1250 -7.35 750 0.9 2500 203 125 0.3 1250 Motion 1. Acceleration forward 5. Constant speed returning 6. Deceleration returning Mean rotation 1. The highest rotation speed of 3000 (rpm). g. Calculation of mean load and mean rotation: _1 3 F13.n1 .t1 + F23.n2 .t2 + .....+ Fn3.nn .tn Fm = n1 .t1 + n2 .t2 + .....+ nn .tn 3 = 3 3 217 ×1250×0.6+7.35 ×2500×1.8+203 ×1250×0.6 1250×0.6+2500×1.8+1250×0.6 = 132.4 ( N ) Nm = = n1 .t1 + n2 .t2 + .....+ nn .tn t1 + t2 + .....+ tn 1250×0.6+2500×1.8+1250×0.6 3.5 = 1714 (rpm) h. Calculation of life = Ca 1 × ×10 6 60N Fm × fw m 1050×9.8 132.4×2.5 × 1 ×106 60×1714 = 292000 (hours) Њ 25000 (hours) ϨAbove conforms design requirements. 2. Selecting accuracy grade Positioning accuracy of ̈́0.01/1000 mm(Max. travel) From table 3.2 Accuracy grade: C5 E = ̈́0.040/1000 e = 0.027 37 Jw = W l g 2 2 25+50 2 × 980 2 2 = 0.0078 (kgf . cm . sec 2) c. Coupling: J C = 0.0005 (kgf . cm . sec 2 ) d. Total of Inertial: JL = Jsh + Jw + JC = 0.012 (kgf . cm . sec 2 ) (2) Driving torque a. During constant speed: F ×l T1 = 2 = 7.35×2 2×0.9 2 × = 2.6ʳЍ3.00 (N . cm) b. During acceleration 3 Lt = 4 ×2.54×120 32×980 = 0.0037 (kgf . cm . sec 2 ) b. Moving parts: = _1 3 ×D ×L 32g -3 ×7.8×10 T2 = T 1 + J w JM = 0.01 (kgf . cm . sec 2 n 60t1 2 ×2500 = 3+(0.009+0.01)×9.8× 60×0.3 = 166 (N . cm) = T1 + (JL + JM )× c. During deceleration: T3 = T1 - J w 2 n 60t3 2 ×2500 = 3-(0.009+0.01)×9.8× 60×0.3 = -160 (N . cm) = T1 - (JL + JM )× 2 ) (3) Selecting driving motor <Selecting conditions> 1. The highest rotation speed: N max Њ3000 (rpm) 2. Rated torque -------T M ЇT L 3. Rotor inertia -------J M ЊJ L б3 The specifications required for driving motor are then decided as per above conditions. Ϩ Motor specifications Output W M =400 (W ) Highest rotation speeds Rated torque N max =3000 (rpm ) T M =1.27 (N . m ) Rotor inertia J M =0.01 (kgf . cm . sec 2 ) (4) Effective torque: Trms = 2 2 2 1660 ×12.5 24827 = 0.84 N/mm2 = 8.4×105 N/m2 = Tmax=TL=166 (N.cm)=1660 (N.mm) (22.4254) =24827 (mm4) J= = 32 32 50CrMo4 steel tension strength is 1.1×108 N/m2 ˑ 166 ×06+3 ×1.8+160 ×0.6 3.5 = 95 (N . cm ) < 127 (N . cm ) ϨʳIt conforms to design requirements. = 2 T = × J = = 0.11×108 N/m2 T2 ×ta+T1 ×tb+T3 ×t t 2 5. Calculating the stress of the Ballscrew Fmax = F= A d r 2/4 = 217×4 2 dr =25+0.3-3.175=22.425(mm) ×22.425 (dr is screw shaft thread minor diameter) 2 = 0.55 N/mm = 5.5×105 N/m2 2 (5) T ime required to reach highest rotational speed. ta = ' J × 2 n × f TM -TL 60 Here: J : Total inertia T M ' = 2×T M TL : Rotation Torque (rapid) f : Safe factor (choose 1.4 for this case) Yield strength is 0.9×108 N/m2 ˑ Ϩ So the Ballscrew selected is safe. 6. Calculating the buckling load of the screw shaft nEI dr4 2 L L2 4 22.425 = 10.2× ×103 11602 = 1917 (kgf ) Ї Fmax (22.14 kgf ) Ϩ So the Ballscrew selected is safe. ta = 0.009+0.01 × 9.8 × 2 ×2500 ×1.4 2×127×3 60 = 0.27 (s )< 0.3 (s ) ϨIt conforms to design requirements. 38 w Sliding resistance W 1 = 300 kgf W 2 = 50 kgf S max = 1500 mm V max = 15 m/min L t = 20000 hours = 0.01 N max = 1500 rpm ̈́0.8/1500 mm ̈́0.3 mm FaΚ Axial load 1. DESIGN CONDITIONS: Table weight: Work piece weight: Max. travel: Rapid feed speed: Life: Guiding surface friction coefficient: Driving motor: Positioning accuracy: Repeatability accuracy: Motion direction 11.3 Vertical Porterage Apparatus Fig.11.5 Vertical porterage apparatus 1. Selecting accuracy grades 2. MOTION CONDITIONS: As per design condition: positioning accuracy required: 0.8/1500 mm. ± 0.8 = ± 0.16 1500 300 V(m/min) s1=300mm 15 t1=0.2 t2=1.0 t3=0.2 1 s2=1500mm 4 Refer to table 3.2, accumulated reference lead deviation (̈́E) and total relative variation (e) 6 5 3 t(sec) t4=0.2 t5=5.8 t6=0.2 2 Accuracy grades C10 E=̈́0.12/300 mm. Ϩ So the porterage apparatus can use Rolled Ballscrew. 2. Selecting screw nominal O.D., Lead t1 t2 t3 t4 t5 t6 5(sec) 5(sec)X5 times 15(sec) t=40s/ T Fig.11.6 Porterage apparatus' v-t diagram (1) Lead ( l ) The highest rotation speed of motor V max 15000 = = 10 (mm) N max 1500 ϨLead have to be 10 mm or more. lЊ ( As per PMI catalog : select 10 mm for further analysis) 3. Items to be decided: 1. Accuracy grade 2. Screw nominal O.D., Lead 3. Driving motor (2) Permissible axial load Setting up is positive. a. Force during acceleration (downward) 1 Vmax 15000 2 2 = t1 60×0.2 =1250 (mm/s ) =1.25 (m/s ) f = (W 1 +W 2 )×g= 0.01(300+500)×9.8 (Friction) a1 = = 35 (N ) F=maШF 1 =(W 1+W 2 )×g-f-(W 1 +W 2 )×a 1 = 2958 (N ) 39 b. Force during constant speed (downward) a=0ШF 2 =(W 1 +W 2 )×g-f = 3395 (N) 2 c. Force during deceleration (downward) 3 F=maШF 3=(W 1 +W 2 )×g-f+(W 1 +W 2 )×a 3 = 3833 (N) (6) Calculating of basic dynamic rate load: Axial load Motion 5 F 1 =2958 Constant speed (down) F 2 =3395 N 2 =1500 t 2 =5.0 Deceleration (down) F 3 =3833 N 3 =750 t 3 =1.0 Acceleration (up) F 4 =3903 N 4 =750 t 4 =0.2 Constant speed (up) F 5 =3465 N 5 =1500 t 5 =5.8 Deceleration (up) F 6 =3028 N 6 =750 t 6 =0.2 F13.n1 .t1 + F23.n2 .t2 + .....+ Fn3.nn .tn Fm = n1 .t1 + n2 .t2 + .....+ nn .tn Mean load Mean rotation P×L2 dr = m ×10-3 dr4 L2 1/4 3 Lt = 1/4 = 19 (mm) Screw shaft diameter at thread root area must be bigger than 19 mm. ϨSo screw shaft diameter shall be ranged in between 25 and 50 mm. (4) The length of screw shaft L= Max. travel + Nut length + Unthreaded area length (including journal ends length) =1500 + 100 + 200 =1800 (mm) Slenderness ratio: 60 or less L 1800 = = 30 (mm) 60 60 ϨSo screw shaft diameter shall be ranged in between 32 and 50 mm. (5) Permissible rotational speed: Assume the supporting ends are fixed-supported So the permissible rotational speed: n= = 3436 (N) n1 .t1 + n2 .t2 + .....+ nn .tn Nm = t1 + t2 + .....+ tn As per design condition: Life required is 20000 hours, Let fw=1.2 3903×18002 = ×10-3 9.8×10.2 DЊ _1 3 = 900 (rpm) (3) Buckling load: nEI L2 t 1 =1.0 Acceleration (down) f. Force during deceleration (upward) 6 F=maШF 6=(W 1 +W 2 )×g+f-(W 1 +W 2 )×a 6 = 3028 (N) So Fa max =F 4 = 3903 (N) Time (sec) (rpm) N 1 =750 d. Force during acceleration (upward) 4 F=maШF 4=(W 1 +W 2 )×g-f+(W 1 +W 2 )×a 4 = 3903 (N) e. Force during constant speed (upward) a=0ШF 5 =(W 1 +W 2 )×g+f = 3465 (N) Mean rotation (N) EIg =f dr L2 107 Ca 1 × ×106 60Nm Fm × fw Ca=(60Nm×Lt)1/3×Fm×fw×10-2 = 42303 (N) = 4320 (kgf ) ϨIf the life required is > 20000 (hours), Ca has to be > 4320 (kgf ) (7) Calculating basic static rate load: Co=F max ×f s Let fS = 2.0 = 7806 (N) = 800 (kgf ) Co has to be > 800 (kgf ) Selection is made as follows: ϨType of the Ballscrew: 40-FSWW-10B2 Screw shaft diameter: 40 (mm) Lead: 10 (mm) Basic dynamic rate load: 5200 (kgf ) 2 dr Њ n×L 10-7 ( f=15.1, L=1800 ) f Њ 30 If the highest rotational speed reaches 1500 rpm, screw shaft thread diameter at thread root area must be bigger than 30 mm. ϨSo screw shaft diameter shall be ranged in between 36 and 50 mm. 40 3. Selecting driving motor <Required specifications> 1. The highest rotation speeds is 1500 rpm. 2. Time required to reach highest rotational speed is within 0.15 sec. = ×D ×L 8 -3 ×7.8×10 4 8 4. Total torque: a. Acceleration (downward): Tk1 = T1+T7 = 520+585 = 1105 b. Constant speed (downward): Tt1 = T2 = 600 (N.cm) c. Deceleration (downward): Tg1 = T3+T7 = 680+585 = 1265 d. Acceleration (upward): Tk2 = T4+T7 = 690+585 = 1275 e. Constant speed (upward): Tt2 = T5 = 610 (N.cm) f. Deceleration (upward): Tg2 = T6+T7 = 540+585 = 1125 ϨTmax = Tk2 = 1275 (N.cm) ×44×180 = 141.1 ( kgf . cm2 ) b. Moving parts: GDw2 = W = 2 × 1500 (178 + 120 ) × 4 × 980 60 × 0.2 = 59.7 (kgf .cm) = 585 (N.cm) = (1) Inertial a. Screw shaft: GDS2 = 3. Torque required for acceleration: T7 = J.w GDM = 120 (kgf .cm2) = (JL + JM )× 60t1 l 2 ( 300+50 )× 1.0 2 = 35.5 ( kgf .cm2 ) c. Coupling: 2 GDJ =1.0 (kgf . cm 2 ) d. Total of Inertial: 2 2 2 2 GDL =GDS +GDw +GDJ = 178 (kgf .cm2) (2) Driving torque: 1. Friction torque (N.cm) (N.cm) (N.cm) (3) Selecting driving motor <Selecting conditions> a. The highest rotation speeds: NmaxЊ1500 ( rpm) a. Acceleration (downward): 1 2950×1.0 T1 = Fa×l = (N.cm) = 520 (N . cm) b. Rated torque -------TMЇTL c. Rotor inertia-------JMЊJLб3 b. Constant speed (downward): 2 T2 = Fa×l = 3395×1.0 = 600 (N . cm) The specifications required for driving motor are then decided as per above conditions ϨMotor specifications Output d. Acceleration (upward): 4 T4 = 690 (N.cm) e. Constant speed (upward): T5 = 610 (N.cm) f. Deceleration (upward): 6 T6 = 540 (N.cm) Rotor inertia 2. Preloading torque TP = k × Fao×l . . . Fao = 0 ... T = 0 P 41 WM=2000 (W ) c. Deceleration (downward): 3 Fa×l 3833×1.0 T3 = = 680 (N . cm) = 5 Highest rotation speeds Nmax=1500 ( rpm) TM=13 (N . m) Rated torque GD M=120 ( kgf .cm2) 2 (4) Effective torque: Trms = Tk21 × t 1 + T t 21 × t 2 + T g21 × t 3 + T k22 × t 4 + T t 22 × t 5 + T g22 × t 6 t 2 2 2 2 2 2 = 1105 ×1.0 + 600 × 5 + 1265 ×1 + 1275 × 0.2 + 610 × 5.8 + 1125 × 0.2 20 = 606 (N.cm) < 1300 (N.cm) ϨIt conforms to design requirements. 4. Calculating the stress of the Ballscrew Fmax F d r2/4 A (dr is screw shaft thread root diameter) = 3903×9.8×4 dr=40+1.4-6.35=35.05 (mm) ×35.052 = 4.04 N/mm2 6 = 4.04×10 N/m2 = T×r J 12750×20 = 148167 = 1.72 N/mm2 6 = 1.72×10 N/m2 Tmax=TL=1275 (N.cm)=12750 (N.mm) (35.054) =148167 (mm4) J= = 32 32 2 = + 2 = 4.39×10 6 N/m2 50CrMo4 steel tension strength is 1.1×10 8 N/m 2 > Yield strength is 0.9×10 8 N/m 2 > Ϩ So the Ballscrew selected is safe. 5. Calculating the buckling load of the screw shaft nEI L2 dr4 L2 = 10.2× 35.054 3 ×10 18002 = 4751 (kgf )ЇFmax (398 kgf ) Ϩ So the Ballscrew selected is safe. 42 BALLSCREW with HOLLOW COOLING SYSTEM PMI's design of hollow cooling system is especially good for high speed Ballscrews. It shall well dissipate heat generated by friction between balls and grooves during Ballscrew running, and then to minimize thermal deformation as to ensure positioning accuracy. 12.1 Introduction to Hollow Cooling System The hollow cooling system is designed by PMI. (Fig.12.1) It uses a coolant pipe through the hollow hole of Ballscrew. The hollow hole is through all of the Ballscrew, and one end is clogged with the oil seal by PMI patent. The coolant is pumped into coolant pipe and flow to the end of coolant pipe. Coolant then flow reversely along the hollow hole back into the coolant collector. It can cool down the Ballscrew. The coolant is then sucked back to the cooling unit to drop coolant temperature and pumped again to the coolant pipe to complete circulation. coolant out coolant pipe coolant reverse coolant in Fig.12.1 Hollow cooling diagram 12.2 Patent 12.2.1 Hollow cooling system 1. Taiwan patent No.182845. 2. Features: (i) Well and effectively control Ballscrew thermal expansion. (ii) Simple design and structure to save cost. Fig.12.2 Hollow cooling system 43 12.2.2 Cooling entrance 1. Taiwan patent No.163206. Fig.12.3 Cooling entrance 12.2.3 End sealing 12.2.5 Thermal control system test unit Taiwan patent No.107485. 1. Patent pending 2. Features: Easy for installing, disassembling and maintenance. 12.2.4 Coolant pipe support installation 1. Patent pending 2. Supported the coolant pipe. Let it don't touch Ballscrew. Fig.12.5 Thermal control system test unit Fig 12.4 End sealing structure 12.3 Thermal control experiment 12.3.1 Test condition Screw nominal O.D. : Lead: Rotation speed: Speed: Load: Slideways: 12.3.2 The results of experiment 40 mm 10 mm 1000 rpm 10 m/min 400 Kgf Hardened ways As per the results by experiment, PMI's design of hollow cooling system proves an effective way for controlling the thermal expansion on the Ballscrew. Hence it is a very helpful design to high precision machine tools. 35 30 No cooling 25 Hollow cooling 20 15 10 5 0 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 (min) Fig.12.6The rule of experiment 44 Precision Ground BallScrew 45 13.1 External Ball Circulation Nuts Features: Lower noise due to longer ball circulation paths. Offers smoother ball running. Offers better solution and quality for long lead or large diameter ballscrews. Type: There are two types of Ballnut of the external circulation Ball Screws. They are "immersion type" of Fig.13.1. and "extrusive type" of Fig. 13.2. The "immersion type" means the ball circulation tubes are inside the circular surface of Ballnut as shown on specifications of this catalogue are of "immersion type". In some cases, as per designs on customer's drawings, there are smaller outer diameters ballnuts required. Then the ball circulation tubes shall extrude out of Ballnut circular surface. Fig.13.1 Immersion type 47 Fig.13.2 Extrusive type FSWC L Q(oil hole) T Q(oil hole) S Y X Z W W G H EFFECTIVE SCREW SIZE O.D. 10 BALL LEAD DIA. W TURNS UNIT: mm BASIC RATE LOAD (Kgf ) Dynamic Static circuit xrow (1x10 REV.) Ca Co 3 2.000 2.5x1 250 430 4 2.000 2.5x1 250 430 5 2.000 2.5x1 250 430 12 4 2.381 2.5x1 380 640 5 2.381 2.5x1 380 640 14 4 2.381 2.5x1 410 750 5 3.175 2.5x1 675 1145 4 2.381 2.5x1 420 800 15 16 NUT FLANGE FIT BOLT OIL HOLE STIFFNESS 6 Dg6 L A T W G H S X Y Z Q 37 26 40 8 46 10 36 14 28 10 4.5 8 4.5 M6x1P 42 30 34 40 42 40 42 50 10 40 16 32 10 4.5 8 4.5 M6x1P 57 11 45 17 34 10 5.5 9.5 5.5 M6x1P 40 12 14 16 15 5 3.175 2.5x1 680 1210 3.175 2.5x1 680 1210 1.5x2 490 1010 4 2.381 2.5x1 430 850 3.5x1 560 1180 42 1.5x2 805 1525 45 20 2.5x1 690 1270 41 17 2.5x2 1250 2540 3.5x1 920 1780 1.5x2 805 1525 2.5x1 690 1270 3.5x1 920 1780 2.5x1 690 1270 1.5x2 530 1270 44 2.5x1 480 1060 40 2.5x2 820 2120 3.5x1 600 1480 43 10 26 1.5x2 965 2070 45 15 25 3.175 6 3.175 10 3.175 4 5 2.381 3.175 20 6 8 3.969 3.969 42 12 10 5 34 9 9 57 10 45 17 34 10 5.5 9.5 5.5 M6x1P 55 44 34 40 41 56 19 57 11 45 17 34 10 5.5 9.5 5.5 M6x1P 63 11 51 21 42 15 5.5 9.5 5.5 M6x1P 20 63 11 51 21 42 15 5.5 9.5 5.5 M6x1P 63 11 51 21 42 15 5.5 9.5 5.5 M6x1P 52 40 40 56 50 17 21 10 63.5 11 51 21 42 15 5.5 9.5 5.5 M6x1P 19 37 2.5x1 830 1730 1510 3460 3.5x1 1110 2420 1.5x2 1285 2545 2.5x1 1100 2120 3.5x1 1470 2970 56 15 30 1.5x2 1285 2545 61 15 26 2.5x1 1100 2120 3.5x1 1470 2970 56 67 11 55 26 52 46 48 49 54 62 15 5.5 9.5 5.5 M6x1P 15 56 48 10 19 22 2.5x2 44 42 33 24 52 44 16 22 46 40 16 16 75 11 13 59 61 27 27 54 54 10 5.5 9.5 5.5 15 6.6 11 6.5 15 41 29 15 71 21 26 M6x1P M6x1P 21 21 30 48 FSWC L Q(oil hole) Q(oil hole) T Q(oil hole) S Y X Z W W G H EFFECTIVE SCREW SIZE O.D. LEAD 4 5 25 6 8 BALL DIA. 2.381 3.175 3.969 4.762 10 4.762 12 3.969 5 6 3.175 3.969 28 8 10 49 4.762 4.762 W TURNS UNIT: mm BASIC RATE LOAD (Kgf ) Dynamic Static (1x106 REV.) NUT Dg6 FLANGE L A T W FIT G H S BOLT X Y OIL HOLE Z STIFFNESS Q circuit xrow Ca Co 1.5x2 600 1630 2.5x1 510 1355 2.5x2 930 2710 3.5x1 680 1900 42 31 1.5x2 1065 2575 45 30 44 46 40 49 69 11 57 26 52 15 5.5 9.5 5.5 M6x1P 23 44 2.5x1 910 2150 2.5x2 1650 4300 3.5x1 1210 3010 46 35 31 50 41 27 56 1.5x2 1420 3215 56 2.5x1 1210 2680 49 2.5x2 2190 5360 3.5x1 1610 3750 1.5x2 1820 3840 2.5x1 1560 3200 3.5x1 2080 4480 1.5x2 1820 3840 2.5x1 1560 3200 3.5x1 2080 4480 2.5x1 1210 2680 53 62 73 76 11 11 61 64 28 29 56 58 15 5.5 9.5 5.5 15 5.5 9.5 5.5 M6x1P M6x1P 56 61 13 71 32 64 15 6.6 11 6.5 M6x1P 60 26 31 85 15 71 32 64 15 6.6 11 6.5 M6x1P 76 11 64 32 64 15 5.5 9.5 5.5 M6x1P 75 53 50 37 71 65 26 31 85 66 58 48 35 61 58 25 26 37 26 1.5x2 1110 2960 46 2.5x1 950 2470 42 2.5x2 1720 4940 3.5x1 1270 3460 47 38 1.5x2 1480 3605 57 33 2.5x1 1270 3000 2.5x2 2300 6000 3.5x1 1690 4200 57 39 1.5x2 1935 4325 65 35 2.5x1 1650 3600 3.5x1 2200 5040 68 1.5x2 1935 4325 74 2.5x1 1650 3600 3.5x1 2200 5040 55 55 60 60 56 50 63 63 67 77 33 83 83 93 12 12 15 69 69 76 31 31 36 62 62 72 15 6.6 11 6.5 15 6.6 11 6.5 15 9 14 8.5 M8x1P M8x1P M8x1P 27 53 28 54 29 40 35 93 15 76 36 72 15 9 14 8.5 M8x1P 29 40 FSWC L Q(oil hole) T Q(oil hole) S Y X Z W W G H EFFECTIVE SCREW SIZE O.D. BALL LEAD DIA. 4 5 6 2.381 3.175 3.969 32 8 10 12 5 6 4.762 6.35 6.35 3.175 3.969 36 10 12 6.35 6.35 W TURNS UNIT: mm BASIC RATE LOAD (Kgf ) Dynamic Static NUT FLANGE FIT BOLT OIL HOLE STIFFNESS 6 circuit xrow (1x10 REV.) Dg6 L A T W G H S X Y Z Q 81 12 67 32 64 15 6.6 11 6.5 M6x1P Ca Co 2.5x1 565 1750 2.5x2 1020 3500 1.5x2 1180 3410 2.5x1 1010 2840 2.5x2 1830 5680 2.5x3 2590 8520 72 3.5x1 1350 3980 47 42 1.5x2 1560 4135 57 37 2.5x1 1330 3450 2.5x2 2410 6900 3.5x1 1770 4830 57 43 1.5x2 2010 5010 64 38 2.5x1 1720 4180 2.5x2 3120 8360 3.5x1 2300 5850 68 44 1.5x2 3000 6530 78 40 2.5x1 2570 5440 68 2.5x2 4660 10880 3.5x1 3430 7620 78 46 40 54 40 50 47 62 66 74 57 45 63 63 80 97 53 36 43 58 27 31 85 12 71 32 64 15 6.6 11 6.5 M8x1P 59 87 88 98 12 15 108 15 75 82 90 34 38 41 68 76 82 15 6.6 11 6.5 M8x1P 15 15 9 9 14 8.5 M8x1P 14 8.5 M8x1P 31 60 32 62 34 65 1.5x2 3000 6530 88 2.5x1 2570 5440 77 2.5x2 4660 10880 3.5x1 3430 7620 91 46 1.5x2 1240 3850 50 40 2.5x2 1920 6420 2.5x3 2720 9630 3.5x1 1410 4490 50 46 2.5x2 2600 7900 66 67 2.5x3 3680 11850 74 65 65 110 60 75 84 1.5x2 3180 7410 81 2.5x1 2720 6180 71 2.5x2 4930 12360 3.5x1 3630 8650 2.5x1 2720 6180 2.5x2 4930 12360 3.5x1 3630 8650 75 103 108 18 98 98 15 15 90 82 82 41 38 38 82 76 76 15 15 15 9 9 9 14 8.5 M8x1P 14 8.5 M8x1P 14 8.5 M8x1P 118 18 98 45 90 15 11 17.5 11 M8x1P 65 96 98 37 71 51 77 110 118 18 91 65 44 81 75 34 37 98 45 90 15 11 17.5 11 M8x1P 71 51 50 FSWC L Q(oil hole) Q(oil hole) T Q(oil hole) S Y X Z W W G H EFFECTIVE SCREW SIZE O.D. LEAD 5 6 40 8 10 12 10 BALL DIA. 3.175 3.969 4.762 6.35 6.35 6.35 45 12 51 7.144 W TURNS UNIT: mm BASIC RATE LOAD (Kgf ) Dynamic Static (1x106 REV.) NUT Dg6 FLANGE L A T W FIT G H S BOLT X Y OIL HOLE STIFFNESS Z Q circuit xrow Ca Co 1.5x2 1280 4275 2.5x1 1090 3560 2.5x2 1980 7120 2.5x3 2800 10680 75 103 3.5x1 1450 4980 50 50 1.5x2 1750 5300 60 45 2.5x1 1500 4420 53 37 2.5x2 2720 8840 2.5x3 3850 13260 84 107 3.5x1 2000 6190 60 52 46 50 43 48 67 70 36 60 101 15 66 104 15 83 86 39 40 78 80 15 15 9 9 14 8.5 M8x1P 14 8.5 PT1/8" 70 73 1.5x2 2220 6320 64 2.5x1 1900 5270 63 2.5x2 3450 10540 3.5x1 2540 7380 68 53 1.5x2 3370 8335 81 48 2.5x1 2880 6950 2.5x2 5220 13900 3.5x1 3840 9730 81 55 2.5x1 2880 6950 77 40 2.5x2 5220 13900 3.5x1 3840 9730 2.5x2 5480 15700 2.5x3 7760 23550 2.5x1 3550 8950 2.5x2 6440 17900 2.5x3 9120 26850 74 82 86 83 71 103 108 15 90 41 124 18 102 47 112 128 18 106 48 82 94 96 15 20 20 9 14 85 PT1/8" 11 17.5 11 PT1/8" 11 17.5 11 PT1/8" 91 88 101 131 132 18 110 50 100 20 112 132 18 110 50 100 20 148 74 40 78 78 55 11 17.5 11 PT1/8" 84 90 38 85 126 45 11 17.5 11 PT1/8" 87 128 FSWC L Q(oil hole) T Q(oil hole) S Y X Z W W G H EFFECTIVE SCREW SIZE O.D. BALL LEAD DIA. 5 6 50 8 10 55 3.175 3.969 4.762 6.35 12 7.144 10 6.35 W TURNS UNIT: mm BASIC RATE LOAD (Kgf ) Dynamic Static NUT FLANGE FIT BOLT OIL HOLE STIFFNESS 6 circuit xrow (1x10 REV.) Dg6 L A T W G H S X Y Z Q Ca Co 1.5x2 1410 5305 1.5x3 2000 7960 2.5x2 2190 8840 3.5x1 1610 6190 50 60 1.5x2 1920 6600 60 53 2.5x2 2980 11000 2.5x3 4220 16500 3.5x1 2190 7700 60 62 55 50 80 84 60 60 67 85 52 114 15 96 43 118 15 100 45 86 90 15 15 9 9 14 8.5 PT1/8" 14 8.5 PT1/8" 76 84 87 128 1.5x2 2515 7810 68 2.5x2 3900 13020 86 2.5x3 5520 19530 3.5x1 2870 9110 1.5x2 3725 10450 81 57 2.5x1 3190 8710 71 48 2.5x2 5790 17420 2.5x3 8200 26130 131 137 3.5x1 4260 12190 81 67 2.5x1 3700 10050 2.5x2 6710 20100 2.5x2 6005 19540 2.5x3 8510 29310 87 109 128 18 107 49 98 20 11 17.5 11 PT1/8" 71 93 100 102 88 101 131 132 64 101 135 18 113 51 102 20 116 90 11 17.5 11 PT1/8" 94 146 22 122 55 110 20 14 20 13 PT1/8" 144 18 122 54 108 20 11 17.5 11 PT1/8" 49 95 101 148 52 FSWC L Q(oil hole) Q(oil hole) T Q(oil hole) S Y X Z W W G H EFFECTIVE SCREW SIZE O.D. LEAD 10 63 80 53 12 BALL DIA. 6.35 7.938 10 6.35 12 7.938 16 9.525 W TURNS UNIT: mm BASIC RATE LOAD (Kgf ) Dynamic Static (1x106 REV.) circuit xrow Ca Co 2.5x1 3510 11200 NUT Dg6 FLANGE L A T W FIT G H S BOLT X Y OIL HOLE STIFFNESS Z Q 75 58 2.5x2 6370 22400 2.5x3 9020 33600 2.5x1 4770 13780 2.5x2 8650 27560 2.5x3 12250 41340 160 170 2.5x2 7130 28500 105 136 2.5x3 10100 42750 2.5x2 9710 35560 2.5x3 13760 53340 2.5x2 16450 59280 2.5x3 23300 88920 108 105 154 22 130 58 116 20 14 20 13 PT1/8" 112 135 165 88 60 115 124 161 22 137 61 122 20 130 136 143 134 124 160 160 208 14 20 13 PT1/8" 116 176 22 152 66 132 20 14 20 13 PT1/8" 182 22 158 68 136 20 14 20 13 PT1/8" 204 28 172 77 154 30 18 26 17.5 PT1/8" 201 141 207 159 234 FDWC L T S Z Q(oil hole) X Q(oil hole) Y Q(oil hole) W W H W G UNIT: mm EFFECTIVE SCREW SIZE O.D. BALL LEAD DIA. TURNS 16 5 6 4 5 2.381 3.175 3.175 2.381 3.175 20 6 8 3.969 3.969 NUT FLANGE FIT BOLT OIL HOLE STIFFNESS 6 circuit xrow 1.5x2 4 BASIC RATE LOAD (Kgf ) Dynamic Static (1x10 REV.) Ca Co 490 1010 Dg6 L A T W G H S X Y Z Q 81 34 70 36 2.5x1 430 850 3.5x1 560 1180 78 57 11 45 17 34 15 5.5 9.5 5.5 M6x1P 30 42 38 1.5x2 805 1525 89 2.5x1 690 1270 77 2.5x2 1250 2540 3.5x1 920 1780 87 44 1.5x2 805 1525 100 38 40 40 105 80 63 63 11 11 51 51 20 20 40 40 15 5.5 9.5 5.5 M6x1P 32 64 2.5x1 690 1270 3.5x1 920 1780 100 15 5.5 9.5 5.5 M6x1P 32 44 43 1.5x2 530 1270 75 2.5x1 480 1060 67 2.5x2 820 2120 3.5x1 600 1480 75 50 1.5x2 965 2070 80 47 2.5x1 830 1730 2.5x2 1510 3460 40 44 89 76 105 63 67 11 11 51 55 24 26 48 52 15 5.5 9.5 5.5 M6x1P 15 5.5 9.5 5.5 M6x1P 36 71 39 79 3.5x1 1110 2420 80 55 1.5x2 1285 2545 97 48 2.5x1 1100 2120 3.5x1 1470 2970 93 56 1.5x2 1285 2545 108 48 2.5x1 1100 2120 3.5x1 1470 2970 48 48 82 71 102 75 110 11 13 59 61 27 28 54 56 15 5.5 9.5 5.5 M6x1P 39 15 6.6 11 6.5 M6x1P 39 56 54 FDWC L T S Z Q(oil hole) X Q(oil hole) Y Q(oil hole) W W H O.D. LEAD 4 5 BALL DIA. 2.381 3.175 25 6 8 10 5 6 3.969 4.762 4.762 3.175 3.969 28 8 10 55 G EFFECTIVE SCREW SIZE 4.762 4.762 W TURNS UNIT: mm BASIC RATE LOAD (Kgf ) Dynamic Static (1x106 REV.) NUT Dg6 FLANGE L A T W FIT G H S BOLT X Y OIL HOLE STIFFNESS Z Q circuit xrow Ca Co 1.5x2 600 1630 2.5x1 510 1355 2.5x2 930 2710 3.5x1 680 1900 75 61 1.5x2 1065 2575 86 57 2.5x1 910 2150 2.5x2 1650 4300 3.5x1 1210 3010 86 67 58 75 46 50 67 91 77 105 53 69 73 11 11 57 61 26 28 52 56 15 5.5 9.5 5.5 M6x1P 15 5.5 9.5 5.5 M6x1P 44 87 47 95 1.5x2 1420 3215 91 2.5x1 1210 2680 82 2.5x2 2190 5360 3.5x1 1610 3750 1.5x2 1820 3840 2.5x1 1560 3200 3.5x1 2080 4480 1.5x2 1820 3840 2.5x1 1560 3200 3.5x1 2080 4480 138 69 1.5x2 1110 2960 86 62 2.5x1 950 2470 2.5x2 1720 4940 3.5x1 1270 3460 86 73 64 53 116 76 11 64 29 58 15 5.5 9.5 5.5 M6x1P 93 95 59 85 13 71 32 64 15 6.6 11 6.5 M6x1P 49 111 69 134 58 55 78 1.5x2 1480 3605 98 2.5x1 1270 3000 89 2.5x2 2300 6000 3.5x1 1690 4200 1.5x2 1935 4325 2.5x1 1650 3600 3.5x1 2200 5040 1.5x2 1935 4325 2.5x1 1650 3600 3.5x1 2200 5040 55 59 117 85 106 117 83 83 15 12 12 71 69 69 32 31 31 64 62 62 15 6.6 11 6.5 M6x1P 49 15 6.6 11 6.5 M8x1P 15 6.6 11 6.5 M8x1P 94 97 15 76 36 72 15 9 53 106 117 93 14 8.5 M8x1P 54 76 134 138 104 65 93 113 60 52 74 113 60 96 68 111 58 48 65 15 76 36 72 15 9 14 8.5 M8x1P 54 76 FDWC L T S Z Q(oil hole) X Q(oil hole) Y Q(oil hole) W W H O.D. BALL LEAD DIA. 4 5 6 2.381 3.175 3.969 32 8 10 12 5 36 4.762 6.35 6.35 3.175 6 3.969 8 4.762 10 12 G EFFECTIVE SCREW SIZE 6.35 6.35 W TURNS UNIT: mm BASIC RATE LOAD (Kgf ) Dynamic Static NUT FLANGE FIT BOLT OIL HOLE STIFFNESS 6 circuit xrow (1x10 REV.) Dg6 L A T W G H S X Y Z Q 81 12 67 32 64 15 6.6 11 6.5 M6x1P Ca Co 2.5x1 565 1750 2.5x2 1020 3500 1.5x2 1180 3410 2.5x1 1010 2840 2.5x2 1830 5680 2.5x3 2590 8520 136 3.5x1 1350 3980 82 82 1.5x2 1560 4135 100 71 2.5x1 1330 3450 2.5x2 2410 6900 3.5x1 1770 4830 100 83 1.5x2 2010 5010 113 73 2.5x1 1720 4180 2.5x2 3120 8360 3.5x1 2300 5850 113 85 75 54 68 90 82 62 66 58 105 85 87 123 106 152 104 70 78 58 54 12 71 32 64 15 6.6 11 6.5 M8x1P 116 173 88 98 12 15 75 82 34 38 68 76 15 6.6 11 6.5 M8x1P 15 9 14 8.5 M8x1P 59 118 60 121 1.5x2 3000 6530 138 2.5x1 2570 5440 118 2.5x2 4660 10880 3.5x1 3430 7620 148 87 75 74 177 108 15 90 41 82 15 9 14 8.5 M8x1P 62 125 1.5x2 3000 6530 160 2.5x1 2570 5440 137 2.5x2 4660 10880 3.5x1 3430 7620 160 87 1.5x2 1240 3850 91 78 2.5x2 1920 6420 2.5x3 2720 9630 3.5x1 1410 2.5x2 2600 2.5x3 3680 11850 74 65 208 110 108 18 90 41 82 15 9 14 8.5 M8x1P 62 125 128 98 15 82 38 76 15 9 14 8.5 M8x1P 4490 90 7900 123 98 15 82 38 76 15 9 14 8.5 M8x1P 131 65 70 139 90 159 2.5x2 3265 9450 1.5x2 3180 7410 2.5x1 2720 6180 2.5x2 4930 12360 3.5x1 3630 8650 151 2.5x1 2720 6180 137 2.5x2 4930 12360 3.5x1 3630 8650 195 153 114 18 92 46 92 20 11 17.5 11 M8x1P 133 141 75 75 131 180 83 118 18 208 118 18 161 190 98 45 90 15 11 17.5 11 M8x1P 69 138 97 69 98 45 90 15 11 17.5 11 M8x1P 138 97 56 FDWC L T S Z Q(oil hole) X Q(oil hole) Y Q(oil hole) W W H O.D. LEAD 5 6 40 8 10 12 6 8 BALL DIA. 3.175 3.969 4.762 6.35 6.35 3.969 4.762 45 10 12 57 G EFFECTIVE SCREW SIZE 6.35 7.144 W TURNS UNIT: mm BASIC RATE LOAD (Kgf ) Dynamic Static (1x106 REV.) NUT Dg6 FLANGE L A T W FIT G H S BOLT X Y OIL HOLE STIFFNESS Z Q circuit xrow Ca Co 1.5x2 1280 4275 2.5x1 1090 3560 2.5x2 1980 7120 2.5x3 2800 10680 139 204 3.5x1 1450 4980 88 97 1.5x2 1750 5300 103 86 2.5x1 1500 4420 90 2.5x2 2720 8840 2.5x3 3850 13260 159 212 3.5x1 2000 6190 103 100 87 88 85 84 67 70 70 108 101 15 83 39 78 15 9 14 8.5 M8x1P 138 72 123 104 15 86 40 80 15 9 14 8.5 PT1/8" 143 1.5x2 2220 6320 124 2.5x1 1900 5270 108 2.5x2 3450 10540 3.5x1 2540 7380 124 102 1.5x2 3370 8335 141 90 2.5x1 2880 6950 2.5x2 5220 13900 3.5x1 3840 9730 151 106 2.5x1 2880 6950 137 75 74 82 86 152 131 180 108 15 90 41 124 18 102 47 94 20 14 8.5 PT1/8" 11 17.5 11 PT1/8" 73 145 75 151 5220 13900 3840 9730 161 106 2.5x2 2850 9870 123 157 2.5x3 4035 14800 2.5x2 3650 11780 2.5x3 5175 17670 2.5x2 5480 15700 2.5x3 7760 23550 2.5x1 3550 8950 2.5x2 6440 17900 85 88 90 158 206 180 243 140 210 114 15 96 48 96 20 9 2.5x2 159 96 15 3.5x1 80 208 128 18 106 48 82 15 127 18 105 52 104 20 132 18 110 50 100 20 132 18 110 50 100 20 11 17.5 11 PT1/8" 151 9 14 8.5 PT1/8" 11 17.5 11 PT1/8" 11 17.5 11 PT1/8" 11 17.5 11 PT1/8" 232 160 238 167 247 84 169 FDWC L T S Z Q(oil hole) X Q(oil hole) Y Q(oil hole) W W H O.D. BALL LEAD DIA. 5 6 50 8 10 55 63 3.969 4.762 6.35 7.144 10 6.35 6.35 12 7.144 16 7.938 10 80 3.175 12 10 12 16 G EFFECTIVE SCREW SIZE 6.35 7.938 9.525 W TURNS UNIT: mm BASIC RATE LOAD (Kgf ) Dynamic Static NUT FLANGE FIT BOLT OIL HOLE STIFFNESS 6 circuit xrow (1x10 REV.) Dg6 L A T W G H S X Y Z Q Ca Co 1.5x2 1410 5305 1.5x3 2000 7960 2.5x2 2190 8840 3.5x1 1610 6190 108 118 1.5x2 1920 6600 111 104 2.5x2 2980 11000 2.5x3 4220 16500 3.5x1 2190 7700 107 120 107 108 80 84 128 113 123 159 101 114 15 96 43 118 15 100 45 86 90 15 15 9 9 14 8.5 PT1/8" 14 8.5 PT1/8" 150 167 170 253 1.5x2 2515 7810 127 2.5x2 3900 13020 156 2.5x3 5520 19530 3.5x1 2870 9110 1.5x2 3725 10450 151 110 2.5x1 3190 8710 132 91 2.5x2 5790 17420 2.5x3 8200 26130 243 271 3.5x1 4260 12190 151 128 2.5x1 3700 10050 2.5x2 6710 20100 2.5x2 6005 19540 2.5x3 8510 29310 2.5x1 3510 11200 2.5x2 6370 22400 2.5x3 9020 33600 2.5x1 4090 12910 2.5x2 7420 25820 2.5x1 4760 13820 2.5x2 8630 27640 2.5x2 7130 28500 2.5x3 10100 42750 2.5x2 9710 35560 2.5x3 13760 53340 2.5x2 16450 59280 2.5x3 23300 88920 87 208 128 18 107 49 98 20 11 17.5 11 PT1/8" 127 93 100 102 210 181 243 11 17.5 11 PT1/8" 182 146 18 122 55 110 20 14 20 13 PT1/8" 144 18 122 54 108 20 11 17.5 11 PT1/8" 136 14 20 122 130 136 143 214 188 284 189 249 220 292 290 386 183 197 291 13 PT1/8" 220 249 144 92 111 108 189 154 22 130 58 116 20 115 260 124 180 135 18 113 51 102 20 140 176 326 161 22 137 61 122 20 14 20 178 28 150 69 138 30 18 26 17.5 PT1/8" 176 22 152 66 132 20 182 22 158 68 136 20 204 28 172 77 154 30 14 14 18 20 20 26 13 PT1/8" 13 PT1/8" 13 PT1/8" 13 PT1/8" 111 222 117 233 268 398 276 408 310 461 58 FSVC L S V Y X T Z W U EFFECTIVE SCREW SIZE O.D. 14 15 16 BALL LEAD DIA. BASIC RATE LOAD (Kgf ) Dynamic Static RETURN NUT FLANGE (1x10 REV.) circuit xrow Ca Co Dg6 L 2.381 2.5x1 410 750 5 3.175 2.5x1 675 1145 4 2.381 2.5x1 420 800 5 3.175 2.5x1 680 1210 1.5x2 805 1525 2.5x1 690 1270 2.5x2 1250 2540 3.5x1 920 1780 50 5 3.175 3.175 20 6 6 3.969 3.969 25 10 5 4.762 3.175 28 6 3.969 FIT BOLT TUBE OIL HOLE STIFFNESS 6 4 5 59 TURNS UNIT: mm 25 28.5 40 42 40 42 A T W S 45 10 35 10 5.5 9.5 5.5 19 48 10 38 X Y Z U 10 5.5 9.5 5.5 17 V Q 21 M6x1P 22 M6x1P 50 31 45 60 54 12 41 15 5.5 9.5 5.5 20 965 2070 50 15 830 1730 45 10 2.5x2 1510 3460 3.5x1 1110 2420 1.5x2 1285 2545 2.5x1 1100 2120 3.5x1 1470 2970 66 58 12 46 50 48 23 M6x1P 17 33 15 25 5.5 9.5 5.5 25 27 M6x1P 15 66 36 16 24 1.5x2 60 16 15 20 2.5x1 35 14 12 47 10 5.5 9.5 5.5 27 41 29 15 60 21 26 28 M6x1P 21 15 30 1.5x2 1420 3215 65 2.5x1 1210 2680 50 2.5x2 2190 5360 3.5x1 1610 3750 1.5x2 1820 3840 2.5x1 1560 3200 3.5x1 2080 4480 75 37 33 42 68 31 68 12 55 15 5.5 9.5 5.5 28 33 M6x1P 65 65 50 35 75 45 26 31 72 16 58 15 6.6 11 6.5 29 34 M6x1P 26 1.5x2 1110 2960 50 2.5x1 950 2470 45 2.5x2 1720 4940 3.5x1 1270 3460 50 38 33 44 60 1.5x2 1480 3605 55 2.5x1 1270 3000 50 2.5x2 2300 6000 3.5x1 1690 4200 44 68 55 70 70 12 12 56 56 15 6.6 11 6.5 28 15 6.6 11 6.5 28 34 M6x1P 36 M6x1P 27 53 28 54 39 FSVC L T Z S V Y X Q(oil hole) W U EFFECTIVE SCREW SIZE O.D. BALL LEAD DIA. 5 6 3.175 3.969 32 8 10 6 4.762 6.35 3.969 36 10 6.35 TURNS UNIT: mm BASIC RATE LOAD (Kgf ) Dynamic Static NUT FLANGE FIT RETURN BOLT TUBE OIL HOLE STIFFNESS 6 circuit xrow (1x10 REV.) Dg6 L A T W S X Y Z U V Q Ca Co 1.5x2 1180 3410 2.5x1 1010 2840 2.5x2 1830 5680 2.5x3 2590 8520 75 87 3.5x1 1350 3980 50 42 37 50 36 45 50 60 31 76 12 63 15 6.6 11 6.5 30 38 M6x1P 59 1.5x2 1560 4135 55 2.5x1 1330 3450 50 2.5x2 2410 6900 3.5x1 1770 4830 55 43 1.5x2 2010 5010 70 38 2.5x1 1720 4180 2.5x2 3120 8360 3.5x1 2300 5850 70 44 1.5x2 3000 6530 78 40 2.5x1 2570 5440 2.5x2 4660 10880 3.5x1 3430 7620 2.5x1 1430 3950 2.5x2 2600 7900 52 54 57 68 62 86 68 98 78 88 91 12 16 16 65 70 73 15 6.6 11 6.5 32 15 15 9 9 14 8.5 33 14 8.5 37 39 M6x1P 40 M6x1P 44 M8x1P 78 55 50 68 1.5x2 3180 7410 82 2.5x1 2720 6180 72 2.5x2 4930 12360 3.5x1 3630 8650 62 102 82 31 60 32 62 34 65 46 82 12 68 15 6.6 11 6.5 32 42 M6x1P 34 67 44 104 18 82 20 11 17.5 11 40 49 M6x1P 37 71 51 60 FSVC L S V Y X T Z Q(oil hole) W U EFFECTIVE SCREW SIZE O.D. BALL LEAD DIA. 5 6 3.175 3.969 40 8 10 10 4.762 6.35 6.35 45 12 61 7.144 TURNS UNIT: mm BASIC RATE LOAD (Kgf ) Dynamic Static RETURN NUT FLANGE FIT BOLT TUBE OIL HOLE STIFFNESS 6 (1x10 REV.) Dg6 L A T W S X Y Z U V Q circuit xrow Ca Co 1.5x2 1280 4275 2.5x1 1090 3560 2.5x2 1980 7120 2.5x3 2800 10680 80 103 3.5x1 1450 4980 55 50 1.5x2 1750 5300 60 45 2.5x1 1500 4420 54 2.5x2 2720 8840 2.5x3 3850 13260 90 107 3.5x1 2000 6190 60 52 46 55 43 50 58 60 65 72 36 92 16 72 15 9 14 8.5 34 46 PT1/8" 70 37 94 16 76 15 9 14 8.5 36 47 PT1/8" 73 1.5x2 2220 6320 70 2.5x1 1900 5270 62 2.5x2 3450 10540 3.5x1 2540 7380 70 53 1.5x2 3370 8335 82 48 2.5x1 2880 6950 2.5x2 5220 13900 3.5x1 3840 9730 82 55 2.5x1 3020 7850 74 44 2.5x2 5480 15700 2.5x1 3550 8950 2.5x2 6440 17900 62 65 70 74 86 72 102 104 87 123 96 16 106 18 112 18 122 18 78 85 90 97 15 20 20 20 9 14 85 11 17.5 11 11 17.5 11 14 20.0 13 38 42 48 49 48 PT1/8" 52 PT1/8" 58 PT1/8" 60 PT1/8" 38 74 40 78 85 45 87 FSVC L T Z S V Y X Q(oil hole) W U EFFECTIVE SCREW SIZE O.D. BALL LEAD DIA. TURNS 3.175 6 3.969 8 4.762 50 10 12 55 10 10 63 80 12 6.35 7.144 6.35 6.35 7.938 16 9.525 10 6.35 12 7.938 16 9.525 BASIC RATE LOAD (Kgf ) Dynamic Static NUT FLANGE FIT RETURN BOLT TUBE OIL HOLE STIFFNESS 6 circuit xrow 1.5x2 5 UNIT: mm (1x10 REV.) Ca Co 1410 5305 1.5x3 2000 7960 3.5x1 1610 6190 2.5x2 2980 11000 2.5x3 4220 16500 2.5x2 3900 13020 2.5x3 5520 19530 1.5x2 3725 10450 2.5x1 3190 8710 2.5x2 5790 17420 Dg6 L A T W S X Y Z U V Q 63 70 52 73 104 16 86 15 9 14 8.5 40 56 PT1/8" 76 63 72 75 75 93 88 112 60 106 16 88 15 9 14 8.5 43 116 18 95 20 11 17.5 11 45 57 PT1/8" 59 PT1/8" 84 78 87 128 90 132 57 74 104 119 18 98 20 11 17.5 11 48 48 62 PT1/8" 94 2.5x3 8200 26130 134 137 3.5x1 4260 12190 84 67 2.5x1 3700 10050 2.5x2 6710 20100 2.5x2 6005 19540 2.5x3 8510 29310 2.5x1 3510 11200 2.5x2 6370 22400 2.5x3 9020 33600 2.5x1 4770 13780 2.5x2 8650 27560 2.5x3 12250 41340 2.5x1 8050 23100 2.5x2 14600 46200 2.5x2 7130 28500 2.5x3 10100 42750 2.5x2 9710 35560 2.5x3 13760 53340 2.5x2 16450 59280 2.5x3 23300 88920 82 84 87 123 100 130 128 22 105 20 125 18 103 20 14 20 13 11 17.5 11 52 54 64 PT1/8" 68 PT1/8" 77 90 107 132 20 110 20 11 17.5 11 53 165 60 124 142 22 117 20 14 20 13 57 76 PT1/8" 116 160 115 120 125 105 153 109 139 125 159 156 204 148 74 PT1/8" 112 88 100 95 101 58 137 94 49 170 150 22 123 20 14 20 13 62 78 PT1/8" 163 22 137 20 14 20 13 64 91 PT1/8" 169 22 143 25 14 20 13 67 93 PT1/8" 190 28 154 25 18 26 17.5 70 94 PT1/8" 68 131 136 201 141 207 159 234 62 FDVC L T Z S V Y X Q(oil ( hole)) U EFFECTIVE SCREW SIZE O.D. 16 BALL LEAD DIA. 5 5 3.175 3.175 20 6 5 25 6 10 5 3.969 3.175 3.969 4.762 3.175 28 6 63 3.969 TURNS UNIT: mm BASIC RATE LOAD (Kgf ) Dynamic Static RETURN NUT FLANGE FIT BOLT TUBE OIL HOLE STIFFNESS 6 (1x10 REV.) Dg6 L circuit xrow Ca Co 1.5x2 805 1525 2.5x1 690 1270 2.5x2 1250 2540 3.5x1 920 1780 90 1.5x2 965 2070 90 2.5x1 830 1730 2.5x2 1510 3460 3.5x1 1110 2420 1.5x2 1285 2545 2.5x1 1100 2120 3.5x1 1470 2970 104 1.5x2 1065 2575 90 2.5x1 910 2150 2.5x2 1650 4300 3.5x1 1210 3010 90 A T W S X Y Z U V Q 90 31 35 80 110 80 110 38 54 12 41 40 80 110 32 64 44 58 12 46 10 15 47 5.5 9.5 5.5 25 27 M6x1P 15 104 92 23 M6x1P 15 90 36 15 5.5 9.5 5.5 20 12 47 10 5.5 9.5 5.5 27 79 55 15 60 39 48 28 M6x1P 39 15 56 57 64 12 52 15 5.5 9.5 5.5 26 31 M6x1P 47 95 67 1.5x2 1420 3215 104 58 2.5x1 1210 2680 92 48 2.5x2 2190 5360 3.5x1 1610 3750 1.5x2 1820 3840 2.5x1 1560 3200 3.5x1 2080 4480 136 69 62 42 128 68 12 55 15 5.5 9.5 5.5 28 33 M6x1P 104 68 136 45 96 59 122 72 16 58 15 6.6 11 6.5 29 34 M6x1P 49 1.5x2 1110 2960 90 2.5x1 950 2470 80 2.5x2 1720 4940 3.5x1 1270 3460 90 73 64 44 110 1.5x2 1480 3605 110 2.5x1 1270 3000 98 2.5x2 2300 6000 3.5x1 1690 4200 44 134 110 70 70 12 12 56 56 15 6.6 11 6.5 28 15 6.6 11 6.5 28 34 M6x1P 36 M6x1P 52 104 53 106 74 FDVC L S V Y X T Z Q(oil ( hole)) U SCREW SIZE O.D. BALL LEAD DIA. 5 6 3.175 3.969 32 8 10 6 4.762 6.35 3.969 36 10 6.35 TURNS UNIT: mm BASIC RATE LOAD (Kgf ) Dynamic Static NUT FLANGE FIT RETURN BOLT TUBE OIL HOLE STIFFNESS 6 circuit xrow (1x10 REV.) Dg6 L A T W S X Y Z U V Q Ca Co 1.5x2 1180 3410 2.5x1 1010 2840 2.5x2 1830 5680 2.5x3 2590 8520 140 173 3.5x1 1350 3980 90 82 71 90 70 80 50 58 110 76 12 63 15 6.6 11 6.5 30 38 M6x1P 116 1.5x2 1560 4135 104 2.5x1 1330 3450 92 2.5x2 2410 6900 3.5x1 1770 4830 104 83 1.5x2 2010 5010 126 73 2.5x1 1720 4180 2.5x2 3120 8360 3.5x1 2300 5850 126 85 1.5x2 3000 6530 142 75 2.5x1 2570 5440 2.5x2 4660 10880 3.5x1 3430 7620 2.5x1 1430 3950 2.5x2 2600 7900 52 54 57 128 110 158 122 182 78 88 91 12 16 16 65 70 73 15 6.6 11 6.5 32 15 15 9 9 14 8.5 33 14 8.5 37 39 M6x1P 40 M6x1P 44 M8x1P 142 55 92 128 1.5x2 3180 7410 144 2.5x1 2720 6180 124 2.5x2 4930 12360 3.5x1 3630 8650 62 184 144 59 118 60 121 62 125 87 82 12 68 15 6.6 11 6.5 32 42 M6x1P 66 131 83 104 18 82 20 11 17.5 11 40 49 M6x1P 69 138 97 64 FDVC L T Z S V Y X Q(oil ( hole)) U EFFECTIVE SCREW SIZE O.D. BALL LEAD DIA. 5 6 3.175 3.969 40 8 10 10 4.762 6.35 6.35 45 12 65 7.144 TURNS UNIT: mm BASIC RATE LOAD (Kgf ) Dynamic Static RETURN NUT FLANGE FIT BOLT TUBE OIL HOLE STIFFNESS 6 (1x10 REV.) Dg6 L A T W S X Y Z U V Q circuit xrow Ca Co 1.5x2 1280 4275 2.5x1 1090 3560 2.5x2 1980 7120 2.5x3 2800 10680 144 204 3.5x1 1450 4980 94 97 1.5x2 1750 5300 108 86 2.5x1 1500 4420 96 2.5x2 2720 8840 2.5x3 3850 13260 168 212 3.5x1 2000 6190 108 100 87 94 85 84 58 60 70 114 92 16 72 15 9 14 8.5 34 46 PT1/8" 138 72 132 94 16 76 15 9 14 8.5 36 47 PT1/8" 143 1.5x2 2220 6320 126 2.5x1 1900 5270 110 2.5x2 3450 10540 3.5x1 2540 7380 126 102 1.5x2 3370 8335 152 90 2.5x1 2880 6950 2.5x2 5220 13900 3.5x1 3840 9730 152 106 2.5x1 3020 7850 134 83 2.5x2 5480 15700 2.5x1 3550 8950 2.5x2 6440 17900 62 65 70 74 158 132 192 194 158 230 96 16 106 18 112 18 122 18 78 85 90 97 15 20 20 20 9 14 85 11 17.5 11 11 17.5 11 14 20.0 13 38 42 48 49 48 PT1/8" 52 PT1/8" 58 PT1/8" 60 PT1/8" 73 145 75 151 167 84 169 FDVC L S V Y X T Z Q(oil ( hole)) U EFFECTIVE SCREW SIZE O.D. BALL LEAD DIA. TURNS 3.175 6 3.969 8 4.762 50 10 12 55 10 10 63 80 12 6.35 7.144 6.35 6.35 7.938 16 9.525 10 6.35 12 7.938 16 9.525 BASIC RATE LOAD (Kgf ) Dynamic Static NUT FLANGE FIT RETURN BOLT TUBE OIL HOLE STIFFNESS 6 circuit xrow 1.5x2 5 UNIT: mm (1x10 REV.) Ca Co 1410 5305 1.5x3 2000 7960 3.5x1 1610 6190 2.5x2 2980 11000 2.5x3 4220 16500 Dg6 L A T W S X Y Z U V Q 107 70 101 127 104 16 86 15 9 14 8.5 40 56 PT1/8" 150 107 72 134 170 106 16 88 15 9 14 8.5 43 116 18 95 20 11 17.5 11 57 PT1/8" 170 253 2.5x2 3900 13020 2.5x3 5520 19530 1.5x2 3725 10450 2.5x1 3190 8710 2.5x2 5790 17420 2.5x3 8200 26130 254 271 3.5x1 4260 12190 154 128 2.5x1 3700 10050 2.5x2 6710 20100 2.5x2 6005 19540 2.5x3 8510 29310 2.5x1 3510 11200 2.5x2 6370 22400 2.5x3 9020 33600 2.5x1 4770 13780 2.5x2 8650 27560 2.5x3 12250 41340 2.5x1 8050 23100 2.5x2 14600 46200 2.5x2 7130 28500 2.5x3 10100 42750 2.5x2 9710 35560 2.5x3 13760 53340 2.5x2 16450 59280 2.5x3 23300 88920 75 160 118 208 45 59 PT1/8" 154 82 84 91 194 119 18 160 232 194 254 98 20 128 22 105 20 125 18 103 20 11 17.5 11 14 20 13 11 17.5 11 48 52 54 62 PT1/8" 182 64 PT1/8" 68 PT1/8" 136 90 196 132 20 110 20 11 17.5 11 53 113 14 20 13 57 76 PT1/8" 226 304 115 120 125 296 200 260 232 302 302 398 291 326 232 142 22 117 20 200 183 197 74 PT1/8" 220 160 100 92 111 256 94 260 110 134 78 176 336 150 22 123 20 14 20 13 62 78 PT1/8" 163 22 137 20 14 20 13 64 91 PT1/8" 169 22 143 25 14 20 13 67 93 PT1/8" 190 28 154 25 18 26 17.5 70 94 PT1/8" 127 254 268 398 276 408 310 461 66 FOWC L Q(oil hole) Q(oil hole) T S Z W W X Y Q(oil hole) W H G UNIT: mm EFFECTIVE SCREW SIZE O.D. BALL LEAD DIA. FLANGE (1x10 REV.) Dg6 2.5x1x(2) 3.5x1x(2) 2.5x1x(2) 3.175 3.5x1x(2) 6 3.969 2.5x1x(2) 1100 2120 48 67 71 8 3.969 2.5x1x(2) 1100 2120 48 78 2.5x1x(2) 2.5x2x(2) 2.5x1x(2) 3.175 2.5x2x(2) 2.5x1x(2) 3.969 2.5x2x(2) 510 930 910 1650 1210 2190 1355 2710 2150 4300 2680 5360 8 4.762 2.5x1x(2) 1560 3200 58 77 10 4.762 2.5x1x(2) 1560 3200 58 2.5x1x(2) 2.5x2x(2) 2.5x1x(2) 3.969 2.5x2x(2) 950 1720 1270 2300 2470 4940 3000 6000 4.762 1.5x1x(2) 1045 2120 2.5x1x(2) 2.5x2x(2) 2.5x1x(2) 2.5x2x(2) 2.5x1x(2) 2.5x2x(2) 1.5x1x(2) 2.5x1x(2) 1.5x1x(2) 2.5x1x(2) 1.5x1x(2) 2.5x1x(2) 565 1020 1010 1830 1330 2410 1110 1720 1660 2570 1660 2570 1750 3500 2840 5680 3450 6900 2510 4180 3260 5440 3260 5440 20 4 5 6 5 6 10 circuit xrow 2.381 2.381 3.175 4 2.381 5 3.175 6 3.969 8 4.762 10 6.35 12 6.35 32 67 NUT FIT BOLT OIL HOLE STIFFNESS 6 Co 1060 1480 1730 2420 5 28 BASIC RATE LOAD(Kgf ) Dynamic Static Ca 450 600 830 1110 4 25 TURNS 40 44 46 50 53 55 55 60 54 58 62 66 74 74 L A T W G H 51 21 42 55 26 52 11 59 27 54 15 5.5 9.5 5.5 M6x1P 37 75 13 61 27 54 15 6.6 11 6.5 M6x1P 37 69 11 57 26 52 73 11 61 28 56 76 11 64 29 58 85 13 71 32 64 15 6.6 11 6.5 M6x1P 54 100 85 15 71 32 64 15 6.6 11 6.5 M6x1P 54 12 69 31 62 12 69 31 62 15 76 36 72 15 81 12 67 32 64 15 6.6 11 6.5 M6x1P 85 12 71 32 64 15 6.6 11 6.5 M8x1P 88 12 75 34 68 15 6.6 11 6.5 M8x1P 100 15 82 38 76 15 9 14 8.5 M8x1P 108 15 90 41 82 15 9 14 8.5 M6x1P 108 18 90 41 82 15 9 14 8.5 M8x1P 50 63.5 11 60 56 67 11 65 50 74 55 85 62 98 56 83 86 63 83 100 74 93 50 76 57 87 63 99 64 80 78 97 88 110 S X Y Z Q 32 44 36 15 5.5 9.5 5.5 M6x1P 50 10 5.5 9.5 5.5 M6x1P 42 78 49 15 5.5 9.5 5.5 M6x1P 89 51 15 5.5 9.5 5.5 M6x1P 92 15 5.5 9.5 5.5 M6x1P 52 97 55 15 6.6 11 6.5 M8x1P 100 15 6.6 11 6.5 M8x1P 9 14 8.5 M8x1P 39 50 95 58 106 60 110 42 63 46 69 46 69 FOWC L Q(oil hole) Q(oil hole) T S Z W W H X Y Q(oil hole) W G UNIT: mm EFFECTIVE SCREW SIZE O.D. 36 BALL LEAD DIA. TURNS BASIC RATE LOAD(Kgf ) Dynamic Static NUT FLANGE FIT BOLT OIL HOLE STIFFNESS 6 (1x10 REV.) Co 3210 6420 3950 7900 3710 6180 3560 7120 4420 8840 5270 10540 4710 6950 9730 Dg6 2.5x1x(2) 2.5x2x(2) 2.5x1x(2) 2.5x2x(2) 1.5x1x(2) 2.5x1x(2) 2.5x1x(2) 2.5x2x(2) 2.5x1x(2) 2.5x2x(2) 2.5x1x(2) 2.5x2x(2) 1.5x1x(2) 2.5x1x(2) 3.5x1x(2) Ca 1060 1920 1430 2600 1750 2720 1090 1980 1500 2720 1900 3450 1860 2880 3850 circuit xrow 60 90 66 102 81 103 60 90 66 102 83 131 81 103 121 A T W G H S X Y Z Q 98 15 82 38 76 15 9 14 8.5 M8x1P 98 15 82 38 76 15 9 14 8.5 M8x1P 118 18 98 45 90 15 11 17.5 11 M8x1P 101 15 83 39 78 15 9 14 8.5 M8x1P 104 15 86 40 80 15 9 14 8.5 PT1/8" 108 15 90 41 82 15 9 14 124 18 102 47 94 20 11 17.5 11 PT1/8" 96 63 117 66 121 50 74 67 125 71 131 74 136 53 80 106 5 3.175 6 3.969 10 6.35 5 3.175 6 3.969 8 4.762 10 6.35 12 6.35 2.5x1x(2) 2880 6950 86 112 128 18 106 48 20 11 17.5 11 PT1/8" 80 10 6.35 2.5x1x(2) 3020 7850 88 101 132 18 110 50 100 20 11 17.5 11 PT1/8" 86 12 7.144 2.5x1x(2) 3550 8950 90 112 132 18 110 50 100 20 11 17.5 11 PT1/8" 89 5 3.175 2.5x1x(2) 1210 4420 80 60 114 15 43 86 15 9 14 8.5 PT1/8" 80 6 3.969 2.5x2x(2) 2980 11000 84 103 118 15 100 45 90 15 9 14 8.5 PT1/8" 155 8 4.762 2.5x2x(2) 2.5x1x(2) 6.35 2.5x2x(2) 3.5x1x(2) 3900 3190 5790 4260 13020 8710 17420 12190 87 134 129 18 107 49 98 20 101 161 135 18 113 51 102 20 121 7.144 2.5x1x(2) 3700 10050 100 116 146 22 122 55 110 20 2.5x1x(2) 2.5x2x(2) 2.5x1x(2) 6.35 2.5x2x(2) 3310 6005 3510 6370 9770 19540 11200 22400 101 144 18 122 54 108 20 161 105 108 154 22 130 58 116 20 165 7.938 2.5x1x(2) 4770 13780 115 124 161 22 137 61 122 20 40 65 L 65 75 67 70 74 82 85 PT1/8" 45 50 10 12 55 10 10 63 12 6.35 93 96 102 11 17.5 11 PT1/8" 161 93 11 17.5 11 PT1/8" 171 125 14 20 13 PT1/8" 96 100 183 109 13 PT1/8" 202 11 17.5 11 PT1/8" 14 20 14 20 13 PT1/8" 121 68 13.2 Internal Ball Circulation Nuts Features: The advantage of internal ball circulation nut is that the outer diameter is smaller than that of external ball circulation nut. Hence it is suitable for the machine with limit space for Ballscrew installation. It is strictly required that there is at least one end of screw shaft with complete threads. Also the rest area next to this complete thread must be with smaller diameter than the nominal diameter of the screw shaft. Above are required for easy assembling the ballnut onto the screw shaft. Fig. 13.3 Internal ball circulation's side view 69 FSIC L 60 60 6 60 60 60 Q(oil hole) Q(oil hole) G H Q(oil ( hole)) S X Y 60 T Z W W W -0.2 UNIT: mm BASIC RATE LOAD (Kgf ) Dynamic Static SCREW SIZE O.D. BALL LEAD DIA. EFFECTIVE (1x10 REV.) TURNS Ca Co NUT Dg6 14 3 2.000 3 260 460 4 2.381 3 420 805 16 4 2.381 3 435 920 28 5 3.175 30 5 3.175 20 25 6 3.969 5 3.175 6 3.969 10 4.762 5 32 6 3.969 8 4.762 10 6.35 5 6 40 3.175 3.175 3.969 8 4.762 10 6.35 12 7.144 FLANGE FIT BOLT OIL HOLE STIFFNESS 6 3 765 1240 3 860 1710 4 1100 2280 3 1080 2050 4 1380 2730 3 980 2300 4 1250 3070 3 1275 2740 4 1630 3650 26 34 34 40 40 A T W G H S X Y 37 46 10 36 - - 10 4.5 8 4.5 M6x1P 19 42 46 10 36 20 40 10 4.5 8 4.5 M6x1P 19 42 49 10 39 20 40 10 4.5 8 4.5 M6x1P 21 42 49 10 39 20 40 10 4.5 8 4.5 M6x1P 23 57 12 45 20 40 12 5.5 9.5 5.5 M6x1P 47 53 53 Q 22 28 22 12 45 20 40 12 5.5 9.5 5.5 M6x1P 63.5 12 51 22 44 15 5.5 9.5 5.5 M8x1P 63.5 12 51 22 44 15 5.5 9.5 5.5 M8x1P 15 55 26 52 15 6.6 11 6.5 M8x1P 27 53 73.5 12 60 30 60 15 6.6 11 6.5 M8x1P 42 61 47 53 53 61 26 34 27 35 1620 3205 1095 3060 4 1400 4080 6 1980 6120 62 62 3 1500 3750 53 33 1920 5000 2720 7500 3 1820 4230 4 2330 5640 3 2605 5310 4 3340 7080 4 1575 5290 6 2230 7940 4 2130 6410 6 3020 9620 4 2720 7620 6 3850 11430 3 3010 7100 4 3850 9470 3 4010 9250 4 5130 12330 69 29 3 4 80 57 Z 3 6 42 L 47 48 48 32 61 73.5 12 60 30 60 15 6.6 11 6.5 M8x1P 43 73 50 68 77 54 55 55 60 64 70 80 90 56 65 65 77 77 94 83 93 93 103 64 83 16 66 32 64 15 6.6 11 6.5 M8x1P 88 16 70 34 68 15 9 14 8.5 M8x1P 88.5 16 72 29 58 15 9 14 8.5 M8x1P 88.5 16 72 34 68 15 9 14 8.5 M8x1P 16 76 36 72 20 9 14 8.5 M8x1P 106 18 84 43 86 20 11 17.5 11 M8x1P 110 18 85 45 90 20 11 17.5 11 M8x1P 93 33 44 34 45 50 74 52 77 53 79 42 54 44 58 Stock 70 FSIC L Q(oil hole) Q(oil hole) G H Q(oil ( hole)) S X Y T Z W W W UNIT: mm BASIC RATE LOAD (Kgf ) Dynamic Static SCREW SIZE O.D. LEAD BALL DIA. 5 3.175 6 8 3.969 4.762 50 10 12 7.938 20 7.938 6 3.969 8 63 80 6.35 10 4.762 6.35 12 7.938 20 9.525 10 6.35 12 20 7.938 9.525 NUT FLANGE FIT BOLT OIL HOLE STIFFNESS EFFECTIVE (1x106 REV.) TURNS Ca Co 4 1730 6760 6 2450 10140 4 2380 8250 6 3370 12380 4 3010 9610 6 4260 14420 3 3430 9300 4 4390 12400 6 6220 18600 114 97 3 4510 11150 99 51 4 5770 14870 3 4510 11150 4 2610 10550 6 3700 15830 4 3375 12200 6 4780 18300 4 5020 16450 6 7110 24680 4 6580 19430 6 9320 29150 3 8490 23610 4 5510 21200 6 7810 31800 4 7500 25700 6 10620 38550 3 9770 31700 4 12510 42270 Dg6 66 66 70 L 55 65 65 77 79 96 A T W G H S X Y 98 16 82 36 72 20 9 14 8.5 PT1/8" 98 16 113 18 82 90 36 42 72 84 20 20 9 Z Q 14 8.5 PT1/8" 11 17.5 11 PT1/8" 83 74 75 75 80 82 85 90 95 105 110 115 89 62 92 64 94 50 93 116 18 94 42 84 20 11 17.5 11 M8x1P 66 121 22 97 47 94 20 14 20 13 PT1/8" 146 121 28 97 47 94 20 14 20 13 PT1/8" 51 122 18 100 45 90 20 11 17.5 11 PT1/8" 111 67 80 80 68 75 110 77 124 18 102 46 92 20 11 17.5 11 PT1/8" 132 22 107 48 96 20 14 20 13 PT1/8" 136 22 112 52 104 20 14 20 13 PT1/8" 146 153 28 123 59 118 20 18 26 17.5 PT1/8" 74 14 20 96 98 118 111 136 98 118 111 136 146 168 151 22 127 57 114 20 156 22 132 59 118 20 173 28 143 66 132 20 14 18 20 13 PT1/8" 13 PT1/8" 26 17.5 PT1/8" Stock 71 60 114 80 118 82 121 97 143 100 147 86 113 L S Q(oil hole) G H Q(oil hole) X Y T Z Q(oil hole) FDIC W W W UNIT: mm BASIC RATE LOAD (Kgf) Dynamic Static SCREW SIZE O.D. 16 BALL LEAD DIA. 4 2.381 5 3.175 5 3.175 20 6 25 5 3.175 6 3.969 10 4.762 5 32 6 3.175 3.969 8 4.762 10 6.35 5 3.175 6 40 3.969 8 3.969 4.762 10 6.35 12 7.144 NUT FLANGE FIT BOLT OIL HOLE STIFFNESS EFFECTIVE (1x10 REV.) TURNS Ca Co Dg6 L A T W G H S X Y 3 435 920 30 66 49 10 39 20 40 10 4.5 8 4.5 M6x1P 33 30 80 49 10 39 20 40 10 4.5 8 4.5 M6x1P 37 57 12 45 20 40 12 5.5 9.5 5.5 M6x1P 6 3 765 1240 3 860 1710 4 1100 2280 3 1080 2050 4 1380 2730 3 980 2300 4 1250 3070 3 1275 2740 4 1630 3650 3 1620 3205 3 1095 3060 34 34 40 40 42 82 92 93 107 82 92 93 107 57 Z Q 49 39 12 45 20 40 12 5.5 9.5 5.5 M6x1P 63.5 12 51 22 44 15 5.5 9.5 5.5 M8x1P 63.5 12 51 22 44 15 5.5 9.5 5.5 M8x1P 55 26 52 15 6.6 11 6.5 M8x1P 49 140 69 15 82 50 45 58 47 60 54 4 1400 4080 6 1980 6120 118 102 3 1500 3750 93 57 4 1920 5000 6 2720 7500 3 1820 4230 4 2330 5640 3 2605 5310 4 3340 7080 4 1575 5290 6 2230 7940 4 2130 6410 6 3020 9620 4 2720 7620 6 3850 11430 3 3010 7100 4 3850 9470 3 4010 9250 4 5130 12330 48 38 48 92 73.5 12 109 73.5 12 60 60 30 30 60 60 15 6.6 11 6.5 M8x1P 70 15 6.6 11 6.5 M8x1P 73 133 50 54 55 55 60 64 70 117 135 139 160 96 122 113 137 134 172 142 162 160 185 105 83 16 66 32 64 15 6.6 11 6.5 M8x1P 88.5 16 70 34 68 15 9 14 8.5 M8x1P 88.5 16 72 29 58 15 9 14 8.5 M8x1P 88 16 72 34 68 15 9 14 8.5 M8x1P 93 16 76 36 72 20 9 14 8.5 M8x1P 106 18 84 43 86 20 11 17.5 11 M8x1P 110 18 85 45 90 20 11 17.5 11 M8x1P 58 75 62 79 84 121 87 126 90 130 76 97 82 104 Stock 72 FDIC L S Q(oil hole) Q(oil hole) G H Q(oil hole) X Y T Z W W W UNIT: mm BASIC RATE LOAD (Kgf ) Dynamic Static SCREW SIZE O.D. LEAD BALL DIA. 5 3.175 6 8 3.969 4.762 50 10 12 7.938 20 7.938 6 3.969 8 63 80 6.35 10 4.762 6.35 12 7.938 20 9.525 10 6.35 12 20 7.938 9.525 NUT FLANGE FIT BOLT OIL HOLE STIFFNESS EFFECTIVE (1x106 REV.) TURNS Ca Co 4 1730 6760 6 2450 10140 4 2380 8250 6 3370 12380 4 3010 9610 6 4260 14420 3 3430 9300 4 4390 12400 6 6220 18600 205 165 3 4510 11150 171 94 4 5770 14870 3 4510 11150 4 2610 10550 6 3700 15830 4 3375 12200 6 4780 18300 4 5020 16450 6 7110 24680 4 6580 19430 6 9320 29150 3 8490 23610 4 5510 21200 6 7810 31800 4 7500 25700 6 10620 38550 3 9770 31700 4 12510 42270 Dg6 66 66 70 L 96 122 111 142 136 A T W G H S X Y 98 16 82 36 72 20 9 14 8.5 PT1/8" 98 16 82 36 72 20 9 Z Q 14 8.5 PT1/8" 75 75 80 82 85 90 95 105 110 115 152 109 90 42 84 20 11 17.5 11 PT1/8" 162 114 18 92 42 84 20 11 17.5 11 PT1/8" 115 157 90 121 22 97 47 94 20 14 20 13 PT1/8" 253 121 28 97 47 94 20 14 20 13 PT1/8" 94 122 18 100 45 90 20 11 17.5 11 PT1/8" 195 115 144 141 178 166 124 18 102 46 11 17.5 11 PT1/8" 125 182 130 187 137 14 20 13 PT1/8" 136 22 112 52 104 20 14 20 13 PT1/8" 253 153 28 123 59 118 20 18 26 17.5 PT1/8" 132 14 20 195 248 166 209 195 248 253 297 96 20 120 20 209 132 22 107 48 92 151 22 127 57 114 20 156 22 132 59 118 20 173 28 143 66 132 20 14 18 20 13 PT1/8" 13 PT1/8" 26 17.5 PT1/8" Stock 73 146 105 113 18 174 143 74 101 198 143 204 164 236 171 246 152 195 L T FOIC S Q(oil hole) Q(oil hole) G H Q(oil hole) X Y Z W W UNIT: mm BASIC RATE LOAD (Kgf ) Dynamic Static SCREW SIZE O.D. 20 25 32 40 BALL LEAD DIA. NUT FLANGE FIT EFFECTIVE (1x10 REV.) TURNS Ca Co Dg6 L A T W G H S BOLT OIL HOLE STIFFNESS 6 X Y Z Q 5 3.175 3x(2) 860 1710 34 67 57 12 45 20 40 12 5.5 9.5 5.5 M6x1P 38 6 3.969 3x(2) 1080 2050 34 77 57 12 45 20 40 12 5.5 9.5 5.5 M6x1P 39 5 3.175 3x(2) 980 2300 40 67 63.5 12 51 22 44 15 5.5 9.5 5.5 M8x1P 45 6 3.969 3x(2) 1275 2740 40 77 63.5 12 51 22 44 15 5.5 9.5 5.5 M8x1P 47 10 4.762 2x(2) 1140 2140 42 88 15 55 26 52 15 6.6 11 6.5 M8x1P 35 5 3.175 73.5 12 60 30 60 15 6.6 11 6.5 M8x1P 6 3.969 8 4.762 10 6.35 5 3.175 6 3.969 8 4.762 10 6.35 3x(2) 1095 3060 4x(2) 1400 4080 3x(2) 1500 3750 4x(2) 1920 5000 3x(2) 1820 4230 4x(2) 2330 5640 3x(2) 2605 5310 4x(2) 1575 5290 6x(2) 2230 7940 4x(2) 2130 6410 6x(2) 3020 9620 4x(2) 2720 7620 3x(2) 3010 7100 4x(2) 3850 9470 48 48 50 54 55 55 60 64 67 77 77 90 95 69 73.5 12 60 30 60 15 6.6 11 6.5 M8x1P 54 70 57 73 58 83 16 66 32 64 15 6.6 11 6.5 M8x1P 120 88 16 70 34 68 15 9 14 8.5 M8x1P 62 88.5 16 72 29 58 15 9 14 8.5 M8x1P 112 80 101 93 75 84 121 87 88 16 72 34 68 15 9 14 8.5 M8x1P 116 93 16 76 36 72 20 9 14 8.5 M8x1P 90 106 18 84 43 86 20 11 17.5 11 PT1/8" 118 123 143 126 73 94 74 FOIC L T S Q(oil hole) Q(oil hole) G H Q(oil hole) X Y Z W W W UNIT: mm BASIC RATE LOAD (Kgf ) Dynamic Static SCREW SIZE O.D. 50 63 75 LEAD BALL DIA. 5 3.175 6 3.969 8 4.762 10 6.35 12 7.938 6 3.969 EFFECTIVE (1x106 REV.) TURNS Ca Co 4x(2) 1730 6760 6x(2) 2450 10140 4x(2) 2380 8250 6x(2) 3370 12380 4x(2) 3010 9610 3x(2) 3430 9300 4x(2) 4390 12400 3x(2) 4510 11150 4x(2) 2610 10550 6x(2) 3700 15830 NUT Dg6 66 66 70 74 75 80 FLANGE L 80 101 93 FIT BOLT OIL HOLE STIFFNESS A T W G H S X Y 98 16 82 36 72 20 9 14 8.5 PT1/8" Q 144 103 82 36 72 20 9 119 113 18 90 42 84 20 11 17.5 11 PT1/8" 106 114 18 92 42 84 20 11 17.5 11 M8x1P 147 121 22 97 47 97 20 14 122 18 100 45 90 20 11 17.5 11 PT1/8" 123 143 96 121 14 8.5 PT1/8" 99 16 118 98 Z 20 150 87 112 13 PT1/8" 90 123 179 8 4.762 4x(2) 3375 12200 82 119 124 18 102 46 92 20 11 17.5 11 PT1/8" 127 10 6.35 4x(2) 5020 16450 85 147 132 22 107 48 96 20 14 20 12 7.938 3x(2) 6580 19430 90 147 136 22 112 52 104 20 18 26 17.5 PT1/8" 117 13 PT1/8" 134 R SIC L W h9 K H UNIT: mm BASIC RATE LOAD (Kgf ) SCREW SIZE BALL TURNS O.D. LEAD DIA. EFFECTIVE 16 5 3.175 3 5 3.175 6 3.969 5 3.175 20 25 6 5 32 6 3.969 3.175 3.969 8 4.762 10 6.35 5 3.175 6 3.969 40 8 10 4.762 6.35 Dynamic Static NUT KEYWAY STIFFNESS 6 (1x10 REV.) Ca Co 765 1240 3 860 1710 4 1100 2280 3 1080 2050 4 1380 2730 3 980 2300 4 1250 3070 3 1275 2740 4 1630 3650 3 1095 3060 4 1400 4080 6 1980 6120 3 1500 3750 4 1920 5000 6 2720 7500 3 1820 4230 4 2330 5640 3 2605 5310 4 3340 7080 4 1575 5290 6 2230 7940 4 2130 6410 6 3020 9620 4 2720 7620 6 3850 11430 3 3010 7100 4 3850 9470 Dg6 L K W H 30 40 20 3 1.8 20 3 1.8 20 25 4 2.5 20 4 2.5 34 36 40 42 48 50 52 56 54 56 60 65 41 48 46 56 41 48 46 20 56 25 41 20 48 20 61 25 46 20 56 25 70 32 59 25 70 32 68 25 79 32 48 20 61 25 56 25 70 32 70 25 91 40 68 25 79 32 4 2.5 23 22 28 22 29 26 34 27 35 32 4 2.5 42 62 33 5 3.0 43 64 5 3.0 6 3.5 4 2.5 5 5 6 3.0 3.0 3.5 33 44 34 45 50 74 52 77 53 79 42 54 76 RSIC L W h9 K H UNIT: mm BASIC RATE LOAD (Kgf ) SCREW SIZE O.D. BALL TURNS LEAD DIA. EFFECTIVE 5 3.175 6 50 8 10 12 6 3.969 4.762 6.35 7.938 3.969 8 4.762 10 6.35 12 7.938 10 6.35 12 7.938 63 80 16 20 77 9.525 9.525 Dynamic Static NUT KEYWAY STIFFNESS 6 (1x10 REV.) Dg6 L K 48 20 W H 4 2.5 Ca Co 4 1730 6760 6 2450 10140 4 2380 8250 6 3370 12380 4 3010 9610 6 4260 14420 3 3430 9300 4 4390 12400 6 6220 18600 102 40 97 3 4510 11150 82 40 51 4 5770 14870 95 40 4 2610 10550 56 25 6 3700 15830 70 32 4 3375 12200 70 32 6 4780 18300 91 40 4 5020 16450 6 7110 24680 4 6580 19430 6 9320 29150 4 5510 21200 6 7810 31800 4 7500 25700 6 10620 38550 3 9770 31700 4 12510 42270 3 9770 31700 4 12510 42270 65 68 70 74 78 80 82 88 92 105 110 115 115 61 25 56 25 70 32 70 32 91 40 68 32 79 32 79 32 102 40 95 40 123 50 79 32 102 40 95 40 123 50 106 40 124 50 126 50 149 63 5 5 3.0 3.0 60 89 62 92 64 94 50 6 6 3.5 3.5 6 3.5 6 3.5 8 4.0 8 4.0 8 4.0 8 4.0 10 5.0 10 5.0 66 68 75 110 77 114 80 118 82 121 97 143 100 147 86 113 86 113 RDIC L W h9 K H UNIT: mm BASIC RATE LOAD (Kgf ) SCREW SIZE BALL TURNS O.D. LEAD DIA. EFFECTIVE 16 5 3.175 5 3.175 20 6 3.969 5 3.175 6 3.969 5 3.175 25 32 6 8 10 40 3.969 4.762 6.35 5 3.175 6 3.969 8 4.762 10 6.35 Dynamic Static NUT KEYWAY STIFFNESS 6 (1x10 REV.) Ca Co 3 765 1240 3 860 1710 4 1100 2280 3 1080 2050 4 1380 2730 3 980 2300 4 1250 3070 Dg6 L K W H 30 72 20 3 1.8 20 3 1.8 34 36 40 75 85 87 20 103 25 75 85 20 2.5 1095 3060 4 1400 4080 6 1980 6120 105 25 99 3 1500 3750 87 20 52 4 1920 5000 103 25 6 2720 7500 127 32 3 1820 4230 109 25 4 2330 5640 3 2605 5310 4 3340 7080 4 1575 5290 6 2230 7940 4 2130 6410 6 3020 9620 4 2720 7620 6 3850 11430 3 3010 7100 4 3850 9470 56 60 65 20 4 3 54 20 85 2.5 2740 3650 56 75 4 54 1275 52 25 2.5 46 41 1630 50 20 4 45 35 3 48 87 2.5 34 4 42 103 4 37 127 32 135 25 155 32 85 20 105 25 103 25 127 32 127 25 161 40 135 25 155 32 42 56 51 5 3.0 67 69 101 5 6 3.0 3.5 4 2.5 5 3.0 5 3.0 6 3.5 53 70 55 72 81 119 83 121 85 125 66 87 78 RDIC L W h9 K H UNIT: mm BASIC RATE LOAD (Kgf ) SCREW SIZE O.D. BALL TURNS LEAD DIA. EFFECTIVE 5 3.175 6 3.969 8 4.762 10 6.35 50 12 7.938 6 3.969 8 4.762 10 6.35 12 7.938 63 10 80 12 16 20 79 6.35 7.938 9.525 9.525 Dynamic Static NUT KEY WAY STIFFNESS 6 (1x10 REV.) Ca Co 4 1730 6760 6 2450 10140 4 2380 8250 6 3370 12380 4 3010 9610 6 4260 14420 3 3430 9300 4 4390 12400 Dg6 65 68 70 74 L K 85 20 105 25 103 25 127 32 127 32 161 40 135 32 155 32 40 6 6220 18600 197 3 4510 11150 161 4 5770 14870 4 2610 10550 6 3700 15830 4 3375 12200 6 4780 18300 4 5020 16450 6 7110 24680 4 6580 19430 6 9320 29150 4 5510 21200 6 7810 31800 4 7500 25700 6 10620 38550 3 9770 31700 4 12510 42270 3 9770 31700 4 12510 42270 78 80 82 88 92 105 110 115 115 185 40 106 25 130 32 131 32 165 40 160 32 202 40 185 40 238 50 160 32 202 40 185 40 238 50 200 40 236 50 245 50 289 63 W H 4 2.5 5 3.0 5 3.0 6 3.5 96 141 99 146 102 149 80 105 155 6 3.5 6 3.5 6 3.5 8 4.0 8 4.0 8 8 10 10 4.0 4.0 5.0 5.0 82 107 119 176 122 180 127 188 130 192 154 226 159 234 136 179 136 179 13.3 High Lead Ballscrews High-lead Ball Screws are essential elements and parts for high-speed machine tools of next century. Features: It is important for a High-lead Ballscrew to be with characteristics of high rigidity, low noise and thermal control. PMI's designs and treatments are taken for following: High DN Value The DN value can be 130,000 in normal case. For some special cases, for example in a fixed ends case, the DN value can be as high as 140,000. Please contact our engineers for this special application. High Speed PMI's High-speed Ballscrews provide 100 m/min and even higher traverse speed for machine tools for high performance cutting. High Rigidity Both the screw and ballnut are surface hardened to a specific hardness and case depth to maintain high rigidity and durability. Multiple thread starts are available to make more steel balls loaded in the ballnut for higher rigidity and durability. Low Noise Special design of ball circulation tubes (patent pending) offer smooth ball circulation inside the ballnut. It also makes safe ball fast running into the tubes without damaging the tubes. Accurate ball circle diameter (BCD) through whole threads for consistent drag torque and low noise. 80 FSWE L Q(oil ( hole) S X Y T Z W UNIT: mm EFFECTIVE SCREW SIZE O.D. LEAD BALL DIA. 20 16 3.969 20 3.969 16 3.969 20 4.762 25 16 3.969 32 20 32 16 3.969 4.762 6.35 36 20 16 6.35 6.35 40 81 20 6.35 40 6.35 TURNS BASIC RATE LOAD (Kgf ) Dynamic Static (1x106 REV.) circuit xrow Ca Co 1.5x1 830 1530 2.5x1 1210 2380 1.5x1 830 1530 1.5x1 920 1930 2.5x1 1340 3000 NUT Dg6 46 46 58 L BOLT W G H S 73.5 13 59 21 42 10 5.5 9.5 5.5 M6x1P 66 73.5 13 59 21 42 10 5.5 9.5 5.5 M6x1P 23 75 68 X Y OIL HOLE STIFFNESS T 59 A FIT Z Q 23 33 26 85 15 71 32 64 15 6.6 11 6.5 M6x1P 85 15 71 32 64 15 6.6 11 6.5 M6x1P 28 83 108 15 90 41 82 15 84 1.5x1 1170 2300 1010 2480 2.5x1 1470 3860 3.5x1 1910 5240 99 60 1.5x1 1010 2480 74 31 2.5x1 1470 3860 1910 5240 75 38 1.5x1 3.5x1 58 FLANGE 67 74 74 94 108 15 1.5x1 1300 3010 2050 4450 73 2.5x1 2990 6920 89 3890 9390 5x1 4750 11860 2.5x1 2990 6920 3.5x1 3890 9390 90 41 82 15 9 14 8.5 M8x1P 45 14 8.5 M8x1P 45 114 1.5x1 3.5x1 31 9 74 75 60 100 108 15 105 90 41 82 15 9 14 8.5 M8x1P 33 44 118 16 96 38 76 15 11 17.5 8.5 M8x1P 121 78 100 120 1.5x1 2180 5000 76 2.5x1 3180 7780 92 3.5x1 4130 10560 86 108 61 74 90 118 16 98 38 76 15 11 17.5 8.5 M8x1P 56 74 44 128 18 106 49 98 15 11 17.5 11 PT1/8" 64 83 5x1 5050 13340 124 103 1.5x1 2180 5000 83 42 2.5x1 3180 7780 3.5x1 4130 10560 5x1 5050 13340 1.5x1 2180 5000 86 103 98 15 11 17.5 11 PT1/8" 123 128 18 106 49 98 15 11 17.5 11 PT1/8" 42 143 86 61 128 18 106 49 123 79 98 FSWE L Q(oil ( hole) S X Y T Z W UNIT: mm EFFECTIVE SCREW SIZE O.D. BALL LEAD DIA. 16 7.144 50 20 50 16 7.144 7.938 7.938 63 20 9.525 TURNS BASIC RATE LOAD (Kgf ) Dynamic Static NUT FLANGE FIT BOLT OIL HOLE STIFFNESS 6 circuit xrow (1x10 REV.) Ca Co 1.5x1 2790 7240 2.5x1 4080 11260 3.5x1 5300 15280 Dg6 L A T W G H S X Y Z Q 93 100 109 125 50 146 25 122 55 110 15 14 20 13 PT1/8" 73 96 5x1 6480 19300 141 117 1.5x1 2790 7240 104 50 2.5x1 4080 11260 3.5x1 5300 15280 5x1 6480 19300 1.5x1 3250 7770 1.5x1 3600 9920 2.5x1 5260 15430 3.5x1 6840 20940 100 124 144 146 25 122 55 110 15 14 20 13 PT1/8" 164 14 20 13 PT1/8" 53 99 115 131 96 117 105 157 152 25 128 58 116 20 120 73 61 180 28 150 72 144 25 18 26 17.5 PT1/8" 89 116 5x1 8360 26450 147 143 1.5x1 6070 16630 111 73 2.5x1 8870 25870 3.5x1 11530 35110 5x1 14090 44350 122 131 151 171 182 28 150 72 144 25 18 26 17.5 PT1/8" 105 137 169 82 FDWE L Q(oil hole) S X Y T Z W UNIT: mm EFFECTIVE SCREW SIZE O.D. LEAD BALL DIA. 20 16 3.969 20 3.969 16 3.969 20 4.762 25 16 3.969 32 20 3.969 32 4.762 16 6.35 36 20 16 6.35 6.35 40 20 40 83 6.35 6.35 TURNS BASIC RATE LOAD (Kgf ) Dynamic Static (1x106 REV.) circuit xrow Ca Co 1.5x1 830 1530 2.5x1 1210 2380 1.5x1 830 1530 1.5x1 920 1930 2.5x1 1340 3000 NUT Dg6 46 46 58 58 FLANGE L G H S 73.5 13 59 21 42 10 5.5 9.5 5.5 M6x1P 128 73.5 13 59 21 42 10 5.5 9.5 5.5 M6x1P 33 141 116 X Y OIL HOLE STIFFNESS W Z Q 32 64 15 6.6 11 6.5 M6x1P 135 85 15 71 32 64 15 6.6 11 6.5 M6x1P 41 1170 2300 2480 115 2.5x1 1470 3860 147 3.5x1 1910 5240 5x1 2340 6620 1.5x1 1010 2480 2.5x1 1470 3860 3.5x1 1910 5240 1.5x1 1300 3010 1.5x1 2050 4450 2.5x1 2990 6920 3.5x1 3890 9390 179 108 15 90 41 82 15 9 14 8.5 M8x1P 92 47 174 108 15 90 41 82 15 9 14 8.5 M8x1P 69 90 41 82 15 9 14 8.5 M8x1P 48 214 92 196 108 15 121 185 69 113 134 153 56 47 211 75 38 71 1010 74 50 15 1.5x1 74 34 85 148 1.5x1 74 BOLT T 109 A FIT 65 118 16 96 38 76 15 11 17.5 8.5 M8x1P 93 112 5x1 4750 11860 217 139 2.5x1 2990 6920 180 85 3.5x1 3890 9390 1.5x1 2180 5000 2.5x1 3180 7780 78 220 118 16 98 38 76 15 11 17.5 8.5 M8x1P 118 86 150 182 112 65 128 18 106 49 98 15 11 17.5 11 PT1/8" 97 3.5x1 4130 10560 5x1 5050 13340 214 159 62 1.5x1 2180 5000 143 2.5x1 3180 7780 183 3.5x1 4130 10560 5x1 5050 13340 1.5x1 2180 5000 86 92 128 18 106 49 98 15 11 17.5 11 PT1/8" 243 128 18 106 49 98 15 11 17.5 11 PT1/8" 62 223 263 86 128 121 150 FDWE L Q(oil hole) S Y X T Z W UNIT: mm EFFECTIVE SCREW SIZE O.D. BALL LEAD DIA. 16 7.144 50 20 50 16 7.144 7.938 7.938 63 20 9.525 TURNS BASIC RATE LOAD (Kgf ) Dynamic Static NUT FLANGE FIT BOLT OIL HOLE STIFFNESS 6 circuit xrow (1x10 REV.) Ca Co 1.5x1 2790 7240 2.5x1 4080 11260 3.5x1 5300 15280 Dg6 L A T W G H S X Y Z Q 141 100 173 205 75 146 25 122 55 110 15 14 20 13 PT1/8" 110 146 5x1 6480 19300 237 181 1.5x1 2790 7240 164 75 2.5x1 4080 11260 3.5x1 5300 15280 5x1 6480 19300 1.5x1 3250 7770 1.5x1 3600 9920 2.5x1 5260 15430 3.5x1 6840 20940 100 204 244 146 25 122 55 110 15 14 20 13 PT1/8" 284 14 20 13 PT1/8" 78 154 186 218 146 181 105 307 152 25 128 58 116 20 120 110 91 180 28 150 72 144 25 18 26 17.5 PT1/8" 138 179 5x1 8360 26450 250 222 1.5x1 6070 16630 171 107 2.5x1 8870 25870 3.5x1 11530 35110 5x1 14090 44350 122 211 251 291 182 28 150 72 144 25 18 26 17.5 PT1/8" 159 210 260 84 FSKC L Q(oil hole) 4-X Assembly Hole T W H EFFECTIVE SCREW SIZE 85 TURNS UNIT: mm BASIC RATE LOAD (Kgf ) Dynamic Static NUT FLANGE OIL HOLE STIFFNESS BOLT BALL DIA. circuit xrow Ca Co Dg6 L A T H W X Q (1x106 REV.) O.D. LEAD 15 10 3.715 2.8x2 1410 2800 34 44 57 10 40 45 5.5 M6x1P 34 16 16 3.175 1.8x2 700 1400 32 38 53 10 38 42 4.5 M6x1P 18 20 20 3.175 1.8x2 1100 2500 39 52 62 10 46 50 5.5 M6x1P 29 25 25 3.969 1.8x2 1650 3900 1.8x4 2830 7800 47 62 74 12 56 60 6.6 M6x1P 1.8x2 2360 5940 1.8x4 4280 11800 2.8x2 6450 15220 1.8x2 3860 9900 1.8x4 7000 19880 32 32 4.762 36 24 7.144 40 40 6.35 58 78 92 15 68 74 9 M6x1P 75 94 115 18 86 94 11 M6x1P 73 95 114 17 84 93 11 M6x1P 35 69 44 87 77 55 108 Rolled BallScrews Features: 1. Lower cost: Since the manufacturing process for a rolled screw is less than that of a ground one. Hence the cost for rolled screw is lower. 2. Faster delivery: There are standard ballnuts and screw shafts in stock. The delivery for rolled Ballscrews are made faster than the ground ones. Lead accuracy: PMI rolled Ballscrews are rolled by using German CNC rolling machine. It can well control the straightness; circleness and of Ballscrews. The lead accuracy of PMI rolled Ballscrews can be as good as 0.018 mm/300 mm. 87 FSWW 4-X Assembly Holes Q(oil hole) W H ITEM SCREW NO. O.D. LEAD BALL EFFECTIVE DIA. TURNS BASIC RATED LOAD (Kg ( gf ) STATIC circuit x row DYNAMIC 6 (1x10 REV.) Ca AXIAL PLAY O.D. D Length L A 0.10 35 34 57 990 0.10 40 40 57 625 1450 0.10 44 41 67 2.5x1 1100 2200 0.15 52 61 82 3.175 2.5x1 720 1830 0.10 50 41 73 5 3.175 2.5x2 1120 3710 0.10 50 56 73 25 10 6.350 2.5x1 1720 3590 0.20 60 69 96 8 25 10 6.350 2.5x2 3200 7170 0.20 60 97 96 9 32 10 6.350 2.5x1 1930 4680 0.20 67 69 103 10 32 10 6.350 2.5x2 3130 9410 0.20 67 97 103 11 40 10 6.350 2.5x2 3520 12000 0.20 76 100 116 12 50 10 6.350 2.5x2 3900 15000 0.20 88 101 128 13 50 10 6.350 3.5x2 4940 21000 0.20 88 126 128 Co d l 1 14 4 2.381 3.5x1 500 1100 2 14 5 3.175 2.5x1 515 3 20 5 3.175 2.5x1 4 20 10 4.762 5 25 5 6 25 7 Note: Stiffness of nut: Stiffness values listed above are derived from theoretical formula to the elastic deformation between thread grooves and balls while axial load is 30% dynamic load rating. Refer to P.15. 89 FSWW L T Temporary Dummy Shaft Ls UNIT:mm BALLNUT DIMENSION SCREW SPINDLE Assembly Hole STIFFNESS X Oil Hole Q - 4.5 M6x1P 40 - 4.5 10 55 52 12 67 11 Flange T W NUT MODEL NO. Root DIA. dr H 10 40 15 9RFSWW1404-3.5P 10 M6x1P 11 5.5 M6x1P 64 6.6 61 56 11 61 15 Standard Screw Length Screw Model Ls NO. 12.00 500 1000 PS1404A 9RFSWW1405-2.5P 11.42 500 1000 PS1405A 15 9RFSWW2005-2.5P 17.42 500 1000 1500 PS2005A M6x1P 16 9RFSWW2010-2.5P 16.23 500 1000 1500 PS2010A 6.6 M6x1P 18 9RFSWW2505-2.5P 22.42 1000 2000 2500 PS2505A 56 6.6 M6x1P 37 9RFSWW2505-5.0P 22.42 1000 2000 2500 PS2505A 78 72 9 M6x1P 21 9RFSWW2510-2.5P 20.05 1000 2000 2500 PS2510A 15 78 72 9 M6x1P 40 9RFSWW2510-5.0P 20.05 1000 2000 2500 PS2510A 15 85 78 9 M6x1P 25 9RFSWW3210-2.5P 27.05 1000 2000 2500 PS3210A 15 85 78 9 M6x1P 49 9RFSWW3210-5.0P 27.05 1000 2000 2500 PS3210A 17 96 88 11 M6x1P 59 9RFSWW4010-5.0P 35.05 2000 3000 3500 PS4010A 18 108 100 11 PT1/8" 72 9RFSWW5010-5.0P 45.05 2000 3000 3500 PS5010A 18 108 100 11 M6x1P 98 9RFSWW5010-7.0P 45.05 2000 3000 3500 PS5010A 90 FSVW Q(oil hole) V 5-X Assembly Holes W U G ITEM SCREW LEAD NO. O.D. BALL DIA. ( gf ) (Kg EFFECTIVE DYNAMIC 6 (1x10 REV.) circuit xrow Ca TURNS STATIC AXIAL PLAY O.D. D Length L A T Flange W 0.10 25 42 55 10 40 990 0.10 30 43 50 10 40 550 1140 0.10 34 43 54 10 44 2.5x1 625 1450 0.15 40 43 60 12 50 4.762 2.5x1 1100 2200 0.10 40 60 67 12 53 5 3.175 2.5x1 720 1830 0.20 42 45 71 12 57 25 5 3.175 2.5x2 1120 3710 0.20 42 60 71 12 57 8 25 10 6.350 2.5x1 1720 3590 0.20 44 68 79 15 62 9 25 10 6.350 2.5x2 3200 7170 0.20 44 98 79 15 62 10 32 10 6.350 2.5x1 1930 4680 0.20 55 72 97 18 75 11 32 10 6.350 2.5x2 3130 9410 0.20 55 101 97 18 75 12 40 10 6.350 3.5x2 4450 16800 0.20 65 123 114 20 90 13 50 10 6.350 3.5x2 4940 21000 0.20 80 125 138 22 110 Co d l 1 14 4 2.381 3.5x1 500 1100 2 14 5 3.175 2.5x1 515 3 16 5 3.175 2.5x1 4 20 5 3.175 5 20 10 6 25 7 Note: Stiffness of nut: Stiffness values listed above are derived from theoretical formula to the elastic deformation between thread grooves and balls while axial load is 30% dynamic load rating. Refer to P.15. 91 FSVW L Temporary Dummy Shaft T Ls UNIT:mm BALLNUT DIMENSION G Return tube U V SCREW SPINDLE Assembly Hole STIFFNESS X Oil Hole Q NUT MODEL NO. Root DIA. dr Standard Screw Length Screw Model Ls NO. 19 19 21 4.5 M6x1P 15 9RFSVW1404-3.5P 12.00 500 1000 PS1404A 22 22 21 4.5 M6x1P 11 9RFSVW1405-2.5P 11.42 500 1000 PS1405A 24 20 22 4.5 M6x1P 13 9RFSVW1605-2.5P 13.42 500 1000 1500 PS1605A 28 28 27 4.5 M6x1P 15 9RFSVW2005-2.5P 17.42 500 1000 1500 PS2005A 30 30 30 6.6 M6x1P 16 9RFSVW2010-2.5P 16.23 500 1000 1500 PS2010A 28 28 32 6.6 M6x1P 18 9RFSVW2505-2.5P 22.42 1000 2000 2500 PS2505A 28 28 32 6.6 M6x1P 37 9RFSVW2505-5.0P 22.42 1000 2000 2500 PS2505A 34 34 37 9.0 M6x1P 21 9RFSVW2510-2.5P 20.05 1000 2000 2500 PS2510A 34 34 37 9.0 M6x1P 40 9RFSVW2510-5.0P 20.05 1000 2000 2500 PS2510A 39 39 44 11 M6x1P 25 9RFSVW3210-2.5P 27.05 1000 2000 2500 PS3210A 39 39 44 11 M6x1P 49 9RFSVW3210-5.0P 27.05 1000 2000 2500 PS3210A 44 44 52 14 M6x1P 81 9RFSVW4010-7.0P 35.05 2000 3000 3500 PS4010A 52 52 62 18 M6x1P 98 9RFSVW5010-7.0P 45.05 2000 3000 3500 PS5010A 92 RSVW V U ITEM SCREW NO. O.D. LEAD BALL EFFECTIVE DIA. TURNS BASIC RATED LOAD (Kg ( gf ) STATIC circuit x row DYNAMIC 6 (1x10 REV.) Ca AXIAL PLAY O.D. D Length L 0.10 25 42 990 0.10 30 43 625 1450 0.10 40 43 2.5x1 720 1830 0.10 42 48 3.175 2.5x2 1120 3710 0.10 42 63 10 6.350 2.5x1 1720 3590 0.20 44 68 25 10 6.350 2.5x2 3200 7170 0.20 44 98 8 32 10 6.350 2.5x1 1930 4680 0.20 55 72 9 32 10 6.350 2.5x2 3130 9410 0.20 55 101 10 40 10 6.350 3.5x2 4450 16800 0.20 65 128 11 50 10 6.350 3.5x2 4940 21000 0.20 80 143 Co d l 1 14 4 2.381 3.5x1 500 1100 2 14 5 3.175 2.5x1 515 3 20 5 3.175 2.5x1 4 25 5 3.175 5 25 5 6 25 7 Note: Stiffness of nut: Stiffness values listed above are derived from theoretical formula to the elastic deformation between thread grooves and balls while axial load is 30% dynamic load rating. Refer to P.15. 93 RSVW Temporary Dummy Shaft L Ls M T UNIT:mm BALLNUT DIMENSION Flange SCREW SPINDLE STIFFNESS M T Return Tube U V NUT MODEL NO. Root DIA. dr M24x1.0P 10 19 21 15 9RRSVW1404-3.5P M26x1.5P 10 22 21 11 M36x1.5P 12 28 27 M40x1.5P 15 28 M40x1.5P 15 M42x1.5P Standard Screw Length Screw Model Ls NO. 12.00 500 1000 PS1404A 9RRSVW1405-2.5P 11.42 500 1000 PS1405A 15 9RRSVW2005-2.5P 17.42 500 1000 1500 PS2005A 32 18 9RRSVW2505-2.5P 22.42 1000 2000 2500 PS2505A 28 32 37 9RRSVW2505-5.0P 22.42 1000 2000 2500 PS2505A 15 34 37 21 9RRSVW2510-2.5P 20.05 1000 2000 2500 PS2510A M42x1.5P 15 34 37 40 9RRSVW2510-5.0P 20.05 1000 2000 2500 PS2510A M50x1.5P 18 39 44 25 9RRSVW3210-2.5P 27.05 1000 2000 2500 PS3210A M50x1.5P 18 39 44 49 9RRSVW3210-5.0P 27.05 1000 2000 2500 PS3210A M60x2.0P 25 44 52 81 9RRSVW4010-7.0P 35.05 2000 3000 3500 PS4010A M75x2.0P 40 52 62 98 9RRSVW5010-7.0P 45.05 2000 3000 3500 PS5010A 94 FSBW Q(oil hole) 4-X Assembly Holes W H ITEM SCREW NO. O.D. LEAD BALL EFFECTIVE DIA. TURNS BASIC RATED LOAD (Kg ( gf ) STATIC circuit x row DYNAMIC 6 (1x10 REV.) Ca AXIAL PLAY O.D. D Length L A 0.10 22 34 41 320 0.10 24 34 44 350 600 0.10 26 41 47 2.5x1 270 350 0.10 26 34 47 2.000 2.5x1 270 350 0.10 26 40 47 4 2.381 3.5x1 545 1100 0.10 31 40 50 14 5 3.175 2.5x1 535 990 0.10 32 40 50 8 16 5 3.175 2.5x1 570 1130 0.10 34 40 54 9 20 4 2.381 2.5x1 415 850 0.10 40 41 59 10 20 5 3.175 2.5x1 650 1450 0.10 40 40 59 11 25 4 2.381 2.5x1 450 980 0.10 43 41 67 12 25 5 3.175 2.5x1 720 1800 0.10 43 40 67 Co d l 1 8 2.5 2.000 2.5x1 220 260 2 10 2.5 2.000 2.5x1 250 3 10 4 2.381 2.5x1 4 12 2.5 2.000 5 12 5 6 14 7 Note: Stiffness of nut: Stiffness values listed above are derived from theoretical formula to the elastic deformation between thread grooves and balls while axial load is 30% dynamic load rating. Refer to P.15. 95 FSBW L Temporary Dummy Shaft T Ls UNIT:mm BALLNUT DIMENSION SCREW SPINDLE Assembly Hole STIFFNESS X Oil Hole Q 26 4.5 M6x1P 34 28 4.5 10 37 30 10 37 10 Flange T W NUT MODEL NO. Root DIA. dr H 8 31 5.0 9RFSBW0825-2.5P 8 M6x1P 6.5 4.5 M6x1P 30 4.5 37 30 10 40 10 Standard Screw Length Screw Model Ls NO. 6.40 200 300 PS0825A 9RFSBW1025-2.5P 8.40 200 300 PS1025A 7.5 9RFSBW1004-2.5P 8.00 300 500 PS1004A M6x1P 8.2 9RFSBW1225-2.5P 10.40 500 1000 PS1225A 4.5 M6x1P 8.2 9RFSBW1205-2.5P 10.40 500 1000 PS1205A 37 4.5 M6x1P 15 9RFSBW1404-3.5P 12.00 500 1000 PS1404A 40 38 4.5 M6x1P 11 9RFSBW1405-2.5P 11.42 500 1000 PS1405A 10 44 40 4.5 M6x1P 13 9RFSBW1605-2.5P 13.42 500 1000 PS1605A 10 50 46 4.5 M6x1P 14 9RFSBW2004-2.5P 18.00 500 1000 1500 PS2004A 10 50 46 4.5 M6x1P 16 9RFSBW2005-2.5P 17.42 500 1000 1500 PS2005A 10 55 50 4.5 M6x1P 17 9RFSBW2504-2.5P 23.00 500 1000 1500 PS2504A 10 55 50 5.5 M6x1P 18 9RFSBW2505-2.5P 22.42 500 1000 1500 PS2505A 96 FSIW 60Ą 60Ą 60Ą 60Ą Q(oil hole) Q(oil hole) G H Q(oil hole) 60Ą 60Ą W W ITEM SCREW LEAD NO. O.D. BALL DIA. EFFECTIVE TURNS BASIC RATED LOAD (Kg ( gf ) DYNAMIC 6 (1x10 REV.) Ca STATIC W AXIAL PLAY O.D. Length D L A T Flange W G 0.10 26 47 46 10 36 - 1030 0.10 30 42 49 10 39 20 830 1890 0.10 34 53 57 12 45 20 4 940 2420 0.10 40 53 63.5 12 51 22 3.175 4 1050 3390 0.10 48 53 73.5 12 60 30 10 6.350 4 2510 5880 0.20 54 90 88 16 70 34 40 5 3.175 4 1180 4390 0.10 55 56 88.5 16 72 29 8 40 10 6.350 4 2630 7860 0.20 64 93 106 18 84 43 9 50 10 6.350 4 2770 10290 0.20 74 93 116 18 94 42 Co d l 1 14 4 2.381 4 400 890 2 16 5 3.175 3 570 3 20 5 3.175 4 4 25 5 3.175 5 32 5 6 32 7 Note: Stiffness of nut: Stiffness values listed above are derived from theoretical formula to the elastic deformation between thread grooves and balls while axial load is 30% dynamic load rating. Refer to P.15. 97 FSIW L T S Temporary Dummy Shaft Ls X Y Z UNIT:mm BALLNUT DIMENSION Fit SCREW SPINDLE Assembly Hole Oil Hole STIFFNESS NUT MODEL NO. Root DIA. dr Standard Screw Length Screw Model Ls NO. 12.00 500 1000 PS1404A 9RFSIW1605-3.0P 13.42 500 1000 1500 PS1605A 21 9RFSIW2005-4.0P 17.42 500 1000 1500 PS2005A M6x1P 26 9RFSIW2505-4.0P 22.42 1000 2000 2500 PS2505A 6.5 M8x1P 32 9RFSIW3205-4.0P 29.42 1000 2000 2500 PS3205A 14 8.5 M8x1P 34 9RFSIW3210-4.0P 27.05 1000 2000 2500 PS3210A 9 14 8.5 M8x1P 38 9RFSIW4005-4.0P 37.42 2000 3000 3500 PS4005A 20 11 17.5 11 M8x1P 41 9RFSIW4010-4.0P 35.05 2000 3000 3500 PS4010A 20 11 17.5 11 M8x1P 50 9RFSIW5010-4.0P 45.05 2000 3000 3500 PS5010A H S X Y Z Q - 10 4.5 8 4.5 M6x1P 18 9RFSIW1404-4.0P 40 10 4.5 - - M6x1P 17 40 12 5.5 9.5 5.5 M6x1P 44 15 5.5 9.5 5.5 60 15 6.6 11 68 15 9 58 15 86 84 98 SSVW Oil Hole M6x1P 4-JxK Assembly Holes W B F G H ITEM SCREW NO. O.D. LEAD BALL DIA. EFFECTIVE TURNS BASIC RATED LOAD (Kg ( gf ) STATIC circuit x row DYNAMIC 6 (1x10 REV.) Ca AXIAL PLAY Length Width Height Assembly Hole Co d l 1 14 4 2.381 3.5x1 545 1110 2 14 5 3.175 2.5x1 535 3 16 5 3.175 2.5x1 4 20 5 3.175 5 20 10 6 25 7 U L W H A B 0.10 35 34 13 22 26 990 0.10 35 34 13 22 26 590 1210 0.10 35 42 16 22 32 2.5x1 650 1450 0.10 35 48 17 22 35 4.762 2.5x1 1100 2220 0.15 58 48 18 35 35 5 3.175 2.5x1 720 1850 0.10 35 60 20 22 40 25 10 6.350 2.5x2 3240 7170 0.20 94 60 23 60 40 8 28 6 3.175 2.5x2 1380 4140 0.10 67 60 22 40 40 9 32 10 6.350 2.5x1 2010 4700 0.20 64 70 26 45 50 10 32 10 6.350 2.5x2 3640 9410 0.20 94 70 26 60 50 Note: Stiffness of nut: Stiffness values listed above are derived from theoretical formula to the elastic deformation between thread grooves and balls while axial load is 30% dynamic load rating. Refer to P.15. 99 SSVW L C E Temporary Dummy Shaft A Ls UNIT:mm BALLNUT DIMENSION Position of Oil Hole SCREW SPINDLE Height from Reference Surface STIFFNESS NUT MODEL NO. Root DIA. dr Standard Screw Length Screw Model Ls NO. 12.00 500 1000 PS1404A 9RSSVW1405-2.5P 11.42 500 1000 PS1405A 13 9RSSVW1605-2.5P 13.42 500 1000 1500 PS1605A 22 15 9RSSVW2005-2.5P 17.42 500 1000 1500 PS2005A 9.5 30 16 9RSSVW2010-2.5P 16.23 500 1000 1500 PS2010A 5 9.5 25 18 9RSSVW2505-2.5P 22.42 1000 2000 2500 PS2505A 10 - 10 30 40 9RSSVW2510-5.0P 20.05 1000 2000 2500 PS2510A M8x12 8 5 10 27 39 9RSSVW2806-5.0P 25.42 1000 2000 2500 PS2806A 9.5 M8x12 10 - 12 36 25 9RSSVW3210-2.5P 27.05 1000 2000 2500 PS3210A 17 M8x12 10 - 12 36 49 9RSSVW3210-5.0P 27.05 1000 2000 2500 PS3210A C JxK E F G U 6.5 M4x7 6 2 6 18 15 9RSSVW1404-3.5P 6.5 M4x7 6 2 6 18 11 6.5 M5x8 6 2 8 21 6.5 M6x10 6 3 9.15 11.5 M6x10 10 2 6.5 M8x12 7 17 M8x12 13.5 100 FSKW Q(oil hole) 4-X Assembly Holes 30Ą 30Ą W H ITEM SCREW NO. O.D. LEAD BALL EFFECTIVE DIA. TURNS BASIC RATED LOAD (Kg ( gf ) STATIC circuit x row DYNAMIC 6 (1x10 REV.) Ca AXIAL PLAY O.D. D Length L A 0.10 34 44 57 640 0.10 32 38 53 780 2280 0.10 39 52 62 1.8x2 1230 3570 0.10 47 64 74 3.969 1.8x4 2230 7140 0.10 47 64 74 32 4.762 1.8x2 1760 5500 0.15 58 78 92 32 32 4.762 1.8x4 3200 11000 0.15 58 78 92 8 40 40 6.350 1.8x2 2870 9170 0.20 73 95 114 9 40 40 6.350 1.8x4 5220 18340 0.20 73 95 114 Co d l 1 15 10 3.175 2.8x2 1000 2570 2 16 16 3.175 1.8x1 330 3 20 20 3.175 1.8x2 4 25 25 3.969 5 25 25 6 32 7 Note: Stiffness of nut: Stiffness values listed above are derived from theoretical formula to the elastic deformation between thread grooves and balls while axial load is 30% dynamic load rating. Refer to P.15. 101 FSKW L Temporary Dummy Shaft T Ls UNIT:mm BALLNUT DIMENSION SCREW SPINDLE Assembly Hole STIFFNESS X Oil Hole Q 40 5.5 M6x1P 42 38 4.5 10 50 46 12 60 12 Flange T W NUT MODEL NO. Root DIA. dr H 10 45 26 9RFSKW1510-5.6P 10 M6x1P 9 5.5 M6x1P 56 6.6 60 56 15 74 15 Standard Screw Length Screw Model Ls NO. 12.42 500 1000 PS1510A 9RFSKW1616-1.8P 13.42 500 1000 1500 PS1616A 21 9RFSKW2020-3.6P 17.42 500 1000 1500 PS2020A M6x1P 27 9RFSKW2525-3.6P 21.73 1000 2000 2500 PS2525A 6.6 M6x1P 52 9RFSKW2525-7.2P 21.73 1000 2000 2500 PS2525A 68 9 M6x1P 33 9RFSKW3232-3.6P 28.23 1000 2000 2500 PS3232A 74 68 9 M6x1P 65 9RFSKW3232-7.2P 28.23 1000 2000 2500 PS3232A 17 93 84 11 M6x1P 42 9RFSKW4040-3.6P 35.05 2000 3000 3500 PS4040A 17 93 84 11 M6x1P 81 9RFSKW4040-7.2P 35.05 2000 3000 3500 PS4040A 102
Benzer belgeler
D‹fiS‹Z EMT BORU AKSESUARLARI
BORU ‹Ç‹N BUAT, ARMATÜR VE PANO’YA SONLANDIRMA RAKORLARI
ÇEL‹K SIKMALI RAKOR/STEEL COMPRESSION CONNECTORS
Rakorlar Diflsiz EMT Borular› buat, armatür, pano ve benzeri yerlerde sonland›rmada kullan›...
versacut - Machine Solutions Inc.
throat and rugged backgauge running on ballscrews by motors
with brake makes it a versatile shear to run low volume/high mix
product runs as well as thin strips of all thicknesses
Automatic angle a...
PLAZMA KESME MAKİNELERİ • PLASMA CUTTING MACHINES
is placed as a leading manufacturer and global supplier of sheet
metal working machinery specialising in the production of press brakes,
shears, notchers, punching machines, laser cutting systems, ...