G3-1 - bilişim teknolojileri enstitüsü
Transkript
G3-1 - bilişim teknolojileri enstitüsü
01.07.2014 UYGU 2104 – Uydu Yer Gözlem Uygulamaları Yaz Okulu TÜBİTAK Introduction to Microwave Remote Sensing Mehmet Kurum TÜBİTAK BİLGEM Bilişim Teknolojileri Enstitüsü WED.AM1 Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi Content UYGU 2014 TÜBİTAK PART I – Fundamentals Reference Books Motivation • • brightness temperature and emissivity Radiometer systems • antenna concepts, arrays Passive microwave remote sensing and radiometry • Lossless, lossy media, layered media Antenna systems in microwave remote sensing • Why microwaves for remote sensing? Plane wave propagation, reflection, refraction, and attenuation system noise, Dicke radiometer Radar systems • range equation, Doppler effects, fading PART II – Specific Examples (Friday) Scattering and emission from natural targets • surface scatter, volume scatter, the sea, ice, snow, vegetation Microwave remote sensing applications • sea ice, oceans, vegetation, etc. Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi 2 1 01.07.2014 References UYGU 2014 TÜBİTAK Fundamental Books Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi Fundemental Books – Ulaby et. al. 3 UYGU 2014 TÜBİTAK Ulaby, F. T., R. K. Moore, and A.K. Fung, Microwave Remote Sensing: Active and Passive, Vol. I -- Microwave Remote Sensing Fundamentals and Radiometry, Addison-Wesley, Advanced Book Program, Reading, Massachusetts, 1981, 456 pages. Ulaby, F. T., R. K. Moore, and A.K. Fung, Microwave Remote Sensing: Active and Passive, Vol. II -- Radar Remote Sensing and Surface Scattering and Emission Theory, Addison-Wesley, Advanced Book Program, Reading, Massachusetts, 1982, 609 pages. Ulaby, F. T., R. K. Moore, and A. K. Fung, Microwave Remote Sensing: Active and Passive, Vol. III -- Volume Scattering and Emission Theory, Advanced Systems and Applications, Artech House, Inc., Dedham, Massachusetts, 1986, 1100 pages Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi 4 2 01.07.2014 Books – Ulaby and Long UYGU 2014 TÜBİTAK Ulaby and Long, Microwave Radar and Radiometric Remote Sensing, University of Michigan Press, 2014, 1116 pages. Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi Books – Tsang et. al. 5 UYGU 2014 TÜBİTAK L. Tsang, J. A. Kong, and R. Shin, Theory of Microwave Remote Sensing, Wiley-Interscience, New York, 1985. L. Tsang, J.A. Kong, and K.H. Ding, Scattering of Electromagnetic Waves, Vol. 1:Theory and Applications , Wiley Interscience, 2000, 426 pages. L. Tsang, J.A. Kong, K.H. Ding and C.O. Ao, Scattering of Electromagnetic Waves, Vol. 2: Numerical Simulations, Wiley Interscience, 2001, 705 pages. L. Tsang and J.A. Kong, Scattering of Electromagnetic Waves, Vol. 3: Advanced Topics, Wiley Interscience, 2001, 413 pages. Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi 6 3 01.07.2014 Books - Ishimaru UYGU 2014 TÜBİTAK Akira Ishimaru, Wave Propagation and Scattering in Random Media: Single scattering and transport theory, Academic Press, 1978 - 572 pages Akira Ishimaru, Wave Propagation and Scattering in Random Media: Multiple Scattering, Turbulence, Rough Surfaces, and Remote Sensing, Academic Press, 1978 - 250 pages Akira Ishimaru, Wave Propagation and Scattering in Random Media, Wiley-IEEE Press, 1999 600 pages Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi Books - Fung 7 UYGU 2014 TÜBİTAK Adrian K. Fung, Microwave Scattering and Emission Models and their Applications, Artech House Remote Sensing, 1994 - 592 pages Adrian K. Fung , K. S. Chen, Microwave Scattering and Emission Models for Users, Artech House Remote Sensing, 2009 - 430 pages Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi 8 4 01.07.2014 Books - Elachi UYGU 2014 TÜBİTAK C. Elachi, Introduction To The Physics and Techniques of Remote Sensing, Wiley-Interscience, New York, 1987, 432 pages. C. Elachi, F. T. Ulaby, Radar Polarimetry for Geoscience Applications, Artech House, 1990, 388 pages. Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi Books - Matzler 9 UYGU 2014 TÜBİTAK C. Matzler, Thermal Microwave Radiation: Applications for Remote Sensing , The Institution of Engineering and Technology, 2006 - 584 pages Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi 10 5 01.07.2014 Content UYGU 2014 TÜBİTAK Motivation Why Microwaves for Remote Sensing? Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi Emission Spectrum, Atmospheric Tranmissivity 11 UYGU 2014 TÜBİTAK Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi 12 6 01.07.2014 Microwave Atmospheric Window UYGU 2014 TÜBİTAK Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi Microwave remote sensing background 13 UYGU 2014 TÜBİTAK Optical remote sensing has been around a long time • • • • • Uses the visible part of the electromagnetic spectrum Instrumentation includes the human eye, cameras, telescopes Has problems with clouds, rain, fog, snow, smoke, smog, etc. Cannot penetrate soil, vegetation, snowpack, ice Relies on ambient light sources (e.g., sunlight) Microwave remote sensing is less than 100 years old • • • • • Uses the microwave and RF parts of the spectrum Instrumentation includes radars and radiometers Is largely immune to clouds, precipitation, smoke, etc. Penetrates sand, soil, rock, vegetation, dry snow, ice, etc. Does not rely on sunlight – radar provides its own illumination, radiometers use the target’s thermal emission Data from microwave sensors complement data from optical sensors Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi 14 7 01.07.2014 Microwave Sensors UYGU 2014 TÜBİTAK Microwave Sensors Active (Radars) Real Aperture Synthetic Aperture (SAR) Passive (Radiometers) Real Aperture Synthetic Aperture (Interferomters) Scatteromters Altimeters Weather Radars Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi Basic elements of a remote sensing radar instrument 15 UYGU 2014 Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi TÜBİTAK 16 8 01.07.2014 Key elements of a microwave radiometer UYGU 2014 TÜBİTAK Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi Microwave Remote Sensing 17 UYGU 2014 TÜBİTAK Microwave Remote Sensing 0.3 - 300 GHz ( wavelength 1 m - 1 mm ) Active Passive (Radiation or TB [K]) Radiometers TB = e T Where e is emissivity and T is physical temperature (Backscattering σ0 [dB ]) Radar depends on dielectric properties of soil, geometric properties and system parameters. σ0 Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi 18 9 01.07.2014 Application of Remote Sensing UYGU 2014 TÜBİTAK Atmosphere(e.g. temperature, water vapour, rain intensity, etc.) Sea(e.g. winds, salinity, etc.) Ice (e.g. depth, age, etc.) Land (e.g. soil moisture, crop biomass, forest biomass, classification) Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi Basic Rationale for Applications 19 UYGU 2014 TÜBİTAK Instrument outputs may be related to surface variables The relationship defines a “model” Physical models Empirical models Combinations Forward Microwave Measurements Model Target Parameters. Inversion Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi 20 10 01.07.2014 Steps UYGU 2014 TÜBİTAK Adopting a convenient instrument (suitable selection of frequency, look angle, revisit time, etc.) Developing a reliable model (direct problem) surface variables -> instrument outputs Retrieval (inverse problem) instrument outputs -> surface variables Forward Microwave Measurements Model Target Parameters. Inversion Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi Radiometric Sensitivity 21 UYGU 2014 TÜBİTAK The arrows indicate the SMMR frequencies. The signs have been chosen to be positive in the frequency range of primary importance to the given parameter [from Wilheit et al., 1980]. Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi 22 11 01.07.2014 Main physical processes UYGU 2014 TÜBİTAK Surface Scattering Sea, bare soil, etc. Volume Scattering vegetation, snow, etc. Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi Passive Microwave Applications 23 UYGU 2014 TÜBİTAK Soil moisture Snow water equivalent Sea/lake ice extent, concentration and type Sea surface temperature Atmospheric water vapor Surface wind speed only over the oceans Cloud liquid water Rainfall rate Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi 24 12 01.07.2014 Imaging Radar Applications UYGU 2014 TÜBİTAK Environmental Monitoring Vegetation mapping Monitoring vegetation regrowth, timber yields Detecting flooding underneath canopy, flood plain mapping Assessing environmental damage to vegetation Hydrology Soil moisture maps and vegetation water content monitoring Snow cover and wetness maps Measuring rain-fall rates in tropical storms Oceanography Monitoring and routing ship traffic Detection oil slicks (natural and man-made) Measuring surface current speeds Sea ice type and monitoring for directing ice-breakers Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi Applications to Forestry 25 UYGU 2014 TÜBİTAK National agencies/companies Clear cut mapping / regeneration assessment Disturbances Infrastructure mapping / operations support Forest inventory / biomass estimation Vegetation density Species inventory Environmental Monitoring Deforestation Species inventory/ habitat mapping Watershed protection Coastal protection Forest health and vigour Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi 26 13 01.07.2014 Examples of SAR Applications UYGU 2014 TÜBİTAK Frequency Band Ka Ku X C S L P Frequency [GHz] 40-25 17.6-12 12-7.5 7.5-3.75 3.75-2 2-1 0.5-0.25 Wavelength [cm] 0.75-1.2 1.7-2.5 2.5-4 4-8 8-15 15-30 60-120 Foliage Penetration ● ● Subsurface Imaging ● ● ● ● Biomass Estimation Agriculture ● ● ● ● Ocean ● ● ● ● Ice ● ● ● ● Subsidance Monitoring ● ● ● ● Snow monitoring VHR Imaging ● ● ● ● Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi Hydrological Applications 27 UYGU 2014 TÜBİTAK The availability of soil moisture data on a global basis is required to better assist the water, energy, and biogeochemistry communities. Weather & Climate Forecasting Drought Early Warning and Decision support Floods & Landslides Agricultural Productivity Human Health Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi 28 14 01.07.2014 Evolution of Soil Moisture Mapping UYGU 2014 TÜBİTAK Soil Moisture Sensing Technology Broad science, high spatial resolution, higher sensitivity (10 km) Improved global mapping (50 km) SMAP SMOS AMSR Large scale mapping and integrated hydrologic research (1 km) ESTAR Exploration of spatial/temporal concepts (100 m) PBMR Field Experiments 1970s 1980s Limited global mapping, demonstrate feasibility (50km) Ground and aircraft development verification of theory (1 m) 1990s 2000s 2010s Time Period Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi L-Band Soil Moisture Space Missions 29 UYGU 2014 TÜBİTAK [scheduled to launch November in 2014] [launched in November, 2009] SMOS: Soil Moisture and Ocean Salinity Mission A combined L-band radiometer and high-resolution radar to produce a global 10 km surface soil moisture data product An L-band, 2-dimensional interferometric radiometer design providing a resolution of 50 km Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi 30 15 01.07.2014 Ground and Airborne Observations UYGU 2014 TÜBİTAK Calibration / validation of satellite measurements during the mission Refinement of current algorithm parameterizations to improve the accuracy of microwave moisture retrievals Acquisition of long-term measurements to assess seasonal to year-round changes Examination of “specific” scenes such as the continuum of trees from small orchards to mature forests to extend accurate soil moisture retrievals to denser land covers Improved understanding of spatial scaling and scene heterogeneity issues Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi Content 31 UYGU 2014 TÜBİTAK EM theory and its application to microwave remote sensing Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi 32 16 01.07.2014 EM theory and its application to microwave remote sensing UYGU 2014 TÜBİTAK Plane wave propagation Lossless media Lossy media Polarization Fresnel reflection and transmission Layered media EM spectra, bands, and energy sources Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi Plane Wave Propagation 33 UYGU 2014 TÜBİTAK Plane wave propagation through lossless and lossy media is fundamental to microwave remote sensing. Consider the wave equation and plane waves in homogeneous unbounded, lossless media Plane waves – constant phase and amplitude in the plane Homogeneous – electrical and magnetic parameters do not vary with throughout the medium Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi 34 17 01.07.2014 Maxwell’s equations UYGU 2014 TÜBİTAK Beginning with Maxwell’s equations ∂H ∂t ∂E ∇×H = ε ∂t ∇×E = −µ Fraday’s Ampere’s Assuming a homogeneous, source-free medium leads to the homogeneous wave equation ∇ 2E = µ ε ∂2 E ∂ t2 where E is the electric field vector (V/m) [note that bolded symbols denote vectors] µ is the medium’s magnetic permeability (H/m) [H: Henrys] ε is the medium’s permittivity (F/m) [F: Farads] Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi Solution to Wave Equation 35 UYGU 2014 TÜBİTAK Assuming sinusoidal time dependence { E(r, t ) = Re E(r ) e jωt } where ω is the radian frequency (rad/s) r is the displacement vector and Re{⋅} is the real operator E(r,t) satisfies the wave equation if ∇ 2E(r ) + ω2µ ε E(r ) = 0 Using phasor representation (i.e., e.jωt is understood) and assuming a rectangular coordinate system, the solution has the general form of E(r ) = E 0 exp [± j (k x x + k y y + k z z )] where E0 is a constant vector and k 2 ≡ ω2 µ ε = k 2x + k 2y + k 2z Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi 36 18 01.07.2014 Propagation Vector UYGU 2014 TÜBİTAK A more compact form results from letting k = xˆ k x + yˆ k y + zˆ k z where k is the propagation vector, and k = |k| is called the wave number (rad/m) resulting in E(r ) = E 0 exp [± j k ⋅ r ] Finally reintroducing the time dependence and expressing only the real-time field component yields E(r, t ) = E 0 cos (ω t ± k ⋅ r ) This equation represents two waves propagating in opposite directions defined by the propagation vector k Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi Time and Space Phase Components 37 UYGU 2014 TÜBİTAK The time phase component is characterized by ω where ω = 2πf = 2π T f is the frequency (Hz) and T is the time period (s). Similarly the space phase component depends on k where k = 2π λ = ω µε λ is the space period (m), or wavelength, in the medium which can also be expressed as ( λ =1 f µε ) Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi 38 19 01.07.2014 Phase Velocity UYGU 2014 TÜBİTAK Consider now the electric field’s phase for a positivetraveling wave, i.e., ωt – kz. A surface on which this phase is constant requires ω t − k z = constant For any given time t, this surface represents a plane defined by z = constant, on which both the phase and amplitude are constant. As time progresses, this plane of constant phase and amplitude advances along the z axis, hence the name uniform plane wave. The rate at which this plane advances along the z axis is called the phase velocity, v (m/s) dz ω 1 v= = = dt k µε Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi Orthogonality of the E, H, and k vectors 39 UYGU 2014 TÜBİTAK Given an uniform plane E-field solution to the wave equation, the H-field is found using Maxwell’s equations ∇×E = − µ ∂H ∂t From the E-field component in the x-axis direction, Ex, is found the H-field component in the y-axis direction, Hy, as H y (z , t ) = k ωµ E x 0 cos (ω t − k z ) = E x0 η cos (ω t − k z ) where η is the intrinsic impedance (Ω) of the medium η =ωµ k = µ ε Note that Ex and Hy are related through the intrinsic impedance similar to how voltage and current in a circuit are related through Ohm’s law. Note also the orthogonality of the E, H, and k vectors. E = xˆ E x , H = yˆ H y , k = zˆ k Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi 40 20 01.07.2014 Polarization UYGU 2014 TÜBİTAK Pottier Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi Polarization Handeness 41 UYGU 2014 TÜBİTAK ROTATION SENSE: LOOKING INTO THE DIRECTION OF THE WAVE PROPAGATION ANTI-CLOCKWISE ROTATION LEFT HANDED POLARISATION CLOCKWISE ROTATION RIGHT HANDED POLARISATION Pottier Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi 42 21 01.07.2014 Polarization State - Examples UYGU 2014 TÜBİTAK Horizontal Left-hand Circular Vertical Right-hand Circular Pottier Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi Polarization State - Examples 43 UYGU 2014 TÜBİTAK Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi 44 22 01.07.2014 Plane waves in a lossy medium UYGU 2014 TÜBİTAK A lossy medium is characterized by its permeability, µ, permittivity, ε, and conductivity, σ (S/m) [S: Siemens]. Maxwell’s equations for a source-free medium become ∂H ∂E ∇×E = − µ , ∇×H = σ E + ε ∂t ∂t And the corresponding wave equation remains ∇ 2E(r ) + k 2 E(r ) = 0 where the wave number is k = − j ω µ (σ + j ω ε ) Note that for a lossless medium, k is purely real when σ = 0 and both µ and ε are real k= ω2 µ ε Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi Plane waves in a lossy medium 45 UYGU 2014 TÜBİTAK For a lossy medium k is complex k = − j ω µ (σ + j ω ε ) due to σ ≠ 0 or either µ or ε are complex µ = µ ′ − j µ ′′ ε = ε ′ − j ε ′′ For lossless media the imaginary parts of the permeability and permittivity are zero. Non-zero imaginary terms (µ″ > 0 and ε″ > 0) represent mechanisms for converting a portion of the electromagnetic wave’s energy into heat, resulting in a loss of wave energy. Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi 46 23 01.07.2014 Plane waves in a lossy medium UYGU 2014 TÜBİTAK Consider the complex electric field plane wave propagation along the positive z axis E(z , t ) = E 0 e j (ω t − k z ) whereas for the lossless case k was real, in a lossy medium k is complex and is related to the propagation factor or propagation constant, γ (1/m), by γ = j k = j − j ω µ (σ + j ω ε ) γ =α + j β such that E( z ) = E 0e − j k z = E 0e −γ z = E 0 e −(α + j β ) z where α and β are real quantities and α is the attenuation constant (Np/m) and β is the phase constant (rad/m) [Np = Neper] Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi Plane waves in a lossy medium 47 UYGU 2014 TÜBİTAK Clearly for a wave travelling along the +z axis E( z ) = E 0 e − α z e − j β z as z increases, the magnitude of the electric field decreases. The real time expression for the x-axis field component is E x ( z , t ) = E x 0 e −α z cos (ω t − β z ) The attenuation constant is the real part of jk α = Re { } j ω µ (σ + j ω ε ) , Np/m The phase constant is the imaginary part of of jk β = Im { } j ω µ (σ + j ω ε ) , rad/m Note: (Neper/m) × 8.686 (dB/Neper) = (dB/m) Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi 48 24 01.07.2014 Pure Water UYGU 2014 TÜBİTAK 1 Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi Pure Water and Seawater 49 UYGU 2014 TÜBİTAK 1 Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi 50 25 01.07.2014 Dry Snow UYGU 2014 TÜBİTAK Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi Soil 51 UYGU 2014 TÜBİTAK Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi 52 26 01.07.2014 Corn Leaves UYGU 2014 TÜBİTAK Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi Corn Leaves 53 UYGU 2014 TÜBİTAK Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi 54 27 01.07.2014 Fresnel reflection and transmission UYGU 2014 TÜBİTAK Properties of interest include reflection, refraction, transmission Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi Perpendicular (horizontal) case 55 UYGU 2014 TÜBİTAK Reflection coefficient (relates to field strength) (sometimes represented by Γ, ρ, or r). R⊥ ≡ Er n cos θ i − n2 cos θ t = 1 Ei n1 cos θ i + n2 cos θ t = − sin (θ i − θ t ) = sin (θ i + θ t ) θ ≠ 0 i η 2 cos θ i − η 1 cos θ t η 2 cos θ i + η 1 cos θ t Transmission coefficient (relates to field strength) T⊥ ≡ = 2 n1 cosθ i Et = Ei n1 cosθ i + n 2 cosθ t 2 sin θ t cos θ i sin (θ i + θ t ) = θi ≠ 0 2 η 2 cos θ i η 2 cos θ i + η 1 cos θ t Note that 1 + R ⊥ = T⊥ Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi 56 28 01.07.2014 Perpendicular (horizontal) case UYGU 2014 TÜBİTAK Reflectivity (relates to power or intensity) Γ⊥ = R⊥ 2 Transmissivity (relates to power or intensity) (sometimes represented by T) ϒ⊥ = or Re{(cos θ t ) / η 2 } T⊥ Re{(cos θ i ) / η1} 2 ϒ ⊥ = 1 − Γ⊥ Note that Γ⊥+ϒ⊥= 1 which satisfies the conservation of energy Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi Parallel (vertical) case 57 UYGU 2014 TÜBİTAK Reflection coefficient (relates to field strength) R// ≡ = Er n cos θ i − n1 cos θ t = 2 Ei n2 cos θ i + n1 cos θ t η 1 cos θ i − η 2 cos θ t tan (θ i − θ t ) = tan (θ i + θ t ) θ ≠ 0 η 1 cos θ i + η 2 cos θ t i Transmission coefficient (relates to field strength) T// ≡ = Et 2 n2 cos θ i = Ei n2 cos θ i + n1 cos θ t 2 η 1 cos θ i 2 sin θ t cos θ i = sin (θ i + θ t ) cos(θ i − θ t ) θ ≠ 0 η 1 cos θ i + η 2 cos θ t i Note that 1 + R // = T// Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi 58 29 01.07.2014 Parallel (vertical) case UYGU 2014 TÜBİTAK Reflectivity (relates to power or intensity) Γ// = R // 2 Transmissivity (relates to power or intensity) ϒ // = Re{η 2 cos θ t } Re{η 1 cos θi } T// 2 or ϒ // = 1 − Γ// Note that Γ//+ϒ//= 1 which satisfies the conservation of energy Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi Reflectivity for Water, Wet Soil, and Dry Soil 59 UYGU 2014 TÜBİTAK Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi 60 30 01.07.2014 Layered Madia UYGU 2014 TÜBİTAK Reflection and Transmission for an n-layer medium Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi Layered Madia – Forest Floor 61 UYGU 2014 TÜBİTAK Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi 62 31 01.07.2014 Effective dielectric constants of Soil, humus, and litter layers UYGU 2014 TÜBİTAK HUMUS MINERAL SOIL (LOAMY SAND) Bulk dielectric - Real Part LITTER Mineral Soil Humus Litter Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi Shallow Lake Ice Trends 63 UYGU 2014 TÜBİTAK Play video Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi 64 32 01.07.2014 Content UYGU 2014 TÜBİTAK Antennas Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi Antennas 65 UYGU 2014 TÜBİTAK Role of antennas Theory Antenna types Characteristics Radiation pattern – beamwidth, pattern solid angle Directivity, gain, effective area Bandwidth Friis’ transmission formula Implementations Dipole, monopole, and ground planes Horn Parabolic reflector Arrays Terminology Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi 66 33 01.07.2014 The role of antennas UYGU 2014 TÜBİTAK Antennas serve four primary functions Spatial filter directionally-dependent sensitivity Polarization filter polarization-dependent sensitivity Impedance transformer transition between free space and transmission line Propagation mode adapter from free-space fields to guided waves (e.g., transmission line, waveguide) Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi Spatial filter 67 UYGU 2014 TÜBİTAK Antennas have the property of being more sensitive in one direction than in another which provides the ability to spatially filter signals from its environment. Directive antenna. Radiation pattern of directive antenna. Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi 68 34 01.07.2014 Polarization filter UYGU 2014 TÜBİTAK Antennas have the property of being more sensitive to one polarization than another which provides the ability to filter signals based on its polarization. Incident E-field vector r E = ẑ E 0 Dipole antenna r r V = h⋅E r h = ẑ h + _ V = h E0 r r V = h⋅E r h = ẑ h r E = ŷ E 0 z y x In this example, h is the antenna’s effective height whose units are expressed in meters. Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi Impedance transformer 69 UYGU 2014 TÜBİTAK Intrinsic impedance of free-space, E/H η0 = µ0 ε 0 = 120 π ≅ 376.7 Ω Characteristic impedance of transmission line, V/I A typical value for Z0 is 50 Ω. Clearly there is an impedance mismatch that must be addressed by the antenna. Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi 70 35 01.07.2014 Propagation mode adapter UYGU 2014 TÜBİTAK During both transmission and receive operations the antenna must provide the transition between these two propagation modes. Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi Antenna Types 71 UYGU 2014 TÜBİTAK Antennas include wire and aperture types. Wire types include dipoles, monopoles, loops, rods, stubs, helicies, Yagi-Udas, spirals. Aperture types include horns, reflectors, parabolic, lenses. Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi 72 36 01.07.2014 Radiation pattern UYGU 2014 TÜBİTAK Radiation pattern – variation of the field intensity of an antenna as an angular function with respect to the axis Three-dimensional representation of the radiation pattern of a dipole antenna Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi Radiation Pattern - Characterstics 73 UYGU 2014 TÜBİTAK Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi 74 37 01.07.2014 Beamwidth and beam solid angle UYGU 2014 TÜBİTAK The beam or pattern solid angle, Ωp [steradians or sr] is defined as Ω p = ∫∫ Fn (θ , φ ) d Ω 4π where dΩ is the elemental solid angle given by d Ω = sin θ dθ dφ Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi Directivity, gain, effective area 75 UYGU 2014 TÜBİTAK Directivity – the ratio of the radiation intensity in a given direction from the antenna to the radiation intensity averaged over all directions. [unitless] Maximum directivity, Do, found in the direction (θ, φ) where Fn= 1 and or Given Do, D can be found Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi 76 38 01.07.2014 Directivity, gain, effective area UYGU 2014 TÜBİTAK Gain – ratio of the power at the input of a loss-free isotropic antenna to the power supplied to the input of the given antenna to produce, in a given direction, the same field strength at the same distance Of the total power Pt supplied to the antenna, a part Po is radiated out into space and the remainder Pl is dissipated as heat in the antenna structure. The radiation efficiency ηl is defined as the ratio of Po to Pt ηl = Po Pt Therefore gain, G, is related to directivity, D, as G (θ , φ ) = ηl D(θ , φ ) And maximum gain, Go, is related to maximum directivity, Do, as Go = ηl Do Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi Directivity, gain, effective area 77 UYGU 2014 TÜBİTAK Effective area – the functional equivalent area from which an antenna directed toward the source of the received signal gathers or absorbs the energy of an incident electromagnetic wave It can be shown that the maximum directivity Do of an antenna is related to an effective area (or effective aperture) Aeff, by D0 = 4π 4π Aeff = 2 ηa Ap 2 λ λ where Ap is the physical aperture of the antenna and ηa = Aeff / Ap is the aperture efficiency (0 ≤ ηa ≤ 1) Consequently Aeff = λ2 λ2 ≅ Ω p β xz β yz [m2] For a rectangular aperture with dimensions lx and ly in the x- and y-axes, and an aperture efficiency ηa = 1, we get β xz ≅ λ l x [rad] β yz ≅ λ l y [rad] Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi 78 39 01.07.2014 Bandwidth UYGU 2014 TÜBİTAK The antenna’s bandwidth is the range of operating frequencies over which the antenna meets the operational requirements, including: Spatial properties (radiation characteristics) Polarization properties Impedance properties Propagation mode properties Most antenna technologies can support operation over a frequency range that is 5 to 10% of the central frequency (e.g., 100 MHz bandwidth at 2 GHz) To achieve wideband operation requires specialized antenna technologies (e.g., Vivaldi, bowtie, spiral) Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi ComRAD - Dual band Antenna 79 UYGU 2014 TÜBİTAK Radar Band 1.25GHz Radiometer Band 1.413GHz Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi 80 40 01.07.2014 RADIOMETER BAND (1403-1424MHz) UYGU 2014 TÜBİTAK Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi RADAR BAND (1200-1300MHz) 81 UYGU 2014 TÜBİTAK Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi 82 41 01.07.2014 Antenna arrays UYGU 2014 TÜBİTAK Antenna array composed of several similar radiating elements (e.g., dipoles or horns). Element spacing and the relative amplitudes and phases of the element excitation determine the array’s radiative properties. Linear array examples Two-dimensional array of microstrip patch antennas Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi Antenna arrays 83 UYGU 2014 TÜBİTAK Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi 84 42 01.07.2014 Antenna arrays UYGU 2014 TÜBİTAK Soil Moisture Ocean Salinity Sentinel 1a Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi Antennas- Summary 85 UYGU 2014 TÜBİTAK Antennas play an important role in microwave remote sensing systems. There are both art and science aspects to antennas. Antenna arrays enable the radiation characteristics to be changed electronically (i.e., very rapidly) unlike conventional mechanically-steered antennas. Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi 86 43 01.07.2014 Antennas - Terminology UYGU 2014 TÜBİTAK Antenna – structure or device used to collect or radiate electromagnetic waves Array – assembly of antenna elements with dimensions, spacing, and illumination sequency such that the fields of the individual elements combine to produce a maximum intensity in a particular direction and minimum intensities in other directions Beamwidth – the angle between the half-power (3-dB) points of the main lobe, when referenced to the peak effective radiated power of the main lobe Directivity – the ratio of the radiation intensity in a given direction from the antenna to the radiation intensity averaged over all directions Effective area – the functional equivalent area from which an antenna directed toward the source of the received signal gathers or absorbs the energy of an incident electromagnetic wave Efficiency – ratio of the total radiated power to the total input power Far field – region where wavefront is considered planar Gain – ratio of the power at the input of a loss-free isotropic antenna to the power supplied to the input of the given antenna to produce, in a given direction, the same field strength at the same distance Isotropic – radiates equally in all directions Main lobe – the lobe containing the maximum power Null – a zone in which the effective radiated power is at a minimum relative to the maximum effective radiation power of the main lobe Radiation pattern – variation of the field intensity of an antenna as an angular function with respect to the axis Radiation resistance – resistance that, if inserted in place of the antenna, would consume that same amount of power that is radiated by the antenna Side lobe – a lobe in any direction other than the main lobe Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi Content 87 UYGU 2014 TÜBİTAK Radiometry – remote sensing via microwave emission Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi 88 44 01.07.2014 Radiometry – remote sensing via microwave emission UYGU 2014 TÜBİTAK Thermal radiation Blackbody radiation and Planck’s law Stefan-Boltzmann law Emissivity, graybodies, selective radiators Rayleigh-Jeans approximation Temperature Brightness temperature Apparent temperature Antenna temperature Radiative transfer Extinction (absorption and scattering) Emission Apparent temperature of terrain Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi Blackbody radiation and Planck’s law 89 UYGU 2014 TÜBİTAK Using classical physics (mechanics), theories were put forth by Wilhelm Wien (1893) and Lord Rayleigh (1900) that, in a piecemeal fashion, agreed well with experimentally measured radiative emissions. While the Wein law was valid for shorter (optical) wavelengths, the Rayleigh law was valid for longer wavelengths. In 1905 Lord Rayleigh and Sir James Jeans offered a more complete theory was presented (Rayleigh-Jeans law) that again only agreed well with experimental measurements at long wavelengths. Max Planck’s blackbody radiation law (1901) accurately predicted the spectral intensity of electromagnetic radiation at all frequencies or wavelengths by incorporating quantum theory. Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi 90 45 01.07.2014 Blackbody radiation and Planck’s law UYGU 2014 TÜBİTAK Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi Notation for radiometric quantities 91 UYGU 2014 TÜBİTAK Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi 92 46 01.07.2014 Planck’s blackbody radiation law UYGU 2014 TÜBİTAK A blackbody is an idealized, perfectly opaque material that absorbs all the incident radiation at all frequencies, reflecting none. To maintain thermal equilibrium, a blackbody is also a perfect emitter. Bf = where 2h f 3 h f e c2 ( kT ) −1 −1 Bf = Blackbody spectral brightness, W m-2 sr-1 Hz-1 h = Planck’s constant = 6.63 × 10-34 J s f = frequency, Hz k = Boltzmann’s constant = 1.38 × 10-23 J K-1 T = absolute temperature, K c = speed of light, 3 × 108 m s-1 Note: Only two variables: frequency, f, and temperature, T. Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi Temperature dependence of emission 93 UYGU 2014 TÜBİTAK Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi 94 47 01.07.2014 Solar spectral irradiance UYGU 2014 TÜBİTAK Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi Emissivity, graybodies, selective radiators 95 UYGU 2014 TÜBİTAK Blackbodies transform heat into electromagnetic energy with perfect efficiency. Natural targets generally have lower efficiencies and are sometimes called graybodies. This reduced efficiency is termed emissivity, e, and is defined as the ratio of the observed brightness relative to that of a blackbody at the same temperature. e(θ , φ ) = B(θ , φ ) Bbb Since Β(θ, φ) ≤ Bbb, then 0 ≤ e(θ, φ) ≤ 1 A selective radiator denotes a case where emissivity is frequency or wavelength dependent, e(f) or e(λ). Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi 96 48 01.07.2014 Emissivity, graybodies, selective radiators UYGU 2014 TÜBİTAK Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi Relating brightness to received power 97 UYGU 2014 TÜBİTAK To allow for spectrally-dependent brightness, we introduce spectral brightness, Bf (θ, φ). Thus the total power received by the aperture over a bandwidth ∆f, extending from frequency f to f+∆f is P= Ar 2 ∫ f + ∆f f ∫∫π B (θ , φ ) F (θ , φ ) dΩ df f n 4 where the ½ term reflects the fact that only half of the incident power is detected due to the polarization selectivity of the antenna. Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi 98 49 01.07.2014 Relating power and temperature (1/3) UYGU 2014 TÜBİTAK From the Rayleigh-Jeans law we know that brightness and temperature are linearly related at RF and microwave frequencies. 2 f 2 k T 2kT Bf = = 2 c2 λ To apply this to radiometric measurements, consider the experiment illustrated below. Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi Relating power and temperature (2/3) 99 UYGU 2014 TÜBİTAK For a blackbody enclosure at temperature T Pbb = Ar 2 ∫ f + ∆f f ∫∫π 2kT Ar ∫∫π F (θ , φ ) dΩ Fn (θ , φ ) dΩ df λ2 4 For narrowband operation, we assume Bf ~ constant over ∆f permitting Pbb = k T ∆f λ2 n 4 From antenna theory we know that ∫∫π F (θ , φ ) dΩ = Ω n p = λ2 Ar 4 Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi 100 50 01.07.2014 Relating power and temperature (3/3) UYGU 2014 TÜBİTAK So Pbb = k T ∆f which agrees exactly with the noise power from a resistor at temperature T Pn = k T ∆f Therefore the power-temperature relationship permits us to speak of temperatures rather than power or brightness. Example: for T = 300 K and ∆f = 1 MHz, P = k T ∆f = 4.1 fW (4.1 × 10-15 W) or -144 dBW (dB relative to 1 W) or -114 dBm (dB relatice to 1 mW). If R = 50 Ω, then the output voltage will be Vrms = √(R P) = 450 nV. If R = 1000 Ω, then Vrms = 2 µV. Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi Brightness temperature 101 UYGU 2014 TÜBİTAK Having related received power, P, to temperature P = k T ∆f and recognizing that emissivity, e, reduces an object’s brightness, leads us to define an equivalent brightness temperature, TB e(θ , φ ) = TB (θ , φ ) or T TB (θ , φ ) = T e(θ , φ ) where T is the absolute physical temperature. Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi 102 51 01.07.2014 Apparent temperature UYGU 2014 TÜBİTAK Bi (θ , φ ) = 2k λ2 TAP (θ , φ ) ∆f Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi Antenna temperature 103 UYGU 2014 TÜBİTAK The antenna radiometric temperature, TA, is the resistorequivalent temperature that would deliver the same output power. Pn = k TA ∆f = P P= Ar 2 2k ∫∫π λ 2 TAP (θ , φ ) ∆f Fn (θ , φ ) dΩ 4 With TAP and TA related as TA = Ar λ2 ∫∫π T (θ , φ ) F (θ ,φ ) dΩ AP n 4 Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi 104 52 01.07.2014 Radiative Transfer UYGU 2014 TÜBİTAK Change in Intensity = - Extinction + Emission + Scattering into Beam Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi Smooth surface scattering and emission 105 UYGU 2014 TÜBİTAK Specular reflection from a smooth, planar surface (Fresnel reflection) Pr (θ1 ; p ) = Γ(θ1 ; p ) Pi (θ1 ; p ) where Pi = incident power Γ = specular reflectivity Pr = reflected power θ1 = incidence angle p = polarization state (p = h or v) For the specular surface it can be shown that the emissivity is related to the reflectivity as e (θ1 ; p ) = 1 − Γ(θ1 ; p ) Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi 106 53 01.07.2014 Rough surface scattering and emission UYGU 2014 TÜBİTAK Scattering from a rough surface is characterized by the bistatic scattering cross-section per unit area σ°(θ0, φ0; θs, φs, p0, ps) [unitless] where (θ0, φ0) = direction of incident power (θs, φs) = direction of scattered power (p0, ps) = polarization state of incident and scattered fields The emissivity of a rough surface is e(θ 0 , φ0 ; p ) =1 − 1 [σ °(θ 0 , φ0 ;θ s , φs ; p0 , p0 ) 4 π cos θ 0 ∫ + σ °(θ 0 , φ0 ;θ s , φs ; p0 , ps )] dΩ s Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi Brightness temperature of a specular sea surface 107 UYGU 2014 TÜBİTAK Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi 108 54 01.07.2014 Soil emissivity, roughness UYGU 2014 TÜBİTAK Angular patterns of the emissivity measured at 1.4 GHz for three bare-soil fields with different surface roughnesses [Newton and Rouse, 1980]. Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi Effect of vegetation 109 UYGU 2014 TÜBİTAK Angular plots of the h-polarized emissivity for (a) a dry soil surface and (b) a very wet soil surface, covered with vegetation of nadir optical thickness t0. The soil surface is perfectly smooth. Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi 110 55 01.07.2014 Effect of Moisture UYGU 2014 TÜBİTAK Variation of h-polarized emissivity with soil moisture content for (a) a smooth soil surface and (b) a moderately rough soil surface. Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi Ocean Salinity 111 UYGU 2014 TÜBİTAK Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi 112 56 01.07.2014 Sea Ice UYGU 2014 TÜBİTAK Incoherent emissivity of sea ice as a function of ice thickness at multiple frequencies. Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi Content 113 UYGU 2014 TÜBİTAK Radiometer systems Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi 114 57 01.07.2014 Radiometer systems UYGU 2014 TÜBİTAK Equivalent noise temperature Characterization of noise Noise of a cascaded system Noise characterization of an attenuator Equivalent-system noise power at the antenna terminals Equivalent noise temperature of a superheterodyne receiver Radiometer operation Effects of gain variations Dicke radiometer Examples of developed radiometers Synthetic-aperture radiometers Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi Radiometer Systems 115 UYGU 2014 TÜBİTAK A radiometer is a very sensitive microwave receiver that outputs a voltage, Vout, that is related to the antenna temperature, TA. Based on the output voltage, the radiometer estimates TA with finite uncertainty, ∆T, which is referred to as the radiometer’s sensitivity or radiometric resolution. Radiometric resolution is a key parameter that characterizes the radiometer’s performance. An understanding of the factors affecting radiometer’s performance characteristics requires an understanding of noise, radiometer design, and calibration techniques Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi 116 58 01.07.2014 Thermal Noise UYGU 2014 TÜBİTAK Thermal noise is characterized with a zero mean, 〈Vn〉 = 0, and is has equal power content at all frequencies, hence it is often called white noise. For a conductor with resistance R connected to an ideal filter with bandwidth B, the output noise power Pn is Pn = k T B where k is Boltzmann’s constant (1.38 × 10-23 J K-1), T is the absolute temperature (K). Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi Equivalent noise temperature 117 UYGU 2014 TÜBİTAK Now replace the noisy resistor with an antenna with radiometric antenna temperature TA′. TA′ is the antenna weighted apparent temperature that includes the self-emission of the lossy antenna. If the same average power is delivered into the matched load, then we can relate TA′ to the thermodynamic temperature T of the resistor. Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi 118 59 01.07.2014 Combined Radar Radiometer UYGU 2014 TÜBİTAK Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi ComRAD Radiometer Blok Diagram 119 UYGU 2014 TÜBİTAK Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi 120 60 01.07.2014 Temperature Monitoring UYGU 2014 TÜBİTAK Side-view Top-view Aluminum plate FAN Radar-SW Thermo-Electric Module Cold 30dB-Amp 60dB-Amp Hot Controller Cal-SW Locations of the thermistors on the board The temperature data is obtained via the Keithley Multimeter with the 20 channel interface card installed. TS91 Series negative temperature coefficient (NTC) Thermistors are used. Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi Temperature Stability Test 121 UYGU 2014 TÜBİTAK Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi 122 61 01.07.2014 Radiometric Linearity UYGU 2014 TÜBİTAK Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi Radiometer Internal Calibration 123 UYGU 2014 TÜBİTAK xh ic xh xa TB xa Vout ih xc xc # samples Vout Maury Microwave Corporation Known Calibration Source 7mm Noise Calibration System Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi 124 62 01.07.2014 Antenna and Transmission Line UYGU 2014 TÜBİTAK Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi Antenna Upgrade 125 UYGU 2014 TÜBİTAK Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi 126 63 01.07.2014 Simplified Radiometer Schematic UYGU 2014 TÜBİTAK Receiver T0 TA αR αS TA′ G VA TR TC TH Cold Hot Temperature Controlled Radiometer Enclosure Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi Radiometer Calibration 127 UYGU 2014 TÜBİTAK External Calibration AMBIENT MICROWAVE ABSORBER TARGET Periodic Internal Calibration COLD SKY TARGET Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi 128 64 01.07.2014 Content UYGU 2014 TÜBİTAK Radar systems Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi Radar systems 129 UYGU 2014 TÜBİTAK Radar measurements Radar equation Range resolution Doppler shift and velocity resolution Signal fading Spatial discrimination Radar system types Side-looking airborne radar (SLAR) Synthetic-aperture radar (SAR) Inverse SAR Interferometers Scatterometers Scattering mechanisms and characteristics Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi 130 65 01.07.2014 A brief overview of radar UYGU 2014 TÜBİTAK Radar – radio detection and ranging Developed in the early 1900s (pre-World War II) • 1904 Europeans demonstrated use for detecting ships in fog • 1922 U.S. Navy Research Laboratory (NRL) detected wooden ship on Potomac River • 1930 NRL engineers detected an aircraft with simple radar system World War II accelerated radar’s development • Radar had a significant impact militarily • Called “The Invention That Changed The World” in two books by Robert Buderi Radar’s has deep military roots • It continues to be important militarily • Growing number of civil applications • Objects often called ‘targets’ even civil applications Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi Radar System 131 UYGU 2014 TÜBİTAK Like a radiometer, radar systems use very sensitive receivers to output a voltage that contains information about the target. Unlike a radiometer, the signal that the radar receives does not originate from the target (emission), rather it is a scattered version of a signal transmitted by the radar. Therefore the characteristics of the signal received by radar may be fundamentally different from the radiometer signal Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi 132 66 01.07.2014 Radar System UYGU 2014 TÜBİTAK Radar is an acronym for radio detection and ranging. Detection addresses the question of whether a target is present or changing. Ranging, the ability to measure the range to a target, is possible as radar provides its own illumination (the transmitter) unlike a radiometer that provides no range information Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi Radar System 133 UYGU 2014 TÜBİTAK The transmitted radar signal may be coherent, polarized, and modulated in frequency, phase, amplitude, and polarization. In addition, the transmit antenna determines the spatial distribution of the transmitted signal. While radar system measures only the received signal voltage as a function of time, signal analysis enables the extraction of new information about the target including location, velocity, composition, structure, rotation, vibration, etc. Radar images of 3.5-km asteroid 1999 JM8 at a range of 8.5x106 km with ~ 30-m spatial resolution Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi 134 67 01.07.2014 Basic Geometry – Radar Equation UYGU 2014 TÜBİTAK Pr = Pt Gt Ar [A (1 − f a ) Gts ] , W (4 π Rt Rr ) 2 rs Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi Radar Scattering Cross Section 135 UYGU 2014 TÜBİTAK The terms associated with the scatterer may be combined into a single variable, σ, the radar scattering cross section (RCS). σ = Ars (1 − f a ) Gts , m 2 The RCS value will depend on the scatterer’s shape and composition as well as on the observation geometry. For bistatic observations σ (θ 0 , φ0 ; θ s , φs ; p0 , ps ) , m 2 where (θ0, φ0) = direction of incident power (θs, φs) = direction of scattered power (p0, ps) = polarization state of incident and scattered fields Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi 136 68 01.07.2014 Radar equation – Monostatic UYGU 2014 TÜBİTAK In monostatic radar systems the transmit and receive antennas are collocated (placed together, side-by-side) such that θ0 = θs, φ0 = φs, and Rt = Rr so that the RCS becomes σ (θ , φ ; p0 , ps ) , m 2 The radar range equation for the monostatic case is Pr = Pt Gt Ar (4 π R ) 2 2 σ,W Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi Radar equation – Monostatic 137 UYGU 2014 TÜBİTAK If the same antenna or identical antennas are used in a monostatic radar system then Gt = Gr = G and At = Ar = A and recognizing the relationship between A and G 4π A λ2 G and G = 2 4π λ we can write A= Pt G 2 λ2 σ Pt A2 σ Pr = = (4 π ) 3 R 4 4 π λ2 R 4 Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi 138 69 01.07.2014 Radar equation for extended targets UYGU 2014 TÜBİTAK The preceding development considered point target with a simple RCS, σ. The point-target case enables simplifying assumptions in the development. Gain and range are treated as constants Now consider the case of extended targets including surfaces and volumes. The backscattering characteristics of a surface are represented by the scattering coefficient, σ°, σ° =σ A where A is the illuminated area. σ °(θ , φ ; p0 , ps ) , unitless Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi Radar equation for extended targets 139 UYGU 2014 TÜBİTAK For homogeneous extended area targets (e.g., grass, bare soil, forest, water, sand, snow, etc.) σ° ≅ constant (though still dependent on θ, φ, and polarization). Substituting this relationship leads to λ2 Pt G 2 σ ° ∆A (4 π ) 3 R 4 where ∆A is determined by the system’s spatial resolution. The scattering coefficient, σ°, contains target information. Pr = Soil moisture Surface wind speed and direction over water Ground surface roughness Water equivalent content of a snowpack Therefore the accuracy and precision of σ° measurements are important. Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi 140 70 01.07.2014 ComRAD : Radar Blok Diagram UYGU 2014 TÜBİTAK Radiometer T 400 SW D. Coupler SW H R PreAmp SW 501 SW 201 V D. Coupler Antenna Network Analyzer Switch Box 100 SW SW Radiometer Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi ComRAD : Radar Blok Diagram 141 UYGU 2014 TÜBİTAK HH - POL Radiometer 400 T SW SW R SW 201 D. Coupler SW H PreAmp SW 501 V D. Coupler Antenna Network Analyzer Switch Box 100 SW Radiometer Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi 142 71 01.07.2014 ComRAD : Radar Blok Diagram UYGU 2014 TÜBİTAK HV - POL Radiometer T 400 SW D. Coupler SW H R PreAmp SW 501 SW 201 V D. Coupler Antenna Network Analyzer Switch Box 100 SW SW Radiometer Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi ComRAD : Radar Blok Diagram 143 UYGU 2014 TÜBİTAK VV - POL Radiometer 400 T SW SW R SW 201 D. Coupler SW H PreAmp SW 501 V D. Coupler Antenna Network Analyzer Switch Box 100 SW Radiometer Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi 144 72 01.07.2014 ComRAD : Radar Blok Diagram UYGU 2014 TÜBİTAK VH - POL Radiometer T 400 SW D. Coupler SW H R PreAmp SW 501 SW 201 V D. Coupler Antenna Network Analyzer Switch Box 100 SW SW Radiometer Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi ComRAD : Radar Blok Diagram 145 UYGU 2014 TÜBİTAK Internal Cal Radiometer 400 T SW SW R SW 201 D. Coupler SW H PreAmp SW 501 V D. Coupler Antenna Network Analyzer Switch Box 100 SW Radiometer Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi 146 73 01.07.2014 Radar Calibration UYGU 2014 TÜBİTAK Translating the received signal power into a target’s radar characteristics (cross section or attenuation) requires radiometric accuracy. From the radar range equation for an extended target λ2 Pt G 2 σ ° ∆A Pr = (4 π ) 3 R 4 we know that the factor affecting the received signal power include the transmitted signal power, the antenna gain, the range to the target, and the resolution cell area. Uncertainty in these parameters will contribute to the overall uncertainty in the target’s radar characteristics. Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi Calibration targets 147 UYGU 2014 TÜBİTAK Radiometric calibration of the entire radar system may require external reference targets such as spheres, dihedrals, trihedrals, Luneberg lens, or active calibrators. Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi 148 74 01.07.2014 RCS of some common shapes UYGU 2014 TÜBİTAK Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi Radar Calibration 149 UYGU 2014 TÜBİTAK Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi 150 75 01.07.2014 ComRAD : Radar Calibration UYGU 2014 TÜBİTAK Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi ComRAD : Radar Calibration 151 UYGU 2014 TÜBİTAK Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi 152 76 01.07.2014 ComRAD : Radar Calibration UYGU 2014 TÜBİTAK Circular Plate Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi ComRAD : Radar Calibration 153 UYGU 2014 TÜBİTAK Dihedral in Horizontal position Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi 154 77 01.07.2014 ComRAD : Radar Calibration UYGU 2014 TÜBİTAK Dihedral in Vertical position Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi ComRAD : Radar Calibration 155 UYGU 2014 TÜBİTAK Dihedral rotated in 45 degrees in CCW Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi 156 78 01.07.2014 ComRAD : Radar Calibration UYGU 2014 TÜBİTAK Dihedral rotated in 45 degrees in CW Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi 157 http://bte.bilgem.tubitak.gov.tr/tr/uygu-yo2014 [email protected] Teşekkürler... 79
Benzer belgeler
G5-1-2 - bilişim teknolojileri enstitüsü
Schematic illustration of scattering from surfaces with different roughness conditions at
increasing (from a to c) incidence angles
Lecture Notes File
Strength of Transmission System
The strength of transmission system
affects the competitiveness of the market
In other words, in order a customer (load)
to be able to wheel power from any
supplier,...
Landsat, Sentinels, and Supersites
Introduction to
Microwave Remote Sensing
Mehmet Kurum
TÜBİTAK BİLGEM
Bilişim Teknolojileri Enstitüsü
WED.AM1
Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi