Basics - Bilkent University Computer Engineering Department
Transkript
Basics - Bilkent University Computer Engineering Department
1 Basics CS 554 – Computer Vision Pinar Duygulu Bilkent University CS554 Computer Vision © Pinar Duygulu 2 Outline • Image Representation • Review some basics of linear algebra and geometrical transformations – Slides adapted from Octavia Camps, Penn State and Stefan Roth, Brown University • Introduction to Matlab • Handling Images in Matlab CS554 Computer Vision © Pinar Duygulu 3 Image Representation • Digital Images are 2D arrays (matrices) of numbers • Each pixel is a measure of the brightness (intensity of light) – that falls on an area of an sensor (typically a CCD chip) CS554 Computer Vision © Pinar Duygulu 4 Image Representation CS554 Computer Vision © Pinar Duygulu 5 Vectors Ordered set of numbers Example: coordinates of point CS554 Computer Vision © Pinar Duygulu 6 Vectors CS554 Computer Vision © Pinar Duygulu 7 Vectors Vector addition: CS554 Computer Vision © Pinar Duygulu 8 Vectors Vector subtraction: CS554 Computer Vision © Pinar Duygulu 9 Vectors Scalar Product: CS554 Computer Vision © Pinar Duygulu 10 Vectors Inner (dot) Product: CS554 Computer Vision © Pinar Duygulu 11 Vectors Projection of one point onto the other Different notations The shown segment has length <x,y>, if x and y are unit vectors CS554 Computer Vision © Pinar Duygulu 12 Linear Dependence CS554 Computer Vision © Pinar Duygulu 13 Basis CS554 Computer Vision © Pinar Duygulu 14 Bases CS554 Computer Vision © Pinar Duygulu 15 Bases Orthonormal basis: CS554 Computer Vision © Pinar Duygulu 16 Vectors Vector (cross) product: Note that vXw is not equal to wXv CS554 Computer Vision © Pinar Duygulu 17 Vectors Vector product computation: CS554 Computer Vision © Pinar Duygulu 18 Matrices CS554 Computer Vision © Pinar Duygulu 19 Matrices CS554 Computer Vision © Pinar Duygulu 20 Matrices CS554 Computer Vision © Pinar Duygulu 21 Matrices CS554 Computer Vision © Pinar Duygulu 22 Matrices CS554 Computer Vision © Pinar Duygulu 23 Matrices For singular matrices determinant is 0 CS554 Computer Vision © Pinar Duygulu 24 Eigenvalues and Eigenvectors CS554 Computer Vision © Pinar Duygulu 25 Eigenvalues and Eigenvectors CS554 Computer Vision © Pinar Duygulu 26 Eigendecomposition CS554 Computer Vision © Pinar Duygulu 27 Singular Value Decomposition (SVD) CS554 Computer Vision © Pinar Duygulu 28 Singular Value Decomposition CS554 Computer Vision © Pinar Duygulu 29 Singular Value Decomposition (SVD) The columns of U are the eigenvectors of AAT and the (non-zero) singular values of A are the square roots of the (non-zero) eigenvalues of AAT CS554 Computer Vision © Pinar Duygulu 30 Geometrical Transformations 2D Translation: CS554 Computer Vision © Pinar Duygulu 31 Geometrical Transformations 2D Translation Equation: CS554 Computer Vision © Pinar Duygulu 32 Geometrical Transformations 2D Translation using matrices: CS554 Computer Vision © Pinar Duygulu 33 Geometrical Transformations Homogeneous Coordinates CS554 Computer Vision © Pinar Duygulu 34 Geometrical Transformations Back to Cartesian Coordinates CS554 Computer Vision © Pinar Duygulu 35 Geometrical Transformations 2D Translation using Homogeneous Coordinates CS554 Computer Vision © Pinar Duygulu 36 Geometrical Transformations Scaling CS554 Computer Vision © Pinar Duygulu 37 Geometrical Transformations Scaling Equation CS554 Computer Vision © Pinar Duygulu 38 Geometrical Transformations CS554 Computer Vision © Pinar Duygulu 39 Geometrical Transformations Scaling & Translating CS554 Computer Vision © Pinar Duygulu 40 Geometrical Transformations CS554 Computer Vision © Pinar Duygulu 41 Geometrical Transformations Rotation CS554 Computer Vision © Pinar Duygulu 42 Geometrical Transformations Rotation Equations: CS554 Computer Vision © Pinar Duygulu 43 Geometrical Transformations Rotation Equations: y' x = r.cosA y = r.sinA y x' = r.cos(A+B) = r.cosA.cosB – r.sinA.sinB y' = r.sin(A+B) = r.sinA.cosB + r.cosA.sinB B A x' x x' = x.cosB – y.sinB y' = y.cosB + x.sinB [ x' ] = [cosB -sinB] [x] [ y' ] [sinB cosB ] [y] sin ( A + B ) = sin A cos B + cos A sin B cos ( A + B ) = cos A cos B - sin A sin B CS554 Computer Vision © Pinar Duygulu 44 Geometrical Transformations Scaling, Translating & Rotating: CS554 Computer Vision © Pinar Duygulu 45 Geometrical Transformations 3D Rotation of Points: CS554 Computer Vision © Pinar Duygulu 46 Geometrical Transformations 3D Translation of Points: CS554 Computer Vision © Pinar Duygulu 47 Introduction to Matlab One kind of object – a rectangular numerical matrix Scalars : 1x1 matrices Vectors : matrices with only one row or one column a 3x3 matrix A = [1 2 3; 4 5 6; 7 8 9] is equal to A = [1 2 3 456 7 8 9] CS554 Computer Vision © Pinar Duygulu 48 Introduction to Matlab A = [1 2; 3 4] N=5 v = [1 0 0] V = [1; 2; 3] v = v' v = 1:2:7 v = [] % creates a 2x2 matrix % a scalar % a row vector % a column vector % transpose of a vector % [start:stepsize:end] v = [1 3 5 7] % empty vector CS554 Computer Vision © Pinar Duygulu 49 Introduction to Matlab m = zeros(2,3) v = ones(1,3) m = eye(3) v = rand(3,1) m = zeros(3) % creates a 2x3 matrix of zeros % creates a 1x3 matrix (row vector) of ones % identity matrix % randomly filled matrix % 3x3 matrix of zeros d = diag(a) % diagonal of matrix a CS554 Computer Vision © Pinar Duygulu 50 Introduction to Matlab v = [1 2 3] v(3) % access a vector element m = [1 2 3 4; 5 6 7 8; 9 10 11 12; 13 14 15 16] m(1,3) % access a matrix element (row #, column #) m(2,:) % access a whole matrix row m(:,1) % access a whole matrix column m(1,1:3) % access elements 1 through 3 of 1st row m(2:end, 3) CS554 Computer Vision © Pinar Duygulu 51 Introduction to Matlab m = [1 2 3; 4 5 6] size(m) % returns the size of a matrix m1 = zeros(size(m)) a = [1 2 3 4]' 2*a a/4 b = [5 6 7 8]' a+b a–b a .^2 CS554 Computer Vision © Pinar Duygulu 52 Introduction to Matlab a = [1 4 6 3] sum(a) % sum of vector elements mean(a) % mean var(a) % variance std(a) % standard deviation max(a) % maximum min(a) % minimum a = [1 2 3; 4 5 6] mean(a) % mean of each column mean(a,2) % mean of each row max(max(a)) % maximum value of the matrix CS554 Computer Vision © Pinar Duygulu 53 Introduction to Matlab a = [1 2 3; 4 5 6; 7 8 9] inv(a) % matrix inverse eig(a) % vector of eigenvalues of a [V, D] = eig(a) % D:eigenvalues on diagonal %V :matrix of eigenvectors [U,S,V] = svd(a) % singular value decomposition of a % a = U * S * V' CS554 Computer Vision © Pinar Duygulu 54 Introduction to Matlab B = zeros(m,n) for i=1:m for j=1:n if A(i,j) > 0 B(i,j) = A(i,j) end end end B = zeros(m,n) ind = find(A>0) B(ind) = A(ind) CS554 Computer Vision © Pinar Duygulu 55 Introduction to Matlab x = [0 1 2 3 4] plot(x, 2*x) xlabel('x') ylabel('2*x') title('dummy') bar(x) CS554 Computer Vision © Pinar Duygulu 56 Introduction to Matlab myfunction.m function y = myfunction(x) a = [-2 -1 0 1] y = a + x; CS554 Computer Vision © Pinar Duygulu 57 Handling Images in Matlab I = imread('img.jpg'); imshow(I) imwrite(I, filename) CS554 Computer Vision © Pinar Duygulu % read a jpg image % shows an image % writes an image to file 58 Handling Images in Matlab figure imagesc(I) colormap gray; CS554 Computer Vision © Pinar Duygulu % display it as gray level image 59 Handling Images in Matlab size(img) 90 150 3 CS554 Computer Vision © Pinar Duygulu 60 Handling Images in Matlab CS554 Computer Vision © Pinar Duygulu 61 Handling Images in Matlab CS554 Computer Vision © Pinar Duygulu 62 Handling Images in Matlab Histograms CS554 Computer Vision © Pinar Duygulu 63 Handling Images in Matlab Histograms CS554 Computer Vision © Pinar Duygulu
Benzer belgeler
slides - Bilkent University Computer Engineering Department
Adapted from David Forsyth, UC Berkeley
Öğr.No. (Son üç hane) fonksiyon 1 fonksiyon 2 fonksiyon 3 001 disp
isnan
isnumeric
isrow
isscalar
issparse
isvector
length
max
min
ndims
numel
size
blkdiag
diag
eye
freqspace
ind2sub
linspace
logspace
meshgrid
ndgrid
ones
rand
randi
randn
RandStream
sub2ind
zeros
...
˙Ingilizce – Türkçe Sözlük
çekirdek
çekirdekleme
k merkezli
en yakın k komşu
bilgi
saklı
yanal
kafes
katman
önder öbekleme
yaprak
birini dışarıda bırak
düzey
etki (ilişkilendirme kuralının)
olabilirlik
doğrusal
bağ...