BİR BİT DÖNÜŞÜMÜ TABANLI EL DAMARI BİYOMETRİ
Transkript
2014 IEEE 22nd Signal Processing and Communications Applications Conference (SIU 2014) %ø5%ø7'g1hùh0h7$%$1/, EL DAMARI %øY20(75ø 6ø67(0ø ONE-BIT TRANSFORM BASED HAND VEIN BIOMETRIC SYSTEM .EUD&H]DLUOLR÷OX1, Mehtap Çakmak1, Sarp Ertürk1,2 1 .RFDHOLhQLYHUVLWHVLøúDUHWYH*|UQWøúOHPH/DE.8/,6 ElHNWURQLNYH+DEHUOHúPH0K%|OP, Kocaeli Üniversitesi, 41380 Kocaeli 2 Pars Ar-Ge Ltd., Kocaeli Üniversitesi Teknopark, Kocaeli, Türkiye ELOJLVLQGHQ \ROD oÕNPDNWDGÕU 'DPDUGDNL NDQ DNÕúÕ LVH VLVWHPLQ DOGDWÕOPDVÕQÕ ]RUODúWÕUPDNWD YH JLULú \DSDQ NLúLQLQ FDQOÕOÕ÷Õ YH JHUoHNOL÷L NRQXVXQGD ELOJL oÕNDUWÕOPDVÕQDRODQDNVD÷ODPDNWDGÕU %L\RPHWULN NLPOLN GR÷UXODPD \|QWHPOHULQ JHQHO oDOÕúPD SUHQVLEL LNL DúDPDGDQ ROXúPDNWDGÕU %LULQFL DGÕPGD WDQÕQDFDN NLúLQLQ EL\RPHWULN YHULVL VLVWHPH WDQÕWÕOPDN ]HUH DOJRULWPDODU LOH DQDOL] VRQXFX oÕNDUÕOPDNWD YH YHULWDEDQÕQD ND\GHGLOPHNWHGLU H÷LWLP YH\D GHYUH\H DOPD DúDPDVÕ øNLQFL DúDPDGD VLVWHPH JLULú\DSDQNLúLQLQEL\RPHWULNYHULVLD\QÕDOJRULWPDODUOD oÕNDUÕOPDNWD YH YHULWDEDQÕQGDNL ELOJLOHU LOH NDUúÕODúWÕUÕOÕS HúOHúPH GHUHFHVLQH EDNÕOPDNWDGÕU WHVW YH\D NXOODQÕP DúDPDVÕ (úOHúPH GXUXPXQGD NLúLQLQ NLPOL÷LRQD\ODQPDNWDGÕU >@¶GH DYXFXQ NÕ]ÕO|WHVL J|UQWOHUL NXOODQDQ ELU biyometrik dR÷UXODPD VLVWHPL |QHULOPLú ROXS, iki SDUPD÷ÕQ NRQXPX oDNÕúWÕUPD LoLQ NXOODQÕODUDN LOJLOLOLN E|OJHVL oÕNDUÕOPÕú VRQUDVÕQGD VXE|OP ZDWHUVKHG G|QúP NXOODQÕODUDN |]QLWHOLN QRNWDVÕ oÕNDUWÕPÕ \DSÕOPÕúWÕU>@¶GH\DNÕQNÕ]ÕO|WHVLJ|UQWOHPHQLQX]DNNÕ]ÕO|WHVLWHUPRJUDIL\HRUDQODGDPDUJ|UQWOHPHVLLoLQ daha uygun ROGX÷XJ|VWHULOPLúWLU>@¶GHLVHDYXoLPJHVL LOHDYXoGDPDULPJHOHULND\QDúWÕUÕODUDNELU/DSODVDYXo WDQÕPODPDVÕ ROXúWXUXODUDN NLúL WHVSLWL \DSÕOPÕúWÕU $YXo GDPDUODUÕQÕQ G|QP YH VRQODQPD QRNWDODUÕQÕQ EL\RPHWULN WDQÕPODPD LoLQ NXOODQÕOGÕ÷Õ ELU úLIUH VLVWemi >@¶GH |QHULOPLúWLU >@¶GD LVH 6,)7 X\XPODPD WHPHOOL ELU DYXo GDPDU GR÷UXODPD VLVWHPL VXQXOPXúWXU >@¶GH NHQDU WHVSLWL WHPHOOL ELU \DNODúÕPOD LNLOL LPJH\H G|QúWUOHQ DYXo GDPDU J|UQWOHUL EL\RPHWULN GR÷UXODPDGD NXOODQÕOPÕúWÕU $YXo GDPDU GR÷UXODPD VLVWHPOHULLoLQJHQHOELULQFHOHPHLVH>@¶GH\DSÕOPÕúWÕU >@¶GD DWHúE|FH÷L NPHOHPHVL NXOODQDQ ELU DYXo GDPDU WHVSLW\DNODúÕPÕ|QHULOPLúWLU Bu bildiride bir-ELW G|QúP WDEDQOÕ |]JQ ELU GDPDUKDULWDVÕoÕNDUWÕP\DNODúÕPÕ|QHULOPLúWLUgQHULOHQ \DNODúÕPÕQ DYXo GDPDUODUÕ oÕNDUWÕPÕQGD NXOODQÕPÕ HOH DOÕQDUDN HO GDPDU L]L WDEDQOÕ ELU EL\RPHWULN NLPOLN GR÷UXODPDVLVWHPLJHUoHNOHúWLULOPLúWLU ÖZETÇE Bu bildiride, eldeki damar verisi kullanÕODUDN NLúLVHO NLPOLN GR÷UXODPD DPDoOÕ ELU ELW G|QúP WDEDQOÕ |]JQ ELU \|QWHP |QHULOPLúWLU <DSÕODQ oDOÕúPDGD avuç damar bilgilerinin oÕNDUÕOGÕ÷ÕNÕ]ÕO|WHVLUHVLP YHULWDEDQÕ NXOODQÕODUDNLPJHOHU NDUúÕWOÕNL\LOHúWLUPH |QLúOHPinden geçirildikten sonra HOLQ VW NÕVPÕQGDQ GDPDU WDQÕma LoLQ NXOODQÕODFDN LOJLOLOLN E|OJHVL HOGH HGLOPLúWLU. Bu oDOÕúPDGD |]JQ RODUDN ELU ELW G|QúP NÕVDFD %7 (One Bit Transform), NXOODQÕODUDN GDPDUODUÕQ oÕNDUÕOGÕ÷Õ LNLOL LPJH elde edilmektedir. 'DPDUODUÕQ EHOLUJLQ úHNLOGH HOGH HGLOPHVL LoLQ VRQ DúDPDGD PRUIRORMLN LúOHPOHU X\JXODQPDNWDGÕU 7DQÕPD DúDPDVÕQGD LNLOL ilinti (korelasyon) LúOHPL \DSÕODUDN WHVSLWJHUoHNOHúWLULOPHNWHGLU. ABSTRACT In this paper, a novel scheme for personal authentication using palm vein information based on one-bit transform is presented. In this work, infrared palm images which contain the palm vein information are used and after contrast enhancement based preprocessing the corresponding region of interest is extracted. The one-bit transform is used to obtain the binary image containing vein information in a novel approach. To obtain the vein data perceptibly, morphological processing is used in the final processing step. In the recognition step binary correlation based identification is accomplished. 1. *ø5øù %L\RPHWULN NLPOLN GR÷UXODPD VLVWHPOHUL JQP]GH JYHQOLN VD÷OÕN EDQNDFÕOÕN JLEL ELUoRN DODQGD kullanÕOPD\D EDúODQPÕúWÕU 3DUPDN L]L LOH EDúOD\DQ EL\RPHWULNNLPOLNGR÷UXODPDVLVWHPOHULGDKDVRQUDVÕQGD \D\JÕQODúDUDN \] WDQÕPD, iris WDQÕPD UHWLQD WDUDPD JLEL IDUNOÕ EL\RPHWULN |]HOOLNOHUGHQ ID\GDODQPD\D EDúODPÕúWÕU <DNÕQ ]DPDQGD SDUPDN HO YH DYXo LoL GDPDU WDQÕPD VLVWHPOHULQLQ NXOODQÕPÕ |]HOOLNOH WHPDV JHUHNWLUPHPHVL YH VLVWHPLQ DOGDWÕOPDVÕQÕQ GD J|UHFHOL RODUDN]RUROPDVÕQHGHQL\OHGLNNDWoHNPH\HYHNXOODQÕP DODQODUÕEXOPD\DEDúODPÕúWÕU>1]. 'DPDU WDQÕPD VLVWHPOHUL LQVDQODUÕQ damar KDULWDVÕQÕQ NHQGLVLQH |]J YH EHQ]HUVL] ROGX÷X 2. ø/*ø/ø/ø. BÖLGESød,.$57,0, (O GDPDU L]L WDEDQOÕ EL\RPHWULN WDQÕPD VLVWHPLQLQ LON DúDPDVÕ NXOODQÕODFDN DYXo E|Ogesinin tespit edilerek ilgililik bölgesinin (region of interest ROI) 1094 2014 IEEE 22nd Signal Processing and Communications Applications Conference (SIU 2014) oÕNDUWÕOPDVÕGÕU Bu amaçla ilk önce yakalanan el görüntüsünün çevriti VÕQÕU KDWODUÕ oÕNDUÕOPDNWDGÕU Bunun için Sobel temelli kenar tespiti uygulanmakta ve HQ GÕú oHYULW WDNLEL JHUoHNOHúWLULOHUHN HO oHYULWL HOGH HGLOPHNWHGLU%XLúOHPùHNLOD¶GHJ|VWHULOHQ|UQHNELU HO LPJHVL LoLQ ùHNLO E¶GH J|VWHULOHQ HO oHYULWLQL vermektedir. øNLOL oHYULW LPJHVL ELU VRQUDNL DúDPDGD GDPDU WHVSLWLQLQ \DSÕODFD÷Õ DYXo VW E|OJHVLQLQ oÕNDUWÕOPDVÕ LoLQNXOODQÕOPDNWDGÕU%XDPDoODoHYULW imgesi üzerinde \DWD\ WDUDPD \DSÕODUDN -0 JHoLú VD\ÕVÕ NRQWURO edilmektedir. 3DUPDNODUÕQ ROGX÷X E|OPGH -0 JHoLúOHULQLQVD\ÕVÕID]ODDYXobölgesinde ise daha D]GÕU %X \]GHQ EX GH÷LúLP VD\ÕVÕ EHOOL ELU GH÷HULQ DOWÕQD GúW÷ SLNVHOLQ NRRUGLQDWODUÕ NXOODQÕODUDN LOJLOLOLN bölgesinin \DWD\ VÕQÕUÕ ROXúWXUXOPDNWDGÕU. 'úH\ VÕQÕU için ise, ELOH÷LQ EDúODQJÕo konumu temel DOÕQPDNWD YH VRODOWNÕVÕPGDHOLQJHQLúOHPH|]HOOL÷LLOHGúH\ referans QRNWDVÕ HOGH HGLOPHktedir. Bu sayede oOXúturulan EDúODQJÕo (referans) noktasÕndan itibaren 65 x 60 J|UQW HOHPDQÕ SLNVHO ER\XWXQGD ELU 52, elde HGLOPHNWHGLU%XLúOHPLQVRQXFXoHYULWLPJHVL]HULQGHQ ùHNLO F¶GH oÕNDUÕODQ 52, LVH ùHNLO G¶GH gösterilmektedir. (a) L\LOHúWLUPH LúOHPLQL JHUoHNOHúWLUPHNWH YH EX VD\HGH \HUHO GHWD\ODUÕQ GDKD L\L EHOLUJLQOHúWLULOPHVLQL VD÷ODPDNWDGÕU. Bu amaçla ilgililik bölgesi öncelikle dikdörtgensel bölgelere bölünür ve her bir bölgeye NDUúÕWOÕNVÕQÕUODPDOÕKLVWRJUDPHúLWOHPHLúOHPLX\JXODQÕU BX VD\HGH SHNLúWLULOPLú ELU J|UQW HOGH HGLOPHNWHGLU &/$+( GDPDU L]OHULQLQ EHOLUJLQOHúWLULOPHVL LoLQ NXOODQÕODELOHFHN HWNLOL ELU \DNODúÕPGÕU >10,12]. ùHNLO ¶GH|UQHNJ|UQWLoLQRULMLQDO52,YH&/$+(VRQUDVÕ elde edilen ROI gösterilmektedir. (a) (b) ùHNLO (a) Orijinal ROI E&/$+(X\JXODQPÕú52, 3.2. %LU%LW'|QúP %LUELWG|QúP1 BT: One-bit transform), gri seviyeli imgeleri HWNLOL ELU úHNLOGH LNLOL imgelere G|QúWUPHk LoLQNXOODQÕOPDNWDGÕU>12]. 1BT’de imge öncelikli olarak çoklu bant-geçiren bir süzgeçten geçirilmektHGLU ùHNLO ¶GH YHULOHQ V]JHo oHNLUGH÷L NXOODQÕODUDN EX V]JHoOHPH LúOHPL GúN LúOHP \N\OH JHUoHNOHúWLULOHELOPHNWHGLU (b) (c) (d) ùHNLO (a) Örnek el imgesi (b) Elin çevriti F52,oÕNDUWÕPÕ(d) ROI ùHNLO dDOÕúPDGDNXOODQÕODQ%7süzgeç oHNLUGH÷L 3. DAMAR ÇIKARTIMI 3.1. øPJH3HNLúWLUPH I LPJHVLQLQV]JHoOHQPLúKDOL (O GDPDUODUÕQÕQ GDKD EHOLUJLQ ROPDVÕ LoLQ |QFHOLNOL RODUDN LOJLOLOLN E|OJHVLQH NDUúÕWOÕN SHNLúWLUPH X\JXODQPDNWDGÕU %X DPDoOD NDUúÕWOÕN VÕQÕUODPDOÕ X\DUODQÕU histogram GHQNOHúWLUPH (CLAHE: ContrastLimited Adaptive Histogram Equalization) NXOODQÕOPÕúWÕU 6ÕUDGDQ KLVWRJUDP GHQNOHúWLUPH +(: Histogram Equalization) yöntemi, imgeyi bir bütün olarak LúOHPHNWHGLU. CLAHE ise yerel bölgeler üzerinden ܭ כ ܫ = ܨܫ (1) úeklinde elde edilebilmekte olup, burada *, konvolüsyon LúOHYLQL J|VWHUPHNWHGLU %7 G|QúP LoLQ V]JHoOHQPLú VRQXo LOH RULMLQDO LPJH NDUúÕODúWÕUÕOPDNWDGÕU ܫ > ܨܫ = ܤ 1095 (2) 2014 IEEE 22nd Signal Processing and Communications Applications Conference (SIU 2014) Bu sayede ikili bir imge elde edilmektedir. Bu imgede GHWD\ODU RUWD\D oÕNDUÕOPDNWDGÕU ùHNLO E¶GH YHULOHQ &/$+( VRQUDVÕ 52, LoLQ V]JHoOHPH VRQXFX ùHNLO 4(a)’GD%7VRQXFXLVHùHNLO(b)’de gösterilmektedir. *|UOG÷ JLELELOGLULGH|QHULOHQ|]JQ%7\DNODúÕPÕ WHPHOOL \|QWHP VD\HVLQGH HO GDPDUODUÕ EDúDUÕ\OD oÕNDUÕOPDNWDGÕU (a) benzerlik ölçütü sonucuna göre karar verilecek uygun ELUHúLNGH÷HULQLQEHOLUOHQPHVLJHUHNPHNWHGLU 4.2. Uygun (úLN'H÷HULQLQ%HOLUOHQPHVL %L\RPHWULNWDQÕPDVLVWHPLLoLQX\JXQELUHúLNGH÷HULQLQ belirlenmHVLDGÕPÕGHQHWLPOLúHNLOGHJHUoHNOHúWLULOPLúWLU %X DPDoOD YHULWDEDQÕQGD D\QÕ HOLQ IDUNOÕ ]DPDQODUÕGD DOÕQPÕú J|UQWOHUL NXOODQÕODUDN D\QÕ HOH DLW GDPDU KDULWDODUÕQÕQ+DPPLQJPHVDIHKLVWRJUDPÕoÕNDUWÕOPÕúWÕU 6RQUDVÕQGD ise IDUNOÕHOlere ait tüm imgeler NXOODQÕODUDN IDUNOÕ NLúLOHULQ GDPDU KDULWDODUÕQÕQ PHVDIH KLVWRJUDPÕ HOGH HGLOPLúWLU øNL KLVWRJUDPÕQ NHVLúLP QRNWDVÕ LVH X\JXQELUHúLNGH÷HURODUDNEHOLUOHQPLúWLU ùHNLO ¶GD D\QÕ HOH DLW IDUNOÕ ]DPDQODUGD DOÕQPÕú J|UQWOHUGHQoÕNDUWÕODQGDPDUKDULWDVÕJLELIDUNOÕHOOHUH DLW LNL GDPDU KDULWDVÕQÕQ GD J|UQP YH +DPPLQJ mesafesi gösterilmektedir. G|UOG÷ JLEL D\QÕ HOH DLW GDPDU KDULWDODUÕ EHQ]HU ROXS QRUPDOL]H +DPPLQJ mesafesi 0.0832 RODUDNøNLIDUNOÕHOHDLWGDPDUKDULWDODUÕ içinse normalize Hamming mesafesi daha yüksek ve 0.3872 olarak EXOXQPXúWXU (b) ùHNLO (a) Süzgeçleme sonucu (b) 1BT sonucu 3.3. Morfolojik 6RQøúOHP Son elde edilen ikili imgedeki gürültülerin giderilmesi için VRQ DúDPDGD temel morfolojik (biçimbilimsel) LúOHPOHU uygulanmaktadÕU Bunun için damar \DSÕODUÕQD uygun bir \DSÕ HOHPDQÕ VWUXFWXUH HOHPHQW ile önce aúÕQGÕUPD HURVLRQ X\JXODQDUDN GDPDUODUÕQ temel LVNHOHWL oÕNDUWÕOmakta, sRQUDVÕQGD ise NDSDPD LúOHPL LOH VRQ GDPDU KDULWDVÕ HOGH HGLOPHNWHGLU. Morfolojik son LúOHPVRQXFXùHNLO¶GHJ|VWHULOPHNWHGLU (a) ùHNLO 9HULWDEDQÕQGDQVHoLOHQD\QÕYHIDUNOÕHOOHULoLQ mesafe ölçütü (b) ùHNLO (a) øNLOL imge; (b) Morfolojik VRQLúOHPOHHOGH HGLOHQGDPDUKDULWDVÕ 5. DENEYSEL SONUÇLAR 'HQH\VHO VRQXoODU LoLQ %R÷D]LoL hQLYHUVLWHVLQLQ el damar görünWVYHULWDEDQÕNXOODQÕOPÕúWÕU [13],[14]. Bu YHUL WDEDQÕQGD HO GDPDU J|UQWOHUL \DNÕQ NÕ]ÕO-ötesi 1,5 J|UQWOHPH WHNQRORMLVL\OH \DNDODQPÕúWÕU .XOODQÕODQ NDPHUDQÕQ \DNODúÕN 0 nm dalga boyuna NDGDUJ|UQW\DNDOD\DELOPH|]HOOL÷LROXSYHULWDEDQÕQD IDUNOÕ NLúL\H DLW ¶GHQ ID]OD HO J|rüntüsü EXOXQPDNWDGÕU *|UQWOHU, SLNVHO J|UQW HOHPDQÕ EDúÕQD ELW GHULQOL÷H VDKLS YH î 13 piksel ER\XWXQGDGÕU %X YHULWDEDQÕQGDn EX oDOÕúPD NDSVDPÕQGD her elden IDUNOÕ ]DPDQlarGD DOÕQPÕú 2 adet J|UQW NXOODQÕOPÕúWÕU. Bu sayede NLúLnin elini sisteme okuturken ROXúDELOHFHN IDUNOÕOÕNODU, zaman veya çevre NRúXOODUÕQÕQ IDUNOÕ HWNLOHUL VÕFDN RUWDP VR÷XN RUWDP vb.) GH÷HUOHQGLUPHNDSVDPÕQDDOÕQPÕúWÕU. <DSÕODQ oDOÕúPD VRQXFXQGD YHULWDEDQÕQGDNL D\QÕ yönelime sahip resimler DOW NPHVL NXOODQÕOPÕú YH NXOODQÕODQ WP UHVLPOHU LoLQ GR÷UX WDQÕPD JHUoHNOHúWLULOPLúWLUøOJLOLHOLQNDUúÕOÕ÷ÕRODQJ|UQWOHULQ NDSVDP GÕúÕQD DOÕQPDVÕ GXUXPXQGD LVH VLVWHP aranan 4. '$0$5(ù/(ù7ø50( 4.1. 1BT verilerinde benzerlik ölçütü øNL D\UÕ GDPDU KDULWDVÕQÕQ NDUúÕODúWÕUÕOPDVÕ LoLQ NRUHODV\RQ WDEDQOÕ EDVLW ELU \DNODúÕP NXOODQÕOPÕúWÕU Bu DPDoODLNLIDUNÕJ|UQWGHQoÕNDUÕOD%7WDEDQOÕGDPDU KDULWDODUÕQÕQ LNLOL NRUHODV\RQX DOÕQDUDN ELU EHQ]HUOLN ölçütü elde edilebilmektedir. øúOHPVHONROD\OÕNDoÕVÕQGDQ EX LúOHY ELU EHQ]HPH]OLN |OoW úHNOLQGH JHUoHNOHúWLULOPHNWHGLU 'DPDU KDULWDODUÕQD PDQWÕNVDO EX-25 X\JXODQDUDN EHQ]HUOLN GXUXPXQGD GúN EHQ]HPH]OLN GXUXPXQGD LVH \NVHN ELU GH÷HU HOGH edilmektedir. %X \DNODúÕP HVDVÕQGD damar haritalarÕQÕQ +DPPLQJ PHVDIHVLQLQ EXOXQPDVÕQD NDUúÕOÕN gelmektedir. 1RUPDOL]DV\RQ \DSÕOGÕ÷ÕQGD Hamming PHVDIHVLLOHDUDVÕQGDGH÷LúHFHNROXSD\QÕNLúL\HDLW GDPDU KDULWDODUÕ LoLQ VÕIÕUD \DNÕQ GúN GH÷HUOHU IDUNOÕ NLúLOHUH DLW KDULWDODU LoLQVH \NVHN GH÷HUOHU elde edilecektir. Pratik sistemde biyometrik WDQÕPD için 1096 2014 IEEE 22nd Signal Processing and Communications Applications Conference (SIU 2014) elin veritabaQÕQGD EXOXQPDGÕ÷Õ úHNOLQGH G|Qú \DSPDNWDGÕU $\QÕ HOH DLW IDUNOÕ ]DPDQODUGD DOÕQPÕú LNL J|UQWGHQ oÕNDUWÕODQ GDPDU KDULWDODUÕQD ELU |UQHN ùHNLO 7’de verilmektedir. [5] B. Prasanalakshmi, A. Kannammal, “A secure cryptosystem from palm vein biometrics”, Proceedings of the 2nd International Conference on Interaction Sciences: Information Technology, Culture and Human, ICIS '09, pp. 1401-1405, 2009. [6] P.-O. Ladoux, C. Rosenberger, B. Dorizzi, “Palm Vein Verification System Based on SIFT Matching”, Advances in Biometrics, Lecture Notes in Computer Science, Vol. 5558, pp 1290-1298, 2009. [7] P. Ghosh, R. Dutta, “A new approach towards Biometric Authentication System in Palm Vein Domain”, International Journal of Advance Innovations, IJAITI, Vol. 1, No.2, pp. 1-10, 2012. [8] I. Sarkar, F. Alisherov, T.-H. Kim, D. Bhattacharyya, “Palm Vein Authentication System: A Review”, International Journal of Control and $XWRPDWLRQ9Rú1RSS-33, May 2010. [9] Z. Honarpisheh, K. Faez, “An Efficient Dorsal Hand Vein Recognition Based on Firefly Algorithm”, International Journal of Electrical and Computer Engineering, IJECE, Vol.3, No.1 , pp. 30-41, Feb. 2013. [10] M. Yakno, J. Mohamad Saleh, B. Affendi Rosdi, “Low Contrast Hand Vein Image Enhancement”, 2011 IEEE International Conference on Signal and Image Processing Applications (ICSIPA2011), pp. 390 – 392, 2011. [11] S.D. Raut, V.T. Humbe, “Analysis of Multispectral Palm Vein Image Using Enhancement Operations”, International Journal of Computer Science Engineering (IJCSE), pp.103-106, 2013. [12] S.Erturk, “Region of Interest Extraction in Infrared 6. SONUÇ Bu bildiride bir-ELWG|QúPNXOODQDQ|]JQELUGDPDU L]L WDEDQOÕ EL\RPHWULN WDQÕPD VLVWHPL |QHULOPLúWLU <DSÕODQ GHQH\OHUGH |QHULOHQ \DNODúÕPÕQ GDPDU KDULWDVÕ oÕNDUÕPÕ LoLQ HIHNWLI YH EDúDUÕOÕ ELU VRQXo YHUGL÷L WHVSLW HGLOPLúWLU (a) (b) (c) (d) ùHNLO(a) øONJ|UQW\HDLW52,E$\QÕHle DLWIDUNOÕ ]DPDQGDDOÕQPÕú52, (c) LONJ|UQWQQGDPDUKDULWDVÕ (d) LNLQFLJ|UQWQQGDPDUKDULWDVÕ 7. 7(ù(..h5 Images Using One-Bit Transform”, IEEE Signal Processing Letters, Vol. 20, No. 10, pp. 952-955, 2013. [13] http://bosphorus.ee.boun.edu.tr/hand/Home.aspx [14] A. Yuksel, L. Akarun, B. Sankur, “Hand vein biometry based on geometry and appearance methods”, IET Computer Vision, Vol. 5, No. 6, 2011 <D]DUODU %R÷D]LoL hQLYHUVLWHVL HO GDPDU J|UQWV YHULWDEDQÕQÕ KD]ÕUOD\DQ YH SD\ODúDQ 3URI 'U %OHQW 6DQNXU¶DWHúHNNUHGHUOHU 8. KAYNAKÇA [1] B.Ergen, $dDOÕúNDQ ³%L\RPHWULN 6LVWHPOHU YH (O 7DEDQOÕ %L\RPHWULN 7DQÕPD .DUDNWHULVWLNOHUL´ 6th International Advanced Technologies Symposium (IATS’11), pp. 455- 460, (OD]Õ÷7XUNH\ , 2011. [2] C.-L. Lin, K.-C. Fan, “Biometric verification using thermal images of palm-dorsa vein patterns”, IEEE Trans. on Circuits and Systems for Video Technology, Vol. 14, No.2, pp. 199-213, Feb. 2004. [3] L. Wang, G. Leedham, “Near- and Far- Infrared Imaging for Vein Pattern Biometrics” , IEEE Int. Conf. on Video and Signal Based Surveillance, AVSS '06, pp. 52, Nov. 2006. [4] J.-G. Wang, W.-Y. Yau, A. Suwandy, E. Sung, “Person recognition by fusing palmprint and palm vein images based on “Laplacianpalm” representation”, Pattern Recognition, Vol. 41, No. 5, pp. 1514-1527, May 2008. 1097
Benzer belgeler
Kurulum Kilavuzu SelfCooking Center
6DGHFHJD]OÕFLKD]ODU
,&LKD]ÕQÕ]ELUDVSLUDW|UQDOWÕQGDLVHEXQXFLKD]oDOÕúÕUNHQoDOÕúÕUYD]L\HWWHROPDOÕGÕU±
迈信user manual英文说明书
VLPJHVLQHWÕNOD\ÕQ6LVWHPRWRPDWLNRODUDNUDG\RLVWDV\RQODUÕQÕDUDUøúOHPVÕUDVÕQGDUDG\RDUDPDVÕ
GHYDPHGL\RUVDGXUGXUPDNLoLQ¶HWÕNOD\ÕQ*oOELUUDG\RVLQ\DOLDOÕQGÕ÷Õ...
Toshiba RAS-18NKHD-E User Guide Manual AIR CONDITIONER
.OLPDQÕQHWUDIÕQGDPRQWDMYHEDNÕPLoLQJHUHNOLDoÕNOÕNODUROPDOÕGÕUøoYHGÕúQLWHOHULQ\DNÕQODUÕQGDKLoELUHQJHO
ROPDPDOÕGÕU'ÕúQLWHERUXODPDVÕNROD\OÕNOD\DSÕODELOPHOLGLUgQSDQHODoÕODE...
G799 Standard
silin.
3. 3UL]HWDNÕODQFLKD]ODULoLQSUL]LQFLKD]D\DNÕQNRQXPGD
YHNROD\HULúLOLUROPDVÕJHUHNLU.
4. /WIHQEXFLKD]ÕQHPGHQX]DNWXWXQ.
5. &LKD]ÕJYHQOLYHVD÷ODPELU\]H\HNR\XQ. h]HULQHVÕ...
Tarihçe Eşsiz Yazilim ve Mekanik Tasarim
JoOHQGLUPHGHNXOODQÕU
• Izotonik Mod: 6LPOH,]RWRQLNPRGXPX]ODWP
KDUHNHWND]DQGÕUPDHJ]HUVL]OHUL