Sonlu Yer Düzlemi ve Dielektrik Katmanı Üzerine
Transkript
Sonlu Yer Düzlemi ve Dielektrik Katmanı Üzerine
6 RQOX<HU']OHPLYH'LHOHNWULN.DWPDQÕh]HULQH<HUOHúWLULOPLú 0LNURúHULW$QWHQOHULQ$QDOL]L Gölge Ögücü, Lale Alatan*, Özlem Aydin Civi*, Tuncay Ege Gaziantep Üniversitesi Elektrik-Elektronik Müh. Bölümü 27310 Gaziantep [email protected], [email protected] * ODTU Elektrik-Elektronik Müh. Bölümü Ankara [email protected] ,[email protected] Özet: %X oDOÕúPDGD VRQOX GLHOHNWULN WDEDNDVÕ YH \HU SODNDVÕ ]HULQH \HUOHúWLULOPLú \DWD\ HOHNWULN GLSROQQ \DNODúÕN *UHHQ IRQNVL\RQODUÕQÕ EXOPDN LoLQ JHOLúWLULOHQ \|QWHP |]HWOHQPLúWLU %XOXQDQ EX *UHHQ IRQNVL\RQODUÕ PRPHQW PHWRGX 0R0 IRUPODV\RQXQGD NXOODQÕODUDNUDN \DPD DQWHQ ]HULQGHNL DNÕP GD÷ÕOÕPÕ DQWHQLQ JLULú HPSHGDQVÕ YH VDoÕOÕP SDUDPHWUHVL VRQOX \DSÕ GLNNDWH DOÕQDUDN EXOXQPXúWXU *LULú 0LNURúHULW DQWHQOHULQ DQDOL]LQGH DQWHQOHU KHU QH NDGDU X\JXODPDGD VRQOX GLHOHNWULN NDWPDQODU ]HULQH \DSÕOPÕú oOVDODU GD JHQHOOLNOH GLHOHNWULN YH \HU WDEDNDODUÕQÕQ VRQVX] ROGX÷X YDUVD\ÕOÕU )DNDW |]HOOLNOH JH]JLQ LOHWLúLP X\JXODPDODUÕQGD DQWHQOHULQ NoN ELU DODQ ]HULQH \DSÕOPDVÕ JHUHNPHNWHGLU %X GD DQWHQLQ GLHOHNWULN NDWPDQÕ YH \HU G]OHPLQLQ NHQDUÕQD \DNÕQ ROPDVÕQÕ JHUHNWLULU %X VRQOX \DSÕ VHEHEL\OH DQWHQ SDUDPHWUHOHUL DQWHQ ]HULQGHNL DNÕP GD÷ÕOÕPÕ JLULú HPSHGDQVÕ ÕúÕPD |UQWV \HU G]OHPL YH GLHOHNWULN WDEDNDQÕQ E\NO÷ LOH GH÷LúPHNWHGLU >@ %X QHGHQOH PLNURúHULW DQWHQOHULQ WDVDUÕPÕQGD VRQOX \DSÕ J|]|QQH DOÕQPDOÕGÕU $QWHQOHULQ VD\ÕVDO DQDOL]LQGH VÕNOÕNOD NXOODQÕODQ ELU \|QWHP PRPHQW PHWRGX 0R0 IRUPXODV\RQXGXU <HU G]OHPL YH GLHOHNWULN WDEDND VRQOX ROGX÷XQGD H÷HU VRQOX \DSÕ LoLQ *UHHQ IRQNVL\RQODUÕ ELOLQPL\RUVD 0R0 IRUPXODV\RQXQGD WDQÕPODQPDVÕ YH EXOXQPDVÕ JHUHNHQ ELUoRN ELOLQPH\HQ GLHOHNWULN WDEDND LoLQGHNL HúGH÷HU KDFLP SRODUL]DV\RQ DNÕPODUÕ \HU G]OHPL ]HULQGHNL HúGH÷HU \]H\ DNÕPODUÕ YDUGÕU >@¶GH PDQ\HWLN KDW DNÕPÕQÕQ ROXúWXUGX÷X \]H\ GDOJDODUÕQÕQ VRQOX \HU G]OHPL YH GLHOHNWULN WDEDND WDUDIÕQGDQ ROXúWXUXODQ NHQDUGDQ VDoÕQÕPÕQÕ PRGHOOH\HQ NHQDU JHoLULVL EXOXQDUDN DQWHQLQ LOHWLP KDWWÕ PRGHOLQGH NXOODQÕOPÕúWÕU )DNDW EX \|QWHP \DOQÕ]FD LOHWLP KDWWÕ PRGHOL LOH DQDOL] HGLOHELOHFHN PLNURúHULW DQWHQOHU LoLQ NXOODQÕODELOLU gQFHNL oDOÕúPDPÕ]GD >@ GDKD JHQHO YH o ER\XWOX PLNURúHULW DQWHQ \DSÕODUÕQÕQ DQDOL]LQLQ \DSÕODELOPHVL LoLQ VRQVX] GLHOHNWULN YH \HU G]OHPL LoLQ EXOXQDQ *UHHQ IRQNVL\RQODUÕ VRQOX \DSÕODU LoLQ GH NXOODQÕODELOHFHN úHNLOGH JHOLúWLULOPLúWLU <DWD\ elektrik dipolünün (H(' ROXúWXUXODQ NHQDUGDQ ROXúWXUGX÷X \]H\ GDOJDODUÕQÕQ VRQOX \HU G]OHPL YH GLHOHNWULN WDEDND WDUDIÕQGDQ VDoÕQÕPÕQÕ PRGHOOH\HQ NHQDU JHoLULVL NXOODQÕODUDN VRQOX \DSÕ LoLQ \DNODúÕN ELU *UHHQ IRQNVL\RQX NDSDOÕ IRUPGD EXOXQPXúWXU %X oDOÕúPDGD >@¶WH JHOLúWLULOHQ *UHHQ IRQNVL\RQX 0R0 IRUPODV\RQXQGD NXOODQÕODUDN VRQOX \HU G]OHPL YH GLHOHNWULN WDEDND ]HULQH \HUOHúWLULOHQ PLNURúHULW KDWOD EHVOHQHQ \DPD DQWHQOHULQ DQDOL]L \DSÕOPÕúWÕU $QWHQ ]HULQGHNL DNÕP GD÷ÕOÕPÕ IDUNOÕ GLHOHNWULN NDWPDQÕ YH \HU G]OHPL E\NONOHUL LoLQ EXOXQPXú YH EX GH÷HUOHU GLHOHNWULN YH \HU G]OHPLQLQ VRQVX] YDUVD\ÕOGÕ÷Õ GXUXPGDNL DNÕP GD÷ÕOÕPÕ\OD NDUúÕODúWÕUÕOPÕúWÕU 2. Formülasyon 6RQVX] GLHOHNWULN NDWPDQ YH \HU G]OHPLQLQ ]HULQH \HUOHúWLULOPLú \DWD\ HOHNWULN GLSROQQ VNDODU Ye vektör SRWDQVL\HOOHULQLQ *UHHQ IRQNVL\RQODUL NDSDOÕ IRUPGD NRPSOHNV J|UQWOHU FRPSOH[ LPDJHV YH \]H\ GDOJDVÕQÕQ NDWNÕVÕ RODUDN HOGH HGLOHELOLU *HQHO PLNURúHULW DQWHQ \DSÕODUÕQÕ DQDOL] HGHELOPHN LoLQ VRQVX] \DSÕ LoLQ EXOXQDQ %X oDOÕúPD 7h%ø7$. WDUD IÕQGDQ ((($* ( SURMHVL NDSVDPÕQGD GHVWHNOHQPHNWHGLU *UHHQ IRQNVL\RQODUÕQÕ \]H\ GDOJDODUÕQÕQ VRQODQGÕUÕOPÕú GLHOHNWUL÷LQ NHQDUÕQGDQ RODQ \DQVÕPDODUÕQÕ GD GLNNDWH DODFDN úHNLOGH GH÷LúWLUHUHN VRQOX \DSÕ LoLQ *UHHQ IRQNVL\RQODUÕQÕ EXOPDN PPNQGU %X IRQNVL\RQODUÕQ EXOXQPDVÕ LoLQ L]OHQHFHN \|QWHP DúD÷ÕGDNL úHNLOGH |]HWOHQHELOLU >@ PEC 2a z 2b HED (x’,y’,d) d inc E sw y εr x εr Meq Yer Düzlemi y = -a Yer Düzlemi y=a ùHNLO 6RQOX GLHOHNWULN NDWPDQ ]HULQGH GLSRO YH \ D¶GD HúGH÷HU SUREOHP 1) Dielektrik-KDYD DUD\]QGH \ D ]! ùHNLO HOHNWULN DODQÕQ \]H\ GDOJD HOHPDQÕQÕ EXOPDN JHUHNLU inc E sw = f ( z )k ρ 0 H 02 k ρ 0 ( x − x ′) 2 + ( a − y ′) 2 aˆ z (1) Burada k ρo \]H\ GDOJDVÕQÕQ \D\ÕOÕP VDELWLGLU f(z GDOJDQÕQ z-\|QQGH QDVÕO GH÷LúWL÷LQL J|VWHUHQ IRQNVL\RQ H 02 LVH VÕIÕUÕQFÕ GHUHFH LNLQFL WU +DQNHO IRQNVL\RQXGXU 'H÷LúLN JHOLú DoÕODUÕQGDNL GDOJDODUÕQ HWNLVLQL GDKD L\L DQDOL] HGebilmek için Hankel fonksiyonunun düzlem GDOJD DoÕOÕPÕQGDQ ID\IDODQÕODELOLU − jk y ∞ e y πH 02 k ρ 0 x 2 + y 2 = ∫ e − jk x x dk x , k ρ 0 = k x2 + k y2 −∞ ky (2) 3) Dielektrik-KDYD DUD\]QH KD\DOL ELU \DUÕ-VRQVX] PNHPPHO HOHNWULN LOHWNHQ 3(& \HUOHúWLULOHUHN \XNDULGD bulunan gelen \]H\ GDOJD\Õ NXOODQDUDN GLHOHNWULN-KDYD DUD\]QGH \ D ]! HúGH÷HU PDJQHWLN DNÕP inc WDQÕPODQDQÕU M eq = E SW × nˆ ). 4) Hayali PEC ve sonlu yer düzlemi 90o¶OLN o ELU WDNR] ROXúWXUXU øOHWNHQ WDNR] ]HULQH \HUOHúWLULOPLú e − jk x x LOH GH÷LúHQ \DWD\ oL]JLVHO PDQ\HWLN ELU DNÕPÕQ *UHHQ IRQNVL\RQX 'HQNOHP ¶WHNL JLELGLU >@ G xH ωε 0π = ωε 0π 2 − jk z x 1 e ∑ σ H 2n2 (k t z ′) J 2n (k t z ), 3 n n 3 z < z′ 2 − jk z x 1 2 e H 2n (k t z ) J 2n (k t z ′), ∑ 3 n σn 3 z > z′ 3 (3) 3 Burada σ 0 = 2, σ n = 1, n ≠ 0 and k t = k 02 − k x2 toplam manyetik alan ( H ) bulunur. %X *UHHQ IRQNVL\RQX NXOODQÕODUDN HúGH÷HU DNÕPÕQ ROXúWXUGX÷X .DUDUOÕ IRUPO VWDWLRQDU\ IRUPXOD >@ NXOODQÕODUDN ky¶D ED÷OÕ RODUDN kenar geçirisi yedge bulunabilir. Yüzey GDOJDODUÕQÕQ NHQDUGDQ \DQVÕPD NDWVD\ÕODUÕ NHQDU JHoLULVL NXOODQÕODUDN DúD÷ÕGDNL úHNLOGH EXOXQXU: kρ0 ( ) yedge k y = H , M eq M eq , M eq ωµ , Γ(k y ) = kρ0 ωµ − y edge (k y ) (4) + y edge (k y ) 'LHOHNWULN LoLQGHNL ELU J|]OHP QRNWDVÕQGD \DQVÕ\DQ \]H\ GDOJDODUÕ úX úHNLOGH EXOXQDELOLU + jk ( y + y′ ) ∞ e y − jk 2 a ref ∝ Γ(k y )e y e − jk x x E sw dk x ky −∞ ∫ (5) 7P JHOLú DoÕODUÕ LoLQ EXOXQDQ \DQVÕPD NDWVD\ÕVÕ JHQHOOHúWLULOPLú IRQNVL\on Function - *32) \|QWHPL kalemi (Generalized Pencil of NXOODQÕODUDN NRPSOHNV VWHOOHU FLQVLQGHQ DoÕOPDVÕ \ROX LOH \DQVÕ\DQ \]H\ GDOJDODUÕ DúD÷ÕGDNL JLEL EXOXQXU E zref,sw = f ( z )k ρ 0 Denklem (6)’daki αi ve βi ∑ i =1, N β i H 02 k ρ 0 ( x − x ′) + (2a − ( y + y ′) − jα i ) kaynagin görüntüsü 2 2 (6) GH÷HUOHUL GLHOHNWULN NDWPDQÕQ NDOÕQOÕ÷Õ GLHOHNWULN VDELWL YH IUHNDQV WDUDIÕQGDQ EHOLUOHQPHNWHGLU 6RQOX GLHOHNWULN NDWPDQÕQÕQ GL÷HU NHQDUODUÕQGDQ PH\GDQD JHOHFHN \DQVÕPDODU GD \DQVÕPD\D QHGHQ RODQ VUHNVL]OL÷LQ \DSÕVÕQÕQ GH÷LúPHPHVL QHGHQL LOH D\QÕ αi ve β i GH÷HUOHUL LOH LIDGH HGLOHELOPHNtedir. Böylelikle dört kenardan (y=a, y=-a, x=b, x=-b \DQVÕ\DQ WRSODP \]H\ GDOJD DúD÷ÕGDNL JLEL LIDGH HGLOHELOLU { Ezref , sw = f ( z )k ρ 0 ∑ βi H 02 k ρ ( x − x′)2 + ( 2a − ( y + y′) − jai )2 + H 02 k ρ ( x − x′) 2 + (2a + ( y + y′) − jai )2 (7) i + H 02 k ρ (2b − ( x + x′) − jai )2 + ( y − y′) 2 + H 02 k ρ ( 2b + ( x + x′) − jai )2 + ( y − y′)2 <DPD DQWHQLQ DQDOL]LQGH NDUÕúÕN SRWDQVL\HO potansiyelin (Gq) hem de vektör potansiyelin LQWHJUDO GHQNOHPL NXOODQÕOPDNWDGÕU %X QHGHQOH KHP VNDODU ( G A *UHHQ IRQNVL\RQODUÕQD LKWL\Do YDUGÕU 6RQOX GLHOHNWULN NDWPDQ YH \HU G]OHPL LoLQ VNDODU YH YHNW|U SRWDQVL\HOOHULQ \HU X]D\ÕQGD VSDWLDO GRPDLQ LIDGH HGLOPHVLQGH NDSDOÕ IRUPGDNL *UHHQ IRQNVL\RQODUÕ \|QWHPL NXOODQÕOPÕúWÕU >@ %X \|QWHPGH IUHNDQV X]D\ÕQGDNL VSHFWUDO GRPDLQ *UHHQ IRQNVL\RQODUÕ NRPSOHNV VWHOOHU FLQVLQGHQ DoÕOPDNWD YH \HU X]D\ÕQD G|QúPGH 6RPPHUIHOG |]HOOL÷L NXOODQÕOPDNWDGÕU 6NDODU SRWDQVL\HO *UHHQ IRQNVL\RQX NDSDOÕ IRUPGD DúD÷ÕGDNL úHNLOGH LIDGH edilmektedir. N TE + N TM e − jkrn + (− j 2π ) ∑ k ρp ( i ) H 02 (k ρp (i ) ρ ) Res i ∑ bn rn i n yüzey da lg a 1 Gq = 4πε Burada ρ = ( x − x ′) 2 + ( y − y ′) 2 ve rn = ρ 2 − a n2 ’dir. bn ve an VÕUDVÕ\OD IUHNDQV IRQNVL\RQXQ NRPSOHNV VWHOOHU FLQVLQGHQ DoÕOÕPÕQGDNL NDWVD\Õ YH VWHOL LIDGH HWPHNWHdir, GDOJD VD\ÕVÕ (8) X]D\ÕQGDNL k ρp *UHHQ \]H\ GDOJDQÕQ Res ise rezidüsüdür. 6RQOX \HU G]OHPL YH GLHOHNWULN NDWPDQ ]HULQH \HUOHúWLULOPLú \DPD DQWHQLQ DQDOL]LQGH 'HQNOHP ¶GHNL LIDGH\H 'HQNOHP ¶GHNL \DQVÕPD WHULPOHUL HNOHQPHNWHGLU 0R0 QXQGD \XNDUÕGD EXOXQDQ *UHHQ IRUPODV\R IRQNVL\RQODUÕ NXOODQÕODUDN PLNURúHULW KDWOD EHVOHQHQ YH VRQOX GLHOHNWULN NDWPDQ ]HULQH \HUOHúWLULOPLú ELU \DPD DQWHQ ]HULQGHNL DNÕP GD÷ÕOÕPÕ EXOXQPXúWXU (OGH HGLOHQ DNÕP GD÷ÕOÕPÕQGDQ KHVDSODQPDVÕ LoLQ >@¶GD |QHULOHQ \|QWHP NXOODQÕOPÕúWÕU 0LNURúHULW KDWWÕQ \|QWHPGH DQWHQL EHVOH\HQ PLNURúHULW KDW ]HULQGHNL DNÕP \ JHOHQ YH –\ y DQWHQLQ JLULú HPSHGDQVÕQÕQ \|QQGH X]DQGÕ÷Õ GúQOUVH EX \DQVÕ\DQ \|QOHULQGH LOHUOH\HQ LNL dalga cinsinden ifade edilmektedir. I = C + e −γ 1 y + C − e γ 2 y Burada γ1 ve γ2 VÕUDVÕ\OD \ YH –\ \|QQGH KDUHNHW HGHQ GDOJDODUÕQ GDOJD VD\ÕVÕ ZDYH QXPEHU (9) C + ve C − de VÕUDVÕ\OD EX \|QOHUGH KDUHNHW HGHQ GDOJDODUÕQ NDWVD\ÕODUÕGÕU 'HQNOHP ¶GDNL GDOJD VD\ÕVÕQGDQ KHU LNL \|QH KDUHNHW HGHQ GDOJDQÕQ \D\ÕOÕP VDELWL EXOXQDELOLU %XOXQDQ EX \D\ÕOÕP VDELWLQGHQ HIHNWLI GLHOHNWULN VDELWL εeff ) ve karakteristik empedans (Zc) bulunur. Zc ve εeff GH÷HUOHUL NXOODQÕODUDN YH C + ve C − NDWVD\ÕODUÕQGDQ VDoÕOÕP SDUDPHWUHVL YH JLULú HPSHGDQVÕ EXOXQDELOLU 3. Sonuçlar *HOLúWLULOHQ \D]ÕOÕP NXOODQÕODUDN GH÷LúLN E\NONWHNL GLHOHNWULN NDWPDQ YH \HU G]OHPL ]HULQH \HUOHúWLULOHQ ùHNLO D¶GDNL PLNURúHULW \DPD DQWHQLQ ]HULQGHNL DNÕP GD÷ÕOÕPÕ YH JLULú HPSHGDQVÕ *+]¶WH IDUNOÕ D YH E GH÷HUOHUL LoLQ DQDOL] HGLOPLúWLU 'LHOHNWUL÷LQ NDOÕQOÕ÷Õ FP YH GLHOHNWULN VDELWL ¶GLU 7DEOR lmek için ¶GH DQWHQLQ VDoÕOÕP SDUDPHWUHVL YH QRUPDOL]H HGLOPLú JLULú HPSHGDQVÕ YHULOPLúWLU .DUúÕODúWÕUPD \DSDEL GLHOHNWUL÷LQ YH \HU G]OHPLQLQ VRQVX] ROGX÷X GXUXP GD WDEORGD VXQXOPXúWXU 7DEORGDQ GD J|UOG÷ JLEL GLHOHNWULN NDWPDQÕ E\GNoH DQWHQLQ JLULú HPSHGDQVÕ GLHOHNWUL÷LQ VRQVX] ROGX÷X GXUXPD \DNODúPDNWDGÕU ùHNLO E¶GH DQWHQL EHVOH\HQ PLNURúHULW KDW ]HULQGHNL DNÕP GD÷ÕOÕPÕ IDUNOÕ GLHOHNWULN E\NONOHUL LoLQ oL]LOPLúWLU *|UOG÷ JLEL GLHOHNWULN NDWPDQÕ E\GNoH VRQXoODU PRQRWRQLN RODUDN GH÷LO VDOÕQDUDN VRQVX] GH÷HUH \DNODúPDNWDGÕU YH EX J|]OHPGH >@¶GHNL VRQXFODUOD |UWúPHNWHGLU b 1.25 cm a a 0.179 cm 1.6 cm 1.875 cm (a) (b) b ùHNLO D 0LNURúHULW DQWHQ E PLNURúHULW KDW ]HULQGHNL DNÕP GD÷ÕOÕPÕ 7DEOR (IHNWLI 'LHOHNWULN 6DELWL YH .DUDNWHULVWLN (PSHGDQV *LULú (PSHGDQVÕ a=b=0.1λ a=b=0.25λ a=b=0.4λ a=b=0.5λ a=b=λ a=b=2λ a=b= ∞ Gerçek(Zin) 0.871949 0.905642 0.793759 0.923155 0.98733 0.847602 0.885981 Sanal(Zin) -0.394871 -0.527866 -0.380465 -0.321198 -0.418489 -0.488117 -0.446258 | s11| 0.216981 0.271181 0.236013 0.169383 0.206151 0.267586 0.237657 ∠s11 (0) 83,944284 -15,537515 -106.48573 -93.97288 -22,54696 -92.54034 -91.02005 Kaynaklar [1] A. K. Bhattacharyya, “Effects of Ground Plane Truncation on the Impedance of a Patch Antenna”, IEE Proceedings-H, 138(6), s.560-564, 1991. [2] A. K. Bhattacharya, “Effects of Ground Plane and Dielectric Truncations on the Efficiency of a Printed Structure”, IEEE Trans. Antennas Propagat.,39(3), s.303-308, 1991. [3] Lale Alatan, Özlem Aydin Civi, Gölge Ögücü, “An Approximate Green’s Function for a Finite Grounded Dielectric Slab”, 2001 IEEE International Antennas and Propagation Symposium and URSI Radio Science Meeting, Boston-USA, Proc. URSI, s.43, 8-13 Temmuz 2001. >@ / $ODWDQ g $\GLQ &LYL * g÷F ³$QDO\VLV RI 3ULQWHG 6WUXFWXUHV RQ 7UXQFDWHG 'LHOHFWULF 6ODE DQG )LQLWH Ground Plane”, 2002 IEEE International Antennas and Propagation Symposium and URSI Radio Science Meeting [5] L.W. Pearson, “The Electromagnetic Edge Wave Due to a Point Source of Current Radiating in the Presence of a Conducting Wedge”, IEEE Trans. Antennas Propagat., 34(9), s.1125-1131, 1986. [6] G. Dural ,M. I. Aksun, “Closed form Green’s Functions for General Sources and Stratified Media”, IEEE Trans. On Microwave Theory and Techniques, MTT-43(7), s.1545-1552, 1995. [7] T.K. Sarkar, Z.A. Maricevic and M. Kahvizi, “An Accurate De-embedding Procedure for Characterizing Discontinuities”, Int. Journal of Milimeter-Wave Computer-Aided Engineering, 2(3), s.135-143, 1992.
Benzer belgeler
Yüzey / Parça Ayιrma (Split) Unsuru
dÕNDUWPDXQVXUXQXQNXOODQÕODELOPHVLLoLQ|QFHOLNOHHVNL]RUWDPÕQGDELUUHVPLQoL]LPH\HUOHúWLULOPHVLJHUHNLU%XQXQ
LoLQHVNL]RUWDPÕQGD\NHQ³,QVHUW,PDJH´NRPXWXNXOODQÕOÕU.XOODQDELOHFH÷LQL]...
Direk Metalizasyon
.LP\DVDOEDNÕUSURVHVLQLQSUREOHPKDOLQHJHOPHVLQLQDQDQHGHQLoHYUHVHOIDNW|UOHUGLU%X
proseste, özelliNOHNLP\DVDOEDNÕUEDQ\RVXQXQLoHULVLQGHNXOODQÕODQELUWDNÕPNLP\DVDOPDO]HPHOHU
Coverco Firma Broşürü
&RYHUFRPHYFXWGDOJÕoPRWRUODUÕ\HOSD]HVLGHULQNX\XODUGDQVXSRPSDODQPDVÕLoLQGDOJÕoSRPSDODUDED÷ODPD\DLGHDOLNL
PRWRUVHULVLQGHQID\GDODQPDNWDGÕU
0RWRUODUÕPÕ]ÕQHQ\D\JÕQX\JXODPDODUÕEHOHG...