yöntem - Spektrotek
Transkript
yöntem - Spektrotek
GIDA & ÇEVRE UYGULAMALARI www.spektrotek.com Spektrotek A.Ş. www.spektrotek.com [email protected] t: 0 216 688 57 78 f: 0 216 688 57 69 Katalog taleplerinizi [email protected] e-mail adresine, adres bilgilerinizi göndererek talep edebilirsiniz. SPEKTROTEK A.Ş. Kurumsal tanıtım ve ürün kataloğunda paylaşılan tüm görsel ve yazılı bilgilerin hakları SPEKTROTEK A.Ş. ve ilgili üreticilere aittir. Tüm hakları saklıdır. İzinsiz kopyalanamaz, alıntılanamaz, başka yerde kullanılamaz. Katalogda kullanılan ürünler ile orjinalleri arasında farklılık görülebilir. Tasarım, İçerik, Teknik Hazırlık ve Üretim: www.prosigma.net • [email protected] SPEKTROTEK A.Ş., 2010 yılında İstanbul merkezli olarak kurulmuş alanında Dünya lideri global üreticilerin Türkiye, Kuzey Kıbrıs ve Azerbaycan bölgesinde temsilini yapan Laboratuvar Cihaz ve Ekipmanları sağlayıcısı firmadır. Değişik bilim dallarının eğitim ve araştırma amaçlı olarak ağırlıklı Laboratuvarda kullandığı Analitik Cihazlar, Ekipman ve Aksesuarlar, Kimyasal ve Sarflar SPEKTROTEK A.Ş.' nin büyük özen ve uzmanlıkla sağladığı ürün gruplarındandır. Hakkımızda Gıda ve Çevre Uygulamaları Spektrotek A.Ş. SPEKTROTEK uzman grubu, Klasik ihtiyaçların yanı sıra Dünyada gelişen yeni teknoloji ve uygulamaları da son kullanıcılara aktarmayı bir görev bilmektedirler. Laboratuvar ihtiyacının iyi anlaşılıp değerlendirmesine istinaden alternatifli marka ve özellikli sistemlerin önerilmesi ile başlayan süreç, ne olursa olsun sat değil, ‘Doğru sistemleri, Doğru fiyatla Sat’ mantığıyla yürütülmekte ve son kullanıcılar/Araştırmacılar müşteri olarak değil partner olarak değerlendirilmektedir. Herbiri Yüksek Lisans ve/veya Doktora seviyesinde alanında uzmanlığa sahip çalışanlarımız aynı zamanda şirket içi detaylı eğitimler ve sürekli yenilenen bilgi akışı sayesinde Dünya ve üreticilerimizin Know/How bilgilerini laboratuvarlara taşımaktadır. Kaliteli servis hizmeti olmadan hiçbir ürün satışına girmemek şiarı ile yetkili personelimiz üretici tesislerinde detaylı eğitimler alarak sertifikalandırılmaktadır. Aynı zamanda TSE Hizmet Yeri Yeterlilik Belgesi ve başka pek çok kalite belgeleriyle de hizmet kalitemiz belgelenmiştir. Ayrıca SPEKTROTEK A.Ş., Kendi tescilli markası olan ChromXpert ile önde gelen üreticilere yüksek kalite ile OEM ürettirdiği ürünlerle kendi markası ile de Laboratuvar ürünleri pazarında yerini almıştır. www.spektrotek.com Vizyonumuz; Bilim ve teknolojik yenilikleri, Dünyanın en iyi üreticileri yoluyla Türk Araştırmacılara ileterek ülkemizin kalkınması ve gelişmesine katkıda bulunmaktır. 3 “ Yapılırken heyecan duyulmayan işler başarılamaz “ Emerson Profesyonel ihtiyaçlarınıza, profesyonel çözümler Analiz ihtiyaçlarınıza profesyonel çözümler... www.spektrotek.com Spektrotek tüm resmi kurum laboratuvarları, özel laboratuvarlar ve üniversite araştırma laboratuvarlarının tüm ihtiyaçlarını karşılamak üzere yapılanmıştır. 4 Bünyesinde tecrübeli uygulamacıların bulunduğu Spektrotek, Dünyanın önde gelen firmalarının Türkiye’de temsili ve analitik cihazların satışının yanı sıra, laboratuvarların gerçekten ihtiyacı olan satış sonrası destek, servis ve metot oluşturulması konusunda da tecrübelerini müşteriyle paylaşmaktadır. Firmamız sektördeki yerini alırken işini bir profesyonel ciddiyetinde yapmak, amatör heyecanını da kaybetmemek şiarı ile yola çıkmıştır. Spektrotek ailesinde, konusunda uzman farklı branşlardan mühendisler, müşterilerin taleplerini analiz etmek, uygun sistem ya da çözümleri belirlemek ve partner olarak gördüğümüz müşterilerimiz ile pozitif bir iletişim içinde tecrübelerini aktarmak üzere şirket içi eğitimler almaktadırlar. Bunun yanı sıra tüm teknik kadronun başta Almanya ve Amerika olmak üzere üretici firmaların laboratuvarlarında aldığı eğitimler ve akabinde sınavlardaki dereceleri ile kazandıkları uzmanlık sertifikaları mevcuttur. Tüm teknik kadro, konusu ile ilgili konferans, kongre ve seminerlere katılarak güncel gereklilikleri ve yeni gelişmeleri yakalamak üzere teşvik edilmektedir. Spektrotek, temsilini yürüttüğü firmaların know-how bilgilerini Türkiye’deki laboratuvarlara aktarmak, yeni teknolojik gelişmeler ile firmaların ve laboratuvarların mevcut problemlerine çözümler getirmek, orta vadede Türkiye’de Analitik Cihaz sektöründe liderliği üstlenmek üzere sağlam adımlarla gelişmesini sürdürmektedir. Hizmetlerimiz Analitik Cihazların Satış ve Satış Sonrası Teknik Desteği Metot Geliştirme ve Validasyon Hizmetleri Laboratuvar Projelendirme Akreditasyon Danışmanlığı Kromatografik ve Spektroskopik Tekniklere Ait Teknik Eğitimler Laboratuvar Sarf Malzemeleri Satışı Temel Laboratuvar Cihaz ve Ekipmanları Satışı Referans Standart Kimyasalların Satışı Ürünlerimiz Sıvı Kromatografi Sistemleri (HPLC) PreparatifLC Ultra/UHPLC NanoLC MikroLC Online SPE Numune Hazırlık Sistemleri Protein Saflaştırma/BioChromatography Osmometreler Atomik Absorpsiyon Spektrofotometresi (AAS) ICP-OES/ICP-TOFMS UV-VIS Spektofotometre Gaz Jeneratörleri Azot Jeneratörleri Kuru Hava Jeneratörleri Hidrojen Jeneratörleri Numune Ön Hazırlık Ekipmanları Temel Laboratuvar Cihaz, Ekipman ve Sarfları Vakum Pompaları Su Banyoları Otoklavlar Etüv & İnkübatörler Çalkalayıcılar Isıtıcı Tablalar Homojenizatörler Fırınlar Karıştırıcılar & Manyetik Karıştırıcılar Ceketli Isıtıcılar Rotary Evaporatörler Santrifüjler Dondurucu & Soğutucular Vorteks Thermal Cycler Jel Görüntüleme Sistemi Pipet & Otomatik Pipet ve Dispenserlar Cam & Plastik Laboratuvar Malzemeleri vb. Kromatografi Sarfları Vial SPE Ürünleri Membran Filtre Şırınga Ucu Filtre HPLC /GC Kolonları QuEChERS Kitleri Spektroskopi Sarfları Spektrofotometre Küvetleri Referans Maddeler Filtreler FTIR aksesuarları Biyokimya LC-MS/MS ve HPLC analiz kitleri Referans Standart Kimyasallar Organik Referans Standartlar İnorganik Referans Standartlar USP Standartları Kalite Kontrol (QC) Numuneleri www.spektrotek.com Kütle Spektrometre Triple Quadrapole (Tandem MS) QTrap Hibrid Triple Quadrapole Lineer İyon Trap MALDI TOF/TOF Yüksek Rezolüsyon QqTOF 5 www.spektrotek.com 6 Analitik Cihaz Satışı ve Satış Sonrası Desteği Tamamlayıcı Cihazlar, Sarf Malzemeler ve Yedek Parça Satışı Spektrotek, Kromatografi ve Spektroskopide Dünya liderliğine sahip firmaların Türkiye, KKTC ve Azerbaycan’da temsil hakkına sahiptir. Spektrotek, bu firmaların ürün pörtföyünde olan LCMSMS, MALDI TOF, Nano ve Mikro HPLC, UHPLC, Online – SPE, Atomik Absorpsiyon Spektrofotometresi, UV-VIS Spektrometre, ICP-OES, ICP-MS, Osmometre vb. ürünlerin satışı ile ilgili teknik görüşmeleri yaparak laboratuvarların ihtiyaçlarını anlamak ve bu ihtiyaçlara en uygun çözümleri üretmek, satışın ardından üretici ve Spektrotek Kalite Yönergeleri gereğince kurulum testlerini yaparak sağlıklı çalışır vaziyette cihazın teslimatını yapmak ve ilgili raporları (IQ/OQ vb.) laboratuvar yönetimine sunmak, laboratuvar ihtiyaçlarının karşılanması ve bilgi transferi de dahil olmak üzere kusursuz cihaz eğitimini verirken, garanti içinde ve sonrasında satış sonrası destekleri sağlamak üzere satış sürecini yönetir. Laboratuvarların ihtiyaçları sadece analitik cihazların temini ile bitmemektedir. Gerek hızlı sonuçlar açısından basit sistemler olsun, gerek numune hazırlık aşamalarında olsun, her laboratuvar pHmetre, Rotary Evaporatör, Etüv, Karıştırıcı, Isıtıcı, Hassas ve Analitik teraziler gibi temel laboratuvar cihazları ismini verdiğimiz tamamlayıcı cihazlara ihtiyaç duymaktadır. Yine aynı şekilde analitik sistemlerde kullanılan ve analizlerde sarf edilen Kolon, SPE kartuş, Vial/ Kapak/Septum, Kuartz Küvet, Filtreler vb. pek çok sarf malzemesi mevcuttur. Spektrotek, tüm temel laboratuvar cihazları, sarf malzemeler ve satışını yaptığı tüm ürünler için gerekli yedek parçaları, dünyanın en saygın üreticilerinden temin ederek laboratuvarların tüm ihtiyaçlarına toplam çözüm üretmektedir. Danışmanlık ve Metot Bilgisi Transferi Günümüzde tüm üretim firmalarının hem kendi ürünlerinin kalite kontrol ve Ar-Ge’si amacıyla hem de tedarikçilerden gelen hammaddelerinin kontrolü amacıyla kapasiteli bir laboratuvara ihtiyacı vardır. Bunun yanı sıra pek çok hizmet sağlayan laboratuvar çeşitli kaynaklardan gelen numuneleri analiz ederek raporlama yapmaktadır. Biyoeşdeğerlik, Gıda, Çevre, Ekotest ve Biyokimya gibi birbirinden farklı alanlarda da olsa tüm laboratuvarların tabi olduğu evrensel kalite kuralları söz konusudur. Türkak, DAR vb. akreditasyon verme yetkisine sahip kuruluşlardan akredite olmak, ISO /IEC 17025 gibi test ve kalibrasyon yapan laboratuvarların ya da ISO 15189 gibi tıbbi laboratuvarların şartlarına kavuşmak her laboratuvarın hedeflerindendir. Bu süreçte elbette pek çok kriter söz konusudur. Laboratuvar boyasından tezgahta kullanılan materyale, çalışanların eğitim sertifikalarından, analitik cihazlardaki metodların validasyonlarına ve SOP’lerine kadar laboratuvarların değerlendirmesi gereken pek çok parametre bulunmaktadır. Spektrotek olarak, boş bir binanın akredite bir laboratuvara dönüşünceye kadar tüm ihtiyaçlarına cevap verecek yapılanmayı hazırladık. Sağladığımız cihazlarla, yılların tecrübesi ve alanında uzman firmalarla işbirliği çerçevesinde gururla sunacağınız laboratuarınızda partneriniz olmaya hazırız. Çözüm ortaklığı yaptığımız uluslararası firmaların Know-How bilgileri ve teknik ekibimizin tecrübeleri ile laboratuvarlar için uzun ve yorucu olan metot geliştirme, validasyon süreçlerinde yine yanınızdayız. Pestisit/veteriner ilaç kalıntı analizlerinden doping kontrolüne, yeni doğan taramasından tekstil ürünlerindeki yasaklı bileşiklerin tayinine, içme suyu ve toprak numunelerindeki yüzlerce parametrenin tayininden yaşam bilimlerindeki proteomik / metabolomik çalışmalarına kadar pek çok hazır metodun hızlıca laboratuvarınıza aktarılması işimizin en iyi bildiğimiz ve en sevdiğimiz kısmını oluşturmaktadır. Bununla birlikte laboratuvar yatırımlarının en verimli şekilde yapılabilmesi için çeşitli kaynaklardan projeler ile yardım alınması noktasındaki danışmanlık hizmetlerimiz de geleceğiniz için beklediğinizden de büyük adımlar atmanıza yardımcı olacaktır. www.spektrotek.com Anahtar Teslim Laboratuvar Projeleri 7 İçindekiler www.spektrotek.com SPEKTROTEK GIDA VE ÇEVRE UYGULAMALAR 8 Bebek Mamalarında Polisiklik Aromatik Hidrokarbon (PAH) Analizi 12 Bebek Mamalarında Multi-Toksin Analizi 13 Gıda Ürünlerinde LC-MS/MS ile Akrilamid Tayini 14 Süt ve Süt Ürünlerinde Melamin Analizi 15 Yaş Meyve ve Sebzede Multi-Pestisit Analizi 16 Gıdalarda Polar Pestisit Tayini 17 Gıda Ürünlerinde Paraquat/Diquat Analizi 18 Jelibonda Jelatin Tür Analizi 20 Ette Tür Tayini 22 Zeytinyağında Tağşiş ve Orijin Belirleme 23 LC-MS/MS ile Gıdalarda Alerjen Analizi 24 Bebek Mamalarında B Vitamini Analizi 26 Veteriner İlaç Kalıntıları/Antibiyotik Analizi 27 Gıda ve İçeceklerde Tatlandırıcı Tayini 28 İçme Sularında Polisiklik Aromatik Hidrokarbon (PAH) Analizi 30 İçme Sularında Akrilamid Analizi 31 İçme Sularında Multi-Pestisit Analizi 32 İçindekiler SCIEX APPLICATION NOTES Simultaneous Analysis of 14 Mycotoxins and 163 Pesticides in Crude Extracts of Grains by LC-MS/MS 62 Detection of Underivatized Glyphosate and Similar Polar Pesticides in Food of Plant Origin by LC-MS/MS 65 Improving the LC-MS/MS Selectivity of Triazole Derivative Metabolites with AB SCIEX SelexION™ Technology 69 Fast and Sensitive Analysis of Paraquat and Diquat in Drinking Water 74 The Quantitation and Identification of Coccidiostats in Food by LC-MS/MS using the AB SCIEX 4000 Q TRAP® System 78 Quantitation and Identification of 13 Azo-dyes in Spices using LC-MS/MS 83 Increasing Selectivity and Confidence in Detection when Analyzing Phthalates by LC-MS/MS 88 Quantitative Analysis and Identification of Migrants in Food Packaging Using LC-MS/MS 93 Analysis of Perfluoroalkyl Acids Specified Using the QTRAP® 6500 LC/MS/MS System 97 LC-(DMS)-MS/MS Analysis of Emerging Food Contaminants 102 Analysis of Endocrine Disruptors, Pharmaceuticals, and Personal Care Products in River Water 106 Analysis of Selected Microcystins in Drinking and Surface Water Using a Highly Sensitive Direct Injection Technique 111 Quantitative Analysis of Explosives in Surface Water Comparing Off-Line Solid Phase Extraction and Direct Injection LC-MS/MS 114 Trap LC-MS/MS System 118 Quantitation and Identification of Organotin Compounds in Food, Water, and Textiles Using LC-MS/MS 121 www.spektrotek.com Screening and Identification of Unknown Contaminants in Untreated TapWater Using a Hybrid Triple Quadrupole Linear Ion 9 GIDA&ÇEVREUYGULAMALARI Gıda ve Çevre Uygulamaları BEBEK MAMALARINDA POLİSİKLİK AROMATİK HİDROKARBON (PAH) ANALİZİ GİRİŞ Polisiklik aromatik hidrokarbon (PAH)’lar karbon ve hidrojen içeren organik maddelerin pirolizi veya tam olmayan yanmalar sonucu oluşan, iki veya daha fazla aromatik halka içeren bileşiklerdir. PAH’lar hava, su, toprakta ve dolayısıyla da gıdalarda bulunabildiğinden; insanlar bu bileşiklere mesleki, çevresel, tıbbi ve diyetle ilgili kaynaklar aracılığıyla maruz kalmaktadır. Özellikle, endüstriyel üretim yapılan bölgelerdeki kirli hava bileşenlerinin bitkisel ürünler üzerindeki birikimleri sonucunda tahıl, meyve ve sebzeler kontamine olabilmektedir. Öte yandan kavurma, dumanlama ve ızgara uygulamaları gibi işleme prosesleri de, gıdada PAH’ların oluşumuna neden olabilmektedir. Gıdanın direkt alevle teması durumunda PAH’ların miktarı daha da yükselmektedir. Bu bileşiklerin oluşması pişirme metodu ve uygulanan sıcaklıkla yakından ilişkilidir. PAH bileşiklerinin oluşumu açısından riskli bulunan gıdalardan biri ve en önemlisi bebek mamalarıdır. Bebek mamalarının PAH’larla kontaminasyon seviyesi, gerek mama üretiminde uygulanan kurutma sıcaklıklarına, gerekse mama bileşimine giren süt ve/veya meyve, sebze, tahılların çevresel faktörler nedeniyle PAH bileşikleri ile kontamine olmasına bağlı olarak, çeşitli düzeylerde benzo(a)piren ve diğer PAH bileşiklerini içerebilmektedir. İnsanlar üzerinde toksik ve kanserojenik etkiye sahip oldukları için gıdalardaki miktarlarının kontrol edilmesi oldukça önemlidir. Maksimum izin verilen miktarları ulusal ve uluslararası gıda ve sağlık örgütleri tarafından belirlenmiştir. Avrupa Birliği uyum süreci çerçevesinde ülkemizde de PAH için belirlenen limitler “Türk Gıda Kodeksi Bulaşanlar Yönetmeliği” ile yürürlüğe girmiştir. Bu kirleticilerin uygun analiz yöntemleri ile tayin edilmesi ve çevremizden mümkün olduğunca uzaklaştırılması için önlemler alınması gerekir. YÖNTEM Analitik Koşullar Numune Hazırlığı Analitik Kolon Analiz Süresi Mobil Faz İyonizasyon Tarama Modu Yönetmelikte maksimum kalıntı limitleri belirlenen 4 adet PAH bileşiği için numuneler, basit bir numune hazırlama yöntemi olan sıvısıvı ekstraksiyon ile hazırlanarak LC-MS/MS’e enjeksiyonu yapılır. : Phenomenex Kinetex Phenyl-Hexyl 100x2.1 mm 1.7 um : 8 dakika : Su ve Asetonitril : APCI : Scheduled MRM™ MRM çiftleri: U ntitled1(bap2):"Linear"R egression("N o"w eighting):y=178x+818(r=0.9994) 3.7e4 Polarite pozitif pozitif pozitif pozitif Q1/Q3 228/226 252/250 252/250 228/226 3.6e4 Q1/Q3 228/199 252/226 252/224 228/200 3.4e4 3.2e4 3.0e4 2.8e4 2.6e4 2.4e4 2.2e4 2.0e4 stnuoc ,aerA Bileşik Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluorenthene Chrysene 1.8e4 1.6e4 1.4e4 1.2e4 2 1.0e4 8000.0 6000.0 4000.0 2000.0 3 4 0.0 10 20 30 40 50 60 70 80 90 100 110 C oncentration,pg/m l 120 130 140 150 160 170 180 190 200 1 www.spektrotek.com SONUÇ 12 Gelişen teknoloji ile birlikte hızlı, doğru, güvenilir ve düşük maliyetli analiz tekniklerinin geliştirilmesi bir ihtiyaç haline gelmiştir. Bu nedenle, basit ve zahmetsiz bir numune hazırlığına sahip olan LC-MS/MS metotları tercih edilmektedir. Scheduled MRM™ algoritması kullanılarak yapılan çalışmada elde edilen sonuçlar değerlendirildiğinde bebek mamaları için yönetmelikte verilen limitleri rahatlıkla karşılamaktadır. Şekil 1- Bebek mamasında Scheduled MRM™ ile yapılan PAH analizine ait kromatogram: (1) Benzo(a) anthracene, (2) Chrysene, (3) Benzo(b)fluorenthene, (4) Benzo(a)pyrene GİRİŞ Hayvanlar ve insanlar için toksik özellik gösteren mikotoksinler, tarlada veya gıda maddelerinin depolama ve dağıtımı aşamasında oluşabilirler. Mikotoksinler; aflatoksinler, okratoksinler, fumonisin, zearalenone (ZON), trichlothecenes gibi Fusarium toksinleri ve ergot alkoloidleri gibi farklı ana gruplara ayrılırlar. Mikotoksinlerin gıda ve yemlerde belirlenmesi için günümüzde hassas ve güvenli birçok yöntem bulunmaktadır. Klasik mikotoksin analizleri, her bir mikotoksin için ya da benzer kimyasal özelliklere sahip grupların (ör; aflatoksinler) her biri için ayrı ayrı metot kullanılarak yapılmaktadır. Bu yöntem hedef bileşiklerin geniş polarite aralığında olması ve maddelerin fiziksel özelliklerin farklı olmasından kaynaklanmaktadır. Tüm metotlar immuno-affinity kolon ile cleanup aşamasının ardından fluoresans dedektörü ile HPLC analizine dayanmaktadır. Fakat numune içerisinde mikotoksin grupları ayrı ayrı bulunabileceği gibi aynı numune içerisinde bir arada bulunabilirler. Bu sebeple numune hazırlık aşaması uzun sureli ve yüksek maliyetli olduğundan dolayı pratik bir uygulama sayılmamaktadır. Bunun yerine numune hazırlığı için basit ve hızlı bir metot olan sıvı-sıvı ekstraksiyonu ardından immuno-affinity kolon kullanımına ihtiyaç kalmadan negatif ve pozitif polariteye sahip bileşiklerin tek bir LC-MS/MS enjeksiyonu ile analizi tercih edilmektedir. Avrupa Birliği uyum süreci çerçevesinde ülkemizde gıdalardaki maksimum mikotoksin limitleri “Türk Gıda Kodeksi Bulaşanlar Yönetmeliği” ile yürürlüğe girmiştir. YÖNTEM Analitik Koşullar Basit, hızlı ve ucuz bir metot olan sıvı-sıvı ekstraksiyonu ardından immuno-affinity kolon kullanımına ihtiyaç kalmadan negatif ve pozitif polariteye sahip bileşikler, tek bir LC-MS/ MS enjeksiyonu ile analiz edilmektedir. Analitik Kolon Analiz Süresi Mobil Faz İyonizasyon Tarama Modu Numune Hazırlığı Gıda ve Çevre Uygulamaları BEBEK MAMALARINDA MULTİ-TOKSİN ANALİZİ : Phenomenex Gemini 5 μm (150x4.6 mm) : 9 dakika : Su (Amonyum Asetat) ve Metanol (Amonyum Asetat ve Asetik Asit) : ESI + / ESI – : Scheduled MRM™ MRM çiftleri: Q1/Q3 313/128 315/259 329/200 331/189 329/272 355/59 317/175 722/704 706/688 404/102 153/135 SONUÇ Hızlı Polarite değişimi ve Scheduled MRM™ ile hassasiyette azalma olmadan kısa sürede analiz imkanı sağlanmış olup çalışmada elde edilen sonuçlar bebek mamaları için yönetmelikte verilen limitleri rahatlıkla karşılamaktadır Max. 9.7e4 cps. XIC of +MRM (16 pa rs): Exp 1, 313.000/128.100 amu Expected RT: 5.8 ID: Aflatox n AFG1 Pozi f polarite 2.0e5 1.8e5 OKRA 1.6e5 1.4e5 1.2e5 AFB1 1.0e5 5.87 8.0e4 AFM1 6.0e4 AFB2 4.0e4 2.0e4 0.0 AFG2 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 T me, m n 5.0 FB1 5.5 6.0 FB2 6.5 7.0 7.5 8.0 8.5 Max. 9.8e4 cps. XIC of -MRM (7 pa rs): Exp 2, 152.444/108.500 amu Expected RT: 3.2 ID: patul n ZON Nega f polarite 5.5e5 5.0e5 4.5e5 4.0e5 3.5e5 3.0e5 2.5e5 2.0e5 1.5e5 patulin 3.23 1.0e5 5.0e4 DON 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 T me, m n 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 Şekil 2- Bebek mamasında Negatif-pozitif polarite değişimi ve Scheduled MRM™ algoritması ile tek metotta analiz edilen mikotoksinlere ait kromatogram www.spektrotek.com Q1/Q3 313/241 315/287 329/243 331/245 329/311 355/295 317/131 722/334 706/336 404/239 153/109 In te n s t y, cps Polarite pozitif pozitif pozitif pozitif Pozitif Negatif Negatif Pozitif Pozitif Pozitif Negatif In te n s t y, cps Bileşik Aflatoksin B1 (AFB1) Aflatoksin B2 (AFB2) Aflatoksin G1 (AFG1) Aflatoksin G2 (AFG2) Aflatoksin M1 (AFM1) Deoxynivalenol (DON) Zearalenon (ZON) Fumonisin B1 (FB1) Fumonisin B2 (FB2) Okratoksin A (OTA) Patulin 13 Gıda ve Çevre Uygulamaları GIDA ÜRÜNLERİNDE LC-MS/MS İLE AKRİLAMİD TAYİNİ GİRİŞ Akrilamid, gıdaların doğal yapısında bulunmayan, karbonhidrat ve protein içerikli gıdaların yüksek sıcaklıklarda (kızartma, fırın ve ızgara) pişirilmesi sonunda ortaya çıkan bir bileşiktir. Akrilamid, gıda analizcileri için oldukça yeni bir konu olmasına rağmen, 2002’de gıdalarda oluştuğu tespit edildiğinden bu yana akrilamid ile ilgili çok sayıda yöntem geliştirme çalışması yapılmış ve halen bu çalışmalar devam etmektedir. Akrilamid içeriği açısından önemli gıda grupları patates cipsi, kızarmış patates, kızarmış ekmek, kahvaltılık hububatlar, unlu mamuller ve kahve gibi ürünlerdir. Akrilamid, Uluslararası Kanser Araştırmaları Ajansı tarafından “insan için muhtemel kanserojenik madde” olarak tanımlanmıştır. Bu sebeple gıdalarda miktarlarının kontrol edilmesi oldukça önemlidir. Gıdalarda akrilamid tespit ve tayini için en yaygın kullanılan yöntemler GCMS ve LC-MS/MS’dir. GC-MS analiz yönteminde türevlendirme (bromlama) işlemine ihtiyaç duyulmaktadır. Bu işlem zaman alıcı ve yüksek maliyetli olup aynı zamanda kullanılan toksik maddeler yönü ile de sağlığa zararlıdır. Ayrıca numune hazırlığı sırasında kişiye bağlı hatalar oluşabilmektedir. Bu sebeple türevlendirme aşamasına ihtiyaç duymayan, kolay ve daha düşük maliyetli numune hazırlama olan sıvı-sıvı ekstraksiyonun ardından direk olarak numunenin enjeksiyonuna dayanan LC-MS/MS yöntemleri önem kazanmıştır. Ülkemizde konu ile ilgili çeşitli bilimsel araştırmalar yürütülmekte ve bir çok gıda kontrol laboratuvarında akrilamid analizi yapılmaktadır. Akrilamidin gıdalar içinde bulunması bütün gıdalar çiğ tüketilmedikçe önlenemez ve gıdaların pişirilmesi sonucu doğal olarak oluşan bir madde olduğu için bu tür gıda gruplarının yasaklanması söz konusu değildir. Ancak, ilgili sağlık risklerinin belirlenmesinden sonra, gıdalarda izin verilen maksimum akrilamid seviyeleri ile ilgili yasal limitler getirilebilecektir. Diğer yandan, bütün dünyada gıdalarda akrilamid içeriğinin düşürülmesi veya oluşumunun önlenmesi ile ilgili çalışmalar da yoğun bir şekilde sürdürülmektedir. YÖNTEM Analitik Koşullar Numune Hazırlığı Numuneler homojenize edildikten sonra sıvı-sıvı ektraksiyonu ile hazırlanarak direk olarak LC-MS/ MS’e enjeksiyonu yapılır. Analitik Kolon Analiz Süresi Mobil Faz İyonizasyon Tarama Modu : Phenomenex Luna C18 3 um (150x3 mm) : 3 dakika : Su (Formik Asit) ve Metanol (Formik Asit) : ESI + : Scheduled MRM™ MRM çiftleri: Bileşik Akrilamid 1 Akrilamid 2 Akrilamid 3 Polarite Pozitif Pozitif Pozitif Max. 3.3e5 cps. XIC of +MRM (3 pa rs): 72.100/55.000 Da ID: Acrylam de 1 from Sample 53 (2-2) of 26022015 acrylam de.w ff (Turbo Spray) Q1/Q3 72/55 72/44 72/27 1.26 3.2e5 3.0e5 2.8e5 2.6e5 2.4e5 2.2e5 I n t e n s t y, cp s 2.0e5 1.8e5 1.6e5 1.4e5 1.2e5 1.0e5 8.0e4 6.0e4 www.spektrotek.com SONUÇ 14 Yüksek hassasiyet ve seçicilikten dolayı basit bir numune hazırlığı olan sıvı-sıvı ekstraksiyonu ile kısa zamanda onlarca numune rahatlıkla çalışılabilmektedir. Yapılan çalışmalar değerlendirildiğinde 0.02 ug/L dedeksiyon limitlerinde çalışıldığı görülmüştür. Bu metot ile su numunelerinde de rahatlıkla analiz yapılabilmektedir. Direk enjeksiyon ile elde edilen sonuçlar yönetmelikteki limitleri rahatlıkla karşılamaktadır. 4.0e4 2.0e4 0.0 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 T me, m n 1.8 2.0 2.2 2.4 2.6 2.8 Şekil 3 - Ciğer numunesine ait 1 ppb konsantrasyonda akrilamid etken maddesine ait kromatogram GİRİŞ Melamin, yüzey kaplamaları, plastik, ticari filtre, yapıştırıcı ve mutfak malzemelerinin üretiminde kullanılan bir maddedir. Özellikle tabakların yapımında genişçe kullanılması, bu materyallerden yüksek ısı (~120 °C) ve asidik pH şartlarında gıdalara geçmesi, potansiyel olarak gıda zehirlenmelerine neden olabileceği yorumlarına neden olmuştur. Melaminin zehirliliğine ilişkin ilk bulgular Amerika Birleşik Devletlerinde 2007 yılında kedi ve köpeklerin böbrek yetmezliğine bağlı ani ölümü üzerine yapılan araştırmalardan sonra ortaya konmuştur. Kedi ve köpek mamalarının hazırlanmasında kullanılmak üzere Çin’den ithal edilen buğday ve pirinç konsantrelerinde melamin tespit edildiği ve ölümlerin buna bağlı olduğu bildirilmiştir. Kedi ve köpek mamalarında yaşanan bu skandalın hemen ardından, 2008 yılında Çin Halk Cumhuriyeti’ndeki süt ürünleri üreticilerinin de ürünlerindeki protein düzeyini yüksek göstermek için hileli bir şekilde melamini kullandığı belirlenmiştir. Çin’deki süt skandalının ardından yapılan geniş çaplı araştırmalarda bebek mamalarının yanı sıra normal süt ve yoğurtlarda, süt tozu ve tahıl ürünlerinde, donmuş tatlılarda, şekerlemelerde, kek ve bisküvilerde, protein tozları ve bazı işlenmiş gıdalarda melamin bulunduğu bildirilmiştir. Gıda ve gıda maddelerinde melamin kullanılmasının yasal olduğu bir ülke bulunmamaktadır. Ancak çevrede yaygın bir şekilde kullanılmasının sonucu olarak gıda zincirine girebileceği rapor edilmiştir. Bu nedenle birçok ülke yem ve gıdalarda bulunmasına izin verilen maksimum melamin düzeylerini belirlemiştir. Avrupa Birliği ülkeleri %15 ve üzeri süt ve süt ürünü içeren tüm gıda ürünlerinin ithalatından önce analizini zorunlu kılmakta ve 2.5 mg/kg’ı aşan ürünlerin imha edilmesi gerektiği ifade etmektedirler Melamin analiz için sıkça kullanılan GC-MS metotlarının numune hazırlığında sağlığa zararlı solventler ile clean-up aşaması ve ardından türevlendirmeye ihtiyaç duyulmaktadır. Buna karşılık olarak geliştirilen LC-MS/MS metotlarında daha az numune hazırlığı, daha kısa analiz süresi ve daha güvenilir sonuç elde edilmesi sebepleriyle tercih edilen analiz yöntemi olmuştur. Ülkemizde “Türk Gıda Kodeksi Bulaşanlar Yönetmeliği” ile gıdalarda ve bebek mamalarındaki maksimum limitleri belirlenmiştir. Gıda ve Çevre Uygulamaları SÜT VE SÜT ÜRÜNLERİNDE MELAMİN ANALİZİ Analitik Koşullar YÖNTEM Numune Hazırlığı Numuneler basit bir numune hazırlama yöntemi olan sıvı-sıvı ekstraksiyon ile hazırlanarak LC-MS/ MS’e enjeksiyonu yapılır. Analitik Kolon Analiz Süresi Mobil Faz İyonizasyon Tarama Modu MRM çiftleri: : KNAUER Eurospher II 100-3 HILIC (150 x 3 mm) : 10 dakika : Su (Amonyum Asetat) ve Asetonitril : ESI + : Scheduled MRM™ Max. 3,1e6 cps. XIC of +MRM (4 pa rs): 126,960/84,900 Da ID: melam n1 from Sample 3 2,14 3,0e6 2,8e6 Q1/Q3 127/85 127/68 127/60 Sıvı-sıvı ekstraksiyon ile hazırlanan bebek maması numunesinin enjeksiyonu yapılmış ve elde edilen veriler değerlendirildiğinde yönetmelikte belirlenen limitleri rahatlıkla karşıladığı görülmüştür. Hızlı ve kolay numune hazırlama yöntemi ile onlarca numune kısa sürede çalışılabilmektedir. 2,6e6 2,4e6 2,2e6 2,0e6 1,8e6 1,6e6 1,4e6 1,2e6 1,0e6 8,0e5 6,0e5 4,0e5 2,0e5 0,0 0,0 0,5 1,0 1,5 2,0 2,5 3,0 3,5 4,0 4,5 5,0 5,5 T me, m n 6,0 6,5 7,0 7,5 8,0 8,5 9,0 9,5 Şekil 4- Bebek mamasına ait melamin analiz kromatogramı www.spektrotek.com SONUÇ Polarite Pozitif Pozitif Pozitif In te n s ty , c p s Bileşik Melamin 1 Melamin 2 Melamin 3 15 Gıda ve Çevre Uygulamaları YAŞ MEYVE VE SEBZELERDE MULTİ-PESTİSİT ANALİZİ GİRİŞ Dünya nüfusunun hızlı artışı ve sanayinin gelişmesine karşın bitkisel üretime ayrılan toprak alanları hızla azalmaktadır. Bu sebeple gıda maddelerine duyulan gereksinim de yoğun bir şekilde artmaktadır. Pestisit kullanımı, tarımsal ürünleri hastalık, zararlı ve yabancı otların zararından koruyabilmek, kaliteli üretimi güvence altına alabilmek için kullanılan bir tarımsal mücadele şekli olup, kısa sürede etki göstermesi ve kullanımının kolay olması nedeniyle en çok tercih edilen yöntemdir. Bu ilaçların gereğinden fazla, zamansız ve bilgisizce kullanılması dayanıklı ırkların meydana gelmesine, üründe kalite düşmesine, hayvanların ve insanların akut ve kronik zehirlenmelerine neden olmaktadır. Biyolojik aktiviteye sahip, öldürücü olan kimyasal maddeler kullanılarak yapılan tarımsal alanlardaki hastalıklarla mücadele ile esas hedef dışında çevre ve canlılar için potansiyel tehlikeler ortaya çıkmakta, sonuç olarak çevre bulaşması gibi arzu edilmeyen bazı problemlere neden olunmaktadır. Son yıllarda kullanımı hızla artan pestisit ilaç kalıntılarının analiz edilmesi bir zorunluluk haline gelmiştir. Çeşitli ülkelerde, ürünlerde pestisit kalıntısı taramaları yaparak gıda güvenilirliği ve potansiyel risk hakkında bilgi edinmek yolunda yoğun çalışmalar sürdürülmektedir. Özellikle gelişmiş ülkeler kendi ürünlerinde ve ithal ürünlerde bulunabilecek pestisitlerin maksimum oranlarını belirlemiş olup ilgili yönetmeliklerle sıkı bir şekilde denetimini yapmaktadır. Ülkemizde Türk Gıda Kodeksi “Pestisitlerin Maksimum Kalıntı Limitleri Yönetmeliği” ile pestisitlerin taze, işlenmemiş, işlenmiş veya kompozit bitkisel ve hayvansal gıdalarda bulunmasına izin verilen maksimum kalıntı limitleri ve bu limitlerin uygulama esasları belirlenmiştir. YÖNTEM Analitik Koşullar Numune Hazırlığı Numuneler, AOAC Official Method 2007.01 yöntemine göre ChromXpert QUECHERS kitleri ile hazırlandıktan sonra LCMS/MS’e enjeksiyonu yapılır. Analitik Kolon Analiz Süresi Mobil Faz İyonizasyon Tarama Modu : Phenomenex Synergi Fusion 2.5 μm (50x2.1 mm) : 17 dakika : Su (Amonyum Format) ve Metanol (Amonyum Format) : ESI + / ESI – : Scheduled MRM™ XIC of +MRM (853 pa rs): Exp 1, 113.932/58.100 amu Expected RT: 0.0 ID: Mep quat 1 from Sample 17 Max. 4.1e5 cps. 9.5e6 9.0e6 8.5e6 8.0e6 7.5e6 7.0e6 6.5e6 I n t e n s 6.0e6 t y , 4.5e6 5.5e6 5.0e6 c p s 4.0e6 3.5e6 3.0e6 2.5e6 2.0e6 1.5e6 1.0e6 5.0e5 0.0 0.87 4.46 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 T me, m n 9.0 10.0 11.0 12.0 13.0 14.0 15.0 XIC of -MRM (100 pa rs): Exp 2, 184.893/116.700 amu Expected RT: 6.7 ID: 1-Napthyl Acet cac d 2 from Sample 17 QUECHERS KİTLERİ 16.0 Max. 1.8e4 cps. 8.3e6 8.0e6 7.5e6 7.0e6 6.5e6 6.0e6 I n t e n s 5.5e6 5.0e6 4.5e6 t y , 4.0e6 c p s 3.5e6 3.0e6 2.5e6 2.0e6 1.5e6 1.0e6 www.spektrotek.com SONUÇ 16 Bu çalışmada; Hızlı Polarite değişimi ve Scheduled MRM™ ile hassasiyette azalma olmadan kısa sürede analiz edilmiş ve elde edilen sonuçlar yaş meyve ve sebze için yönetmelikte verilen limitleri rahatlıkla karşılamaktadır. Aynı zamanda QTrap™ teknolojisi kullanılarak mevcut olan 666 adet pestisite ait kütüphane taraması ile konfirmasyon sonucu rapor güvenliği sağlanmaktadır. 5.0e5 0.0 1.0 2.0 3.0 4.0 5.0 6.10 6.0 7.42 7.0 8.0 T me, m n 9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0 Şekil 5-Negatif-pozitif polarite değişimi ve Scheduled MRM™ algoritması ile tek metotta analiz edilen 1 ppb 450 adet pestisit etken maddesine ait kromatogram. GİRİŞ Son yıllarda kullanımı hızla artan pestisit ilaç kalıntılarının analiz edilmesi bir zorunluluk haline gelmiştir. Çeşitli ülkelerde, ürünlerde pestisit kalıntısı taramaları yaparak gıda güvenilirliği ve potansiyel risk hakkında bilgi edinmek yolunda yoğun çalışmalar sürdürülmektedir. Özellikle gelişmiş ülkeler kendi ürünlerinde ve ithal ürünlerde bulunabilecek pestisitlerin maksimum oranlarını belirlemiş olup ilgili yönetmeliklerle sıkı bir şekilde denetimini yapmaktadır. TÜİK tarafından tarım ilaçlarında 1979’da 8.396 ton dolayında olan tüketimin, 2008’de 20.000 tonu geçmiş olduğu belirlenmiştir. Ülkemizdeki kimyasal tarım ilaçlarının kullanımı insan sağlığı kadar çevreyi de etkileyebilecek bir biçimdedir. Bu sorunun en temel nedeni kontrolsüz ve bilinçsiz ilaç kullanımıdır. Dünya Sağlık Örgütü’nün (WHO) uzmanlaşmış kanser kuruluşu olan Uluslararası Kanser Araştırmaları Kurumu GDO’lu ürünlerin %80’inde kullanılan ot ilacı (herbisit) etken maddesi olan Glifosat (Glyphosate)’ın insanlarda muhtemelen kanser yaptığını açıklamıştır. Raporda da belirtildiği gibi, Glifosat en yaygın kullanılan herbisit olup değişik tarım, orman, şehir ve konut uygulamalarında yaygın olarak kullanılmaktadır. Kullanımı, genetiği değiştirilmiş Glifosat herbisitine dayanıklı ürünlerin geliştirilmesiyle daha da artmıştır. Genellikle GDO’lu soya ve mısır üretiminde kullanılan glifosat, havada, suda ve yiyeceklerin yanı sıra ilaca maruz kalan tarım işçilerinin kan ve idrarlarında da tespit edilmiştir. Rutin olarak yürütülen AOAC 2007 Quechers metodu ile yapılan pestisit analiz çalışmalarından farklı bir numune hazırlığına ve analiz metoduna sahip olan polar pestisitler gün geçtikçe önem kazanarak bu pestisitlerin analizi zorunlu hale gelmektedir. YÖNTEM Analitik Koşullar Numuneler Quppe metodu doğrultusunda basit bir numune ön hazırlığı olan olan sıvı-sıvı ekstraksiyon ile hazırlanır ve 10 kat seyreltilerek direk olarak LCMS/MS’e enjeksiyonu yapılır. Analitik Kolon Analiz Süresi Mobil Faz İyonizasyon Tarama Modu Numune Hazırlığı Gıda ve Çevre Uygulamaları GIDALARDA POLAR PESTİSİT TAYİNİ : Thermo Hypercarb 5um (2.1 x 100 mm) : 30 dakika : Su (Asetik Asit) ve Metanol (Asetik Asit) : ESI : Scheduled MRM™ SONUÇ Bu çalışmada; Scheduled MRM™ ile farklı matrikslerde (elma, limon, tarçın, kuru incir) analiz çalışması yapılmıştır. Elde edilen sonuçlar değerlendirildiğinde yönetmelikte verilen limitleri rahatlıkla karşıladığı görülmüştür. Aynı zamanda QTrap™ teknolojisi kullanılarak mevcut olan 666 adet pestisite ait kütüphane taraması ile konfirmasyon sonucu rapor güvenliği sağlanmaktadır Max. 3.7e4 cps. 1.AMPA 2.Glufosinate 3.Phosphonic acid 4.Glyphosate 5.HEPA 6.MPPA 7.Fosetyl Al 8.Maleic Hydrazide 9.N-Acetyl-AMPA 10.Chlorate 11.Ethephon 12.N-Acetyl-Glufosinate 13.Perchlorate 13 4.2e5 4.0e5 (b) 3.8e5 3.6e5 3.4e5 3.2e5 3.0e5 I n t e n s t y, c p s (a) 4.3e5 2.8e5 2.6e5 2.4e5 2.2e5 2.0e5 1.8e5 2 1.6e5 1.4e5 5 3 1.2e5 1.0e5 6.0e4 4.0e4 1 10 8 4 1.19 9 2.0e4 0.0 6 7 8.0e4 11 5.24 2 4 6 8 12 10 12 14 T me, m n 16 18 Şekil 6- Scheduled MRM™ kullanılarak yapılan pestisit analizine ait kromatogram (a) Kuru incir (b) Elma 20 22 24 26 28 30 www.spektrotek.com XIC of -MRM (29 pa rs): 109.800/62.900 amu Expected RT: 1.1 ID: AMPA 1 from Sample 4 1.AMPA 2.Glufosinate 3.Phosphonic acid 4.Glyphosate 5.HEPA 6.MPPA 7.Fosetyl Al 8.Maleic Hydrazide 9.N-Acetyl-AMPA 10.Chlorate 11.Ethephon 12.N-Acetyl-Glufosinate 13.Perchlorate 17 Gıda ve Çevre Uygulamaları GIDA ÜRÜNLERİNDE PARAQUAT/DIQUAT ANALİZİ GİRİŞ Dünya nüfusunun hızla arttığı çağımızda açlık sorununun çözümlenebilmesi için tarımsal üretimi arttırmada ilaçlar kullanılmaktadır. Tarım ürünlerinin üretimi sırasında, ilaçlama ile bu ürünlere kontaminasyon ile bulaşan ve daha sonra mamül gıda maddelerine yansıyan, kimyasal ilaç kalıntılarına “Pestisit” adı verilmektedir. Tarımsal ilaçların kullanımı; bir taraftan tarımsal üretimi artırırken diğer taraftan bilinçsiz ve hatalı kullanım sonucu doğrudan ya da dolaylı yollardan insan ve çevre sağlığı problemlerini de beraberinde getirirler. Pestisitler tavsiye edilen dozların üzerinde kullanıldıklarında, gereğinden fazla sayıda ilaçlama yapıldığında, gerekmediği halde birden fazla ilaç karıştırılarak kullanıldığında veya son ilaçlama ile hasat dönemi arasında bırakılması gereken süreye riayet edilmediği durumlarda gıda maddelerinde fazla miktarda kalıntı bırakabilirler. Yüksek dozda pestisit kalıntısı içeren gıdalarla beslenen insanlarda ve çevredeki diğer canlılarda akut veya kronik zehirlenmelere neden olabildikleri gibi, özellikle bazı ürünlerde aroma ve kalite değişimleri meydana getirebilirler. Gıdalardaki pestisit analizlerinde genellikle birden fazla pestisit aktif maddesi ile karşılaşılabilmektedir. Pestisit kullanmanın tartışılmaz faydalarına rağmen, özellikle gıdalar vasıtasıyla insan vücudunda akümüle olması ve çevre kirliliği üzerine olumsuz etkisi bu bileşiklerin zararları konusunda insanoğlunu gün geçtikçe daha fazla endişeye sevketmektedir. Pestisit kalıntıları gıda maddelerinde, insan, hayvan ve çevre sağlığına zarar vermeyecek düzeylerde bulunmalıdır. Gıda maddelerindeki pestisit kalıntı miktarlarının bilinmesi insan sağlığı açısından olduğu kadar ihraç gıda ürünleri içinde oldukça büyük önem arzetmektedir. Gıda maddelerindeki pestisit kalıntı miktarlarının daha önceden tesbit edilip tolerans sınırlarını geçmemesi gerek tüketici sağlığı açısından ve gerekse ihraç gıda ürünlerinin geri dönmemesi açısından büyük öneme sahiptir. Bu nedenle üretilen her bir yeni pestisit, piyasaya arzından önce farmakolojik ve toksikolojik denemelere tabii tutularak, tolerans sınırlarının önceden belirlenmesi mutlak surette gereklidir. Ülkemizde Türk Gıda Kodeksi “Pestisitlerin Maksimum Kalıntı Yönetmeliği” ile pestisitlerin taze, işlenmiş veya kompozit bitkisel ve hayvansal gıdalarda bulunmasına izin verilen maksimum kalıntı limitleri belirlenmiştir. YÖNTEM Numune Hazırlığı Numuneler Quppe metodu doğrultusunda basit bir numune ön hazırlığı olan sıvı-sıvı ekstraksiyon ile hazırlanarak LC-MS/MS’e enjeksiyonu yapılır. Analitik Koşullar Analitik Kolon : SUPELCO Ascentis HILIC, 2.7um (2.1 x 100 mm) Analiz Süresi : 10 dakika Mobil Faz : Su (Ammonium Format) ve Asetonitril İyonizasyon : ESI + Tarama Modu : Scheduled MRM™ www.spektrotek.com MRM çiftleri: 18 Bileşik Paraquat 1 Paraquat 2 Diquat 1 Diquat 2 Polarite Pozitif Pozitif Pozitif Pozitif Q1/Q3 186/155 171/155 184/127.8 184/156 Bu çalışmada; Scheduled MRM™ ile zor bir matrix olan kekik ile analiz çalışması yapılmıştır. Elde edilen sonuçlar değerlendirildiğinde yönetmelikte verilen limitleri rahatlıkla karşıladığı görülmüştür. Aynı zamanda QTrap™ teknolojisi kullanılarak mevcut olan 666 adet pestisite ait kütüphane taraması ile konfirmasyon sonucu rapor güvenliği sağlanmaktadır. (a) (b) Gıda ve Çevre Uygulamaları SONUÇ Şekil 7- Scheduled MRM™ kullanılarak yapılan kekik numunesi ait pestisit analiz kromatogramı (a) Paraquat (b) Diquat Şekil 8- Direk enjeksiyon ile analiz edilen su numunesine ait pestisit kromatogramı www.spektrotek.com Aynı zamanda su numunelerinde direk enjeksiyon ile analiz çalışması yapılmaktadır. Numune ön hazırlık işlemine ihtiyaç duyulmamasından dolayı hem analiz maliyeti oldukça düşüktür hem de kısa sürede onlarca analiz yapma imkanı sağlamaktadır. 19 Gıda ve Çevre Uygulamaları JELİBONDA JELATİN TÜR ANALİZİ GİRİŞ Gıda bilimcileri; uzun yıllardır et ve et ürünlerinin türünün belirlenmesi konusunda birçok araştırma yapmaktadırlar. Toplum sağlığı, istenmeyen et ve sakatatların karıştırılması, dini inançları doğrultusunda bazı hayvanlara ait etleri tüketmeyen toplumların varlığı sebeplerinden dolayı bu araştırmalar her geçen gün artmakta ve yeni yöntemlere ihtiyaç duyulmaktadır. İçeriği yanlış beyan edilerek toplumu kandırmaya yönelik yapılan üretim sebebiyle özellikle dünya nüfusunun yaklaşık %23’ünü oluşturan Müslüman toplumlarda sadece domuz eti değil aynı zamanda domuz ürünlerinin de tüketilmemesinden dolayı gıda ürünlerinde tür tayini önem kazanmaktadır. Piyasada bulunan jelibon ve şekerlemeler, dondurmalar, ilaç kapsülleri ve kozmetik ürünler içerisinde kullanılan jelatinin tür tespiti için PCR, ELISA gibi analiz yöntemleri kullanılmakta olup bu yöntemlere ait bazı kısıtlamalar bulunmaktadır. Jelatinin üretim aşamasında yüksek sıcaklık ve asidik koşulların kullanılmasından dolayı hayvan DNA’sı zarar görmekte ve bu sebeple tür tespitinde kullanılacak olan PCR yöntemi zor veya imkansız olmaktadır. Bir diğer yöntem olarak ELISA protein bazlı bir metottur. Yöntemin, proteinin sadece bir parçasının tespit edilmesine olanak vermesi ve birden fazla protein belirleyicisinin olmamasından dolayı yanlış pozitif ve yanlış negatif sonuçlar elde edilebilmektedir. Bu kısıtlamaların dışında tolerans değerinin sıfır olmasından dolayı hassas cihazlar ile düşük tespit limitlerinde analiz yapılmasına ihtiyaç duyulmaktadır. Bu sebeple LC-MS/MS sistemleri tercih edilmektedir. Aynı zamanda proteinlerin tripsin ile parçalanmasının ardından elde edilen peptitler ile çoklu analiz imkanı sağlanır ve böylece jelatin türü belirlenmesinde kesin ve tekrarlanabilirliği yüksek sonuçlar elde edilir. YÖNTEM Analitik Koşullar Numune Hazırlığı Numuneler, NH4HCO3 içerisinde çözündürüldükten sonra tripsin ile peptitlerine parçalanır ve LC-MS/MS’e enjeksiyonu yapılır. Analitik Kolon Analiz Süresi Mobil Faz İyonizasyon Tarama Modu : Phenomenex Gemini 5 μm (150x4.6 mm) : 8 dakika : Su (Formik Asit) ve Asetonitril (Formik Asit) : ESI + : Scheduled MRM™ MRM çiftleri: www.spektrotek.com Bileşik Domuz Jelatini 1 Domuz Jelatini 2 Domuz Jelatini 3 Domuz Jelatini 4 Sığır Jelatini 1 Sığır Jelatini 2 Sığır Jelatini 3 20 Polarite Pozitif Pozitif Pozitif Pozitif Pozitif Pozitif Pozitif Q1/Q3 1103.0/850.9 486.2/786.4 921.5/1050.6 620.8/618.3 659.3/766.5 781.4/991.6 644.8/971.5 SONUÇ Saf halde alınan sığır ve domuz jelatinlerinin QTrap™-EPI ile kütle spektrumları elde edilerek kütüphaneye eklenmiştir. Domuz jelatini ve sığır jelatini kullanılarak üretilen iki farklı jelibon numunesi hazırlanarak enjeksiyon yapılmıştır. Aynı zamanda QTrap™ teknolojisi kullanılarak numunelere ait kütle spektrumları elde edilmiş ve kütüphane taraması ile konfirmasyon sağlanmıştır. Buna göre %87 oranında domuz jelatini, %83 oranında sığır jelatini benzeşmesi sağlanmıştır. Max. 1.6e5 cps. XIC of +MRM (7 pa rs): 1103.000/850.900 Da ID: Pork gelat n 1 from Sample 6 (pork jel bon) of 28042015.w ff (Turbo Spray), Sm... In te n s ty , c p s In te n s ty , c p s 1.5e5 1.4e5 1.4e5 1.3e5 1.3e5 1.2e5 1.2e5 1.1e5 1.1e5 1.0e5 1.0e5 9.0e4 9.0e4 Max. 1.6e5 cps. 6.07 6.07 1.6e5 1.5e5 (a) (a) (b) (b) 8.0e4 8.0e4 7.0e4 7.0e4 6.0e4 6.0e4 5.0e4 5.0e4 4.0e4 4.0e4 3.0e4 3.0e4 2.0e4 2.0e4 1.0e4 1.0e4 0.0 0.0 0.0 0.0 0.5 0.5 1.0 1.0 1.5 1.5 2.0 2.0 2.5 2.5 3.0 3.0 3.5 3.5 4.0 T me, 4.0 mn T me, m n 4.5 4.5 5.0 5.0 5.5 5.5 6.0 6.0 6.5 6.5 7.0 7.0 7.5 7.5 %87 %87 oranında oranında domuz domuz jelat jelat n n benzeşmes benzeşmes %83oranında oranındasığır sığırjelat jelatnn benzeşmes benzeşmes %83 Gıda ve Çevre Uygulamaları XIC of +MRM (7 pa rs): 1103.000/850.900 Da ID: Pork gelat n 1 from Sample 6 (pork jel bon) of 28042015.w ff (Turbo Spray), Sm... 1.6e5 Şekil 9- Jelibon numunelerine ait kromatogram ve kütle spektrumları (a) Domuz jelatini içeren jelibon numunesine ait kromatogram ve kütle spektrumları (b) Sığır jelatini içeren jelibon numunesine ait kromatogram ve kütle spektrumları Sığır jelatini içerisine %50 ve %1 oranlarında domuz jelatini spike edilmiş ve analiz yapılmıştır. Buna göre basit bir numune hazırlığı sonunda analiz edilen numunelerde %1 oranında domuz jelatini bulunmasına rağmen tespit edilmiş ve QTrap™ teknolojisi kullanılarak kütüphane taraması yapılarak konfirmasyon sağlanmış ve güvenilir sonuçlar elde edilmiştir. Sığır jelat n ç n MRM ç ftler Domuz jelat n ç n MRM ç ftler Şekil 10- %1 oranında domuz jelatini içeren sığır jelatin numunesine ait kromatogram www.spektrotek.com n benzeşmes 21 Gıda ve Çevre Uygulamaları ETTE TÜR TAYİNİ GİRİŞ Et, insanın beslenmesinde çok önemli yeri olan temel gıda maddelerinden birisidir. Uluslararası et ticaretinin artması, yapılan hileleri de artırmıştır. Bu bakımdan et türlerinin belirlenmesi tüketicilerin korunması ve hilelerin önlenmesi bakımından önem arz etmektedir. Gıda bilimcileri; uzun yıllardır et ve et ürünlerinin türünün belirlenmesi konusunda birçok araştırma yapmaktadırlar. Toplum sağlığı, istenmeyen et ve sakatatların karıştırılması, dini inançları doğrultusunda bazı hayvanlara ait etleri tüketmeyen toplumların varlığı sebeplerinden dolayı bu araştırmalar her geçen gün artmakta ve yeni yöntemlere ihtiyaç duyulmaktadır. İçeriği yanlış beyan edilerek toplumu kandırmaya yönelik yapılan üretim sebebiyle özellikte dünya nüfusunun yaklaşık %23’ünü oluşturan Müslüman toplumlarda özellikle domuz etinden dolayı gıda ürünlerinde tür tayini önem kazanmaktadır. Türk Gıda Kodeksi Çiğ Kırmızı Et ve Hazırlanmış Kırmızı Et Karışımları Tebliği’nin 13. maddesindeki ambalajlama, etiketleme ve işaretleme bilgisi gereğince, ürünün ait olduğu kasaplık hayvan türü, ürün ismi ile birlikte etikette belirtilmelidir. Koyun, keçi, sığır, manda etlerinden hazırlanmış kırmızı et karışımlarının etiketinde ürünün elde edildiği türe ait yüzde miktarlarının etikette belirtilmesi gerekmektedir. Yine aynı şekilde Türk Gıda Kodeks’i Çiğ Kanatlı Eti ve Hazırlanmış Kanatlı Eti Karışımları Tebliği’nin 12. maddesi gereğince ürünlerin etiketinde, ürünün ait olduğu kanatlı hayvan türü ürünün ismi ile birlikte etikette belirtilmesi gerekmektedir. Tür tayininde PCR gibi DNA bazlı analiz yöntemleri kullanılmakta olup bu yöntemlere ait bazı kısıtlamalar bulunmaktadır. Çünkü DNA et proses edilirken zarar görebilir ya da değişebilir. ELISA gibi protein bazlı metotlarda ise proteinin sadece küçük bir kısmı dedekte edildiği için sıkıntılar yaşanmaktadır. Ayrıca her tür için farklı bir kit kullanılması analiz maliyeti açısından değerlendirildiğinde yüksek olmaktadır. Tolerans değerinin sıfır olmasından dolayı hassas cihazlar ile düşük tespit limitlerinde analiz yapılmasına ihtiyaç duyulmaktadır. Bu sebeple LC-MS/ MS sistemleri tercih edilmektedir. YÖNTEM SONUÇ Numuneler sıvı-sıvı ekstraksiyonu, tripsin ile parçalama ardından SPE ekstraksiyonu ile hazırlanarak LC-MS/MS’e enjeksiyonu yapılır. Farklı et türleri çalışılarak peptitlere ait iyon çiftleri belirlenmiştir. Aynı zamanda QTrap™ teknolojisi kullanılarak kütle spektrumları elde edilmiş ve kütüphane ile karşılaştırma yapılarak konfirmasyon sağlanmıştır. Sonuçlar incelendiğinde %1 oranında bile karışım olsa bile tespit edilebilmektedir. Numune Hazırlığı Analitik Koşullar www.spektrotek.com Analitik Kolon Analiz Süresi Mobil Faz İyonizasyon Tarama Modu 22 : HALO C18 2.7um (50 x 0.5 mm) (Micro LC) : 11 dakika : Su (Formik Asit) ve Asetonitril (Formik Asit) : ESI + : Scheduled MRM™ Şekil 11- MIDAS Akış şeması ve et numunesine ait elde edilen peptitler ve kütle spektrumları GİRİŞ Zeytinyağının son zamanlardaki popülaritesi duyusal özellikleriyle ve sağlık açısından faydalarıyla ilişkilendirilebilir. Oleik asitin ana bileşenini oluşturduğu iyi dengelenmiş yağ asitleri kompozisyonu ile vitamin ve doğal antioksidanlar gibi iz miktardaki biyomoleküller zeytinyağının faydalarıyla bağdaştırılmaktadır. Zeytinyağının sağlık açısından öneminin ortaya konması ile birlikte bu ürüne olan talep de artmıştır. Ürüne olan talepten ve üretim maliyetinin de yüksekliğinden dolayı zeytinyağı diğer yemeklik yağlara göre ekonomik değeri daha yüksek bir yağdır. Yenilebilir yağların kaliteleri, elde edildikleri hammadde, uygulanan tarım yöntemi, hasat zamanı ve şekli, işleme tekniği ve depolama koşulları gibi çeşitli faktörlerden etkilenmektedir. Bu yüzden yenilebilir yağların kalite özelliklerinin belirlenmesi üretici ve tüketiciler için önem taşımaktadır. Bu amaçla çok çeşitli enstrümantal ve kimyasal analiz yöntemlerinden yararlanılmaktadır. Yenilebilir yağların kalite parametrelerinin belirlenmesinde kullanılan geleneksel yöntemler güvenilir sonuç vermelerinin yanında, uzun zaman almaları, uzman analiste gereksinim duymaları ve kullanılan kimyasalların analist sağlığı için tehlike arz etmesi gibi olumsuzlukları bulunmaktadır. Zeytinyağı gibi yenilebilir yağların çeşit ve orijinlerinin belirlenmesinde en önemli bileşenler yağ asitleri, steroller, fenoller, trigliseritler ve tokoferoller olduğu bildirilmiştir. Bu bileşenlerin yağlardaki miktar ve kompozisyonları çeşit, çevre ve yetiştirme koşullarına bağlı olarak farklılık göstermektedir. Bitkisel yağların katkılandırılması özellikle tüketiciler için önem arz eden bir konudur. Çoğunlukla üretim maliyeti fazla olan, satışı pahalı, besin kalitesi yüksek yağlar daha ucuz yağlar ile tağşişe uğratılabilmektedir. Bu konuda en fazla tağşişe uğrayan yağlardan bir tanesi sızma zeytinyağıdır. Sızma zeytinyağı pirina veya daha ucuz sınıf zeytinyağları ile tağşiş edilmektedir. Zeytinyağının tağşişi yağ asitleri kompozisyonu ve/veya sterol kompozisyonun belirlenmesi suretiyle saptanabilmektedir. Ancak bu yöntemlerin pahalı olmaları, tekrar edilebilirliklerinin düşük olması gibi bazı dezavantajları bulunmaktadır. Bu sebeple numune hazırlama işleminin olmadığı ve kesin, doğru, tekraredilebilir sonuçların elde edildiği LC-MS/MS yöntemleri öne çıkmaktadır. Gıda ve Çevre Uygulamaları ZEYTİNYAĞINDA TAĞŞİŞ VE ORİJİN BELİRLEME YÖNTEM Numune Hazırlığı Numuneler hekzan/izopropanol karışımı ile seyreltilerek direk olarak LC-MS/MS’e enjeksiyonu yapılır. Analitik Koşullar : Spherisorb Silica column 5 um (250 x 4.6 mm) (Normal-Phase Chromatography) : 15 dakika : Hekzan ve İzopropanol : APCI : MRM SONUÇ Piyasada bulunan farklı yağ türleri (susam, sındık, mısır, kanola, ayçiçeği, soya vb.) zeytinyağı ile farklı oranlarda karıştırılmış ve QTrap™ teknolojisi kullanılarak analiz edilmiştir. Elde edilen sonuçlar MarkerView™ PCA algoritması ile değerlendirilmiş ve tağşiş yağlar eser miktarda dahi olsa tespit edilebilmiştir. Şekil 12- Zeytinyağı ve tağşiş yağlara ait MasterView™ PCA analiz sonuçları www.spektrotek.com Analitik Kolon Analiz Süresi Mobil Faz İyonizasyon Tarama Modu 23 Gıda ve Çevre Uygulamaları LC-MS/MS İLE GIDALARDA ALERJEN ANALİZİ GİRİŞ Gıda alerjisi, insan bağışıklık sistemi tarafından belirli bir gıdaya karsı başlatılan aşırı duyarlılık reaksiyonudur. İnsan sağlığı ve gıda güvenliğini tehdit eden bir unsur olan alerjenler yetişkinlerin yaklaşık %2-4’ünde ve çocukların %6’sında gıda alerjisine sebep olmaktadır. Gıda güvenliğinin sağlanmasında alerjenlerle ilgili yapılan çalışmalar oldukça önemlidir. Gıda ile ilgili hastalıkların doğru değerlendirilmesinde, bağışıklık sistemi kaynaklı gıda alerjisi ve bağışıklık sistemine bağlı olmayan gıda intoleransı arasındaki farkın anlaşılması kritik önem taşımaktadır. Moleküler düzeyde gıda alerjenlerinin karakterizasyonu ve fonksiyonlarının ayrıntılı olarak anlaşılması, gıda alerjisinin teşhisi ve tedavisi ile ilgili yaklaşımların gelişmesine yol açabilecektir. Ayrıca, tüketicilerin ve üreticilerin gıda alerjisi konusunda bilinçlenmesi, üreticilerin gıdalarda bulunabilecek alerjen bileşenleri etikette açıkça belirtmesi gerekliliğine titizlikle uyması, alerjisi olan kişilerin alerjiden sorumlu alerjen gıdayı tüketmemeye dikkat etmesi ile gıda alerjilerinin engellenmesine yardım edebilecektir. Allerjenlerin tayin ve tespitinde kullanılan farklı yöntemler bulunmaktadır. ELISA yöntemlerinde yanlış pozitif ve yanlış negatif sonuçlar elde edilebilmektedir. Ayrıca her allerjen için ayrı ELISA kitine ihtiyaç duyulmaktadır. Diğer bir tarafta kullanılan PCR yönteminde ise allerjenin varlığı değil organizmadan gelen bir madde olup olmadığı bakıldığı için yine yanlış pozitif ve yanlış negatif sonuçlar ortaya çıkabilir. Bu sebeple çoklu alerjenik proteinlerin belirlenmesi güvenilir sonuçlar elde edilmesi anlamında bir zorunluluktur. Bu sebeple hem daha düşük limitlerde çalışma imkanı, hem de çoklu peptid analizinden dolayı güvenilir sonuçların elde edilmesi sebebiyle LC-MS/MS vazgeçilmez bir çözümdür.Avrupa Birliği’nin oluşturduğu ve AB uyum yasaları çerçevesinde ülkemizde de kabul edilen yasal düzenlemeye göre, gluten/gliadin, yumurta, yerfıstığı, fındık, badem, soya, sülfit, süt ve laktoz etikette belirtilmesi gereken alerjenler arasındadır. İzin verilen seviyeler, alerjik reaksiyonu tetikleyebilecek eşik değerler hakkındaki bilimsel bulgulara dayanmaktadır. Ülkemizde etiketlendirme ve alerjenler ile ilgili yasal düzenleme Türk Gıda Kodeksi’nde “Gıda Maddelerinin Genel Etiketleme ve Beslenme Yönünden Etiketleme Kuralları Tebliği”nde yer almaktadır.Bu bileşenler son üründe farklı bir formda olsalar bile, etikette açıkça belirtilmelidirler. YÖNTEM Numune Hazırlığı Numuneler sıvı-sıvı ekstraksiyonu, tripsin ile parçalama ardından SPE ekstraksiyonu ile hazırlanarak LC-MS/MS’e enjeksiyonu yapılır. SONUÇ www.spektrotek.com Farklı alerjenler ile çalışma yapılmış ve her alerjen için belirleyici olan MRM çiftleri ile peptit haritaları çıkarılmıştır 24 Analitik Koşullar Analitik Kolon Analiz Süresi Mobil Faz İyonizasyon Tarama Modu : Phenomenex Synergi Hydro-RP 4 um (150 x 2.1 mm) : 18 dakika : Su (Formik Asit ve Trifloroasetik Asit) ve Asetonitril (Formik Asit ve Trifloroasetik Asit) : ESI + : Scheduled MRM™ Şekil 13- Yerfıstığı, yumurta ve süt için belirlenen alerjenlerin peptit haritası ve süt için elde edilen kalibrasyon grafiği Gıda ve Çevre Uygulamaları Süt ve yumurta alerjenleri makarna ve ekmek numunesine spike edilerek analiz edilmiştir. Proteinlerin tripsin ile parçalanması yöntemine dayanan numune hazırlığının ardından enjeksiyon yapılan numunede aynı zamanda QTrap™ teknolojisinden faydalanılarak kütle spektrumları elde edilmiştir. Aynı enjeksiyonda hem MRM oranı hem de kütle spektrumları ile karşılaştırma yapılarak güvenilir sonuçlar elde edilmektedir. Böylece false pozitif sonuçlar ortadan kaldırılmış olur. Şekil 15- Makarna numunesinde analiz edilen yumurta ve süt peptidlerine ait kromatogram ve kütle spektrumları www.spektrotek.com Şekil 14- Ekmek numunesinde analiz edilen yumurta ve süt peptidlerine ait kromatogram ve kütle spektrumları 25 Gıda ve Çevre Uygulamaları BEBEK MAMALARINDA B VİTAMİNİ ANALİZLERİ GİRİŞ Ülkemizde bebek ve çocuklar için özel süt ve süt ürünleri, sindirime ve kolesterol düşürmeye yardımcı yoğurt ve yoğurt bazlı içecekler gibi fonksiyonel gıdalar tüketicilere sunulmaktadır. Fonksiyonel gıdalar, besinlerin yanı sıra sağlığa yararlı bileşenler içeren gıdalardır. Bu bileşenler, gıdanın içinde doğal olarak bulunabilir, işleme sırasında eklenebilir veya doğal olarak bulunan miktara ekleme yapılarak kuvvetlendirme yapılabilir. Dayanıklılıklarının düşük olması nedeniyle, vitamin katkılarının dikkatle izlenmesi gerekmektedir. Vitamin B bileşenleri hücre metabolizmasında oldukça önemli rol oynamaktadırlar. B vitamini yönünden eksik olan gıdalar ile beslenme depresyon ve yüksek tansiyon problemlerine yol açmaktadır. Amerika FDA tarafından bireylerin alması gereken günlük B vitamini değerleri belirlenmiştir. Matriksin oldukça kompleks yapıda olmasından dolayı vitamin analizleri sıkıntılıdır. Yüksek seçiciliğe sahip clean-up aşamasına sahip numune hazırlık yöntemleri uygulanmalıdır. Çoğunlukla ELISA ve HPLC yöntemleri kullanılmaktadır. Fakat bu yöntemlerde vitaminler tekli olarak ya da sınıf olarak analiz edilebilmektedir. Numune hazırlığının basit ve tüm vitaminlerin tek bir analizde tespit edildiği LC-MS/MS yöntemleri yaygınlaşmaya başlamıştır. Numune hazırlığının basit ve hızlı oluşu ve tüm grupların tek seferde hazırlanmasından dolayı analiz maliyeti düşüktür. Ayrıca yüksek seçicilik ve hassasiyete sahip olan LC-MS/MS sistemleri ile interferans riski yoktur ve bu sayede daha doğru analiz sonuçları elde edilmektedir. Ülkemizde B vitaminlerinin olması gereken en düşük ve en yüksek miktarları Türk Gıda Kodeksi’nin “Devam Fomülleri tebliği” ile belirlenmiştir. YÖNTEM Numune Hazırlığı Numuneler basit bir numune hazırlığı olan sıvı-sıvı ekstraksiyon ile hazırlanarak direk olarak LC-MS/MS’e enjeksiyonu yapılır. Analitik Koşullar Analitik Kolon Analiz Süresi Mobil Faz İyonizasyon Tarama Modu : Phenomenex Luna HILIC 3 µm (100 x 2 mm) : 11 dakika : Su (Formik Asit) ve Metanol (Formik Asit) : ESI + : Scheduled MRM™ Vitamin B5 Vitamin B7 www.spektrotek.com Şekil 16- Bebek mamasında analiz edilen B vitaminlerine ait kromatogram 26 SONUÇ Basit bir numune hazırlığı olan sıvı-sıvı ekstraksiyon ile hazırlanan numuneler analiz edilmiştir. Buna göre tüm B vitaminleri tek enjeksiyon ile çalışılabilmektedir. Elde edilen veriler incelendiğinde 0.1-100 µg/kg arasında lineer aralığa sahip olan B vitaminleri hızlı bir şekilde analiz edilmektedir. GİRİŞ Antibiyotikler enfeksiyöz hastalıkların tedavisinde ve gıda değeri olan çiftlik hayvanlarının büyümelerini ve verimlerini teşvik edici olarak geniş çapta kullanılmaktadırlar. ß-laktam, tetrasiklinler, kloramfenikol, makrolidler, spektinomisin, linkozamid, sulfonamid, nitrofuran, nitroimidazol, trimethoprim, polimiksin, kinolon ve makrosiklik grubu ilaçlar belirtilen amaçlar için sahada en fazla kullanılan ilaçlardır. Ancak bu ilaçların sahada uygun olmayan şekillerde ve yasal olmayan kullanımları sonucu et, süt, yumurta, bal ve hayvanların yenilebilir diğer dokularında kalıntılar oluşmaktadır. Antibiyotik kalıntı varlığı insanlarda alerjik reaksiyonlara yol açabildiği gibi tehlikeli sağlık problemlerine yol açabilecek olan patojenik bakterilerde antibiyotik direncinin artması gibi ciddi durumlara da sebep olur. Bunlara ek olarak kalıntılar fermente gıdaların kalitelerinde düşüklüğe yol açabilir. Tüm bu tehlikeli ve ciddi problemlerden dolayı da, gıda maddelerinde ilaç kalıntılarının tespiti tüketiciler için önemli bir konudur. Etkin bir gıda güvenliğinin sağlanması için sahada bilinçsiz antibiyotik kullanımından kaçınılması ve gıdalardaki olası antibiyotik kalıntılarının sorumlu yasal otorite tarafından sıklıkla izlenmesi de gereklidir. Günümüzde antibiyotik kalıntılarının farklı gıda maddelerinde tespiti için birçok gelişmiş ve kantitatif ölçüm yeteneğine sahip analitik metotlar kullanılmaktadır. ELISA, GC, HPLC ve LC-MS/MS kullanılan metotlar arasındadır. Bu yöntemler arasında seçiciliği ve hassasiyeti en yüksek olan LC-MS/MS yöntemleri tercih edilmektedir. Ayrıca hızlı ve kolay numune hazırlama yöntemleri sayesinde analiz maliyetleri oldukça düşmektedir. Kısa sürede hazırlanan numuneler analize hazır olmakta ve bu sayede kısa sürede onlarda analiz yapılabilemektedir. Ülkemizde hayvansal gıdalarda bulunabilecek veteriner ilaçların sınıflandırılması ve maksimum kalıntı limitleri; Türk Gıda Kodeksi’nin “Hayvansal Gıdalarda Bulunabilecek Farmakolojik Aktif maddelerin sınıflandırılması ve maksimum kalıntı limitleri yönetmeliği” ile belirlenmiştir. Gıda ve Çevre Uygulamaları VETERİNER İLAÇ KALINTILARI / ANTİBİYOTİK ANALİZİ YÖNTEM Numune Hazırlığı Numuneler sıvı-sıvı ekstraksiyonun ardından clean-up işlemi uygulandıktan sonra LC-MS/MS’e enjeksiyonu yapılır. Pozitif Polarite Analitik Koşullar : Phenomenex Gemini C18 3 μm (50 x 2.0 mm) : 10 dakika : Su (Formik Asit) ve Metanol (Formik Asit) : ESI + / ESI : Scheduled MRM™ SONUÇ Bu çalışmada; Hızlı Polarite değişimi ve Scheduled MRM™ ile hassasiyette azalma olmadan kısa sürede analiz edilmiş ve elde edilen sonuçlar yönetmelikte verilen limitleri rahatlıkla karşılamaktadır. Aynı zamanda QTrap™ teknolojisi kullanılarak mevcut olan 244 adet veteriner ilaç/ antibiyotiklere ait kütüphane taraması ile konfirmasyon sonucu rapor güvenliği sağlanmaktadır. Negatif Polarite Şekil 17-Negatif-pozitif polarite değişimi ve Scheduled MRM™ algoritması ile tek metotta analiz edilen balda antibiyotik analizine ait kromatogram. www.spektrotek.com Analitik Kolon Analiz Süresi Mobil Faz İyonizasyon Tarama Modu 27 Gıda ve Çevre Uygulamaları GIDA VE İÇECEKLERDE TATLANDIRICI TAYİNİ GİRİŞ Tatlandırıcılar, günlük yaşamda kullandığımız şekerin yerini almak üzere üretilen, aynı miktardaki şekerden daha tatlı olan ve daha az enerji içeren kimyasal maddelerdir. Başlangıçta şeker hastalarının tatlandırma gereksiniminin giderilmesi için kullanılmış olmakla birlikte, günümüzde fazla kilolu insanlar, vücut şeklini korumaya çalışanlar ve şekerin diş sağlığı üzerindeki olumsuz etkilerinden korunmak isteyenler tarafından da yaygın olarak kullanılmaktadırlar. Fakat Aspartam, sakarin veya sukraloz gibi yapay tatlandırıcılar, diyabetin ilk evresi olan şeker duyarsızlığını (glukoz intoleransı) tetikleyerek, diyabet hastalığına sebep olmaktadır. Koruyucular, tatlandırıcılar, renklendiriciler ve uyarıcılar gibi besleyici olmayan gıda katkı maddeleri gıda ve içecek ürünlerinde sıklıkla kullanılırlar. Gıda kalite kontrol sürecinde gıda katkı maddelerinin analizi, bu katkı maddelerinin uluslararası gıda kalite kontrol kriterlerini karşıladığından emin olmak açısından önemlidir. Gıda katkı maddelerinin kullanımı dikkatli bir şekilde incelenmektedir ve gıda üreticileri ürünlerinin belli kriterleri karşıladığını göstermelidir. Bu regülasyonlar Gıda ve Tarım Örgütü (FAO) ve Dünya Sağlık Örgütü (WHO) gibi örgütler tarafından yürütülmektedir. Ayrıca, yapay tatlandırıcıların kullanımı çoğu ülkede düzenlenmektedir ve Amerikan Gıda ve İlaç Dairesi (FDA) tüm tatlandırıcılar için “Günlük Kabul Edilebilir Alım Miktarı (ADI)” belirlemiştir. Yapılan regülasyonlar, gıda katkı maddelerinin gıda güvenliğinin tehlikeye atılmadığından emin olmaya yöneliktir. Gıda katkı maddelerinin analizinde kullanılabilecek pek çok analitik metot bulunmaktadır. Yüksek seçicilik ve hassasiyete sahip olan LC-MS/MS sistemleri ile numune ön hazırlık işlemine ihtiyaç duyulmadan hızlı ve güvenilir analiz yapma imkanı sağlanır. YÖNTEM Analitik Koşullar Numuneler 100/1000 kat su ile seyreltildikten sonra direk olarak LC-MS/MS’e enjeksiyonu yapılır. Analitik Kolon Analiz Süresi Mobil Faz İyonizasyon Tarama Modu Numune Hazırlığı : Phenomenex Synergi 4 μm (150 x 2.1 mm) : 7 dakika : Su (Formik Asit) ve Metanol (Formik Asit) : ESI : Scheduled MRM™ MRM çiftleri: www.spektrotek.com Bileşik Acesulfame Aspartame Cyclamate Glycyrrhizin Neohesperidin Saccharin Sucralose 28 Polarite Negatif Negatif Negatif Negatif Negatif Negatif Negatif Q1/Q3 162/82 293/200 178/80 821/351 611/303 182/42 395/359 Q1/Q3 162/78 293/261 178/79 821/113 611/166 182/106 397/361 SONUÇ Limonata ve Kola numuneleri için 100 kat seyreltme ile analiz yapılmıştır. LC-MS/MS ile elde edilen sonuçlar diğer metotlar ile karşılaştırıldığında 5 kat daha hızlı sonuç alınmaktadır. Ayrıca hassasiyetin yüksek olmasından dolayı numune hazırlığı sadece seyreltme ile yapılmakta ve elde edilen sonuçlar incelendiğinde LOQ seviyelerinin belirlenmiş yasal limitlerin altında olduğu görülmüştür. Max. 2.1e5c ps. Aspartame Intensity, cps 2.0e5 1.5e5 (a) Saccharine 1.0e5 5.0e4 0.0 1.02 .0 3.04 .0 5.06 Time,m in XICo f- MRM (14 pairs): 292.928/261.200D aI D: Aspartame 2f romS ample5 7( cola 1/1000... Intens ity, cps 7.0 Max. 2.9e4c ps. Aspartame 2.9e4 2.5e4 .0 Gıda ve Çevre Uygulamaları XICo f- MRM (14 pairs): 292.928/261.200D aI D: Aspartame 2f romS ample6 1( lemona de 1/1000... (b) 2.0e4 1.5e4 Acesulfame 1.0e4 5000.0 0.0 1.02 .0 3.04 .0 Time,m in 5.06 .0 7.0 Şekil 18- Scheduled MRM™ ile yapılan tatlandırıcı analiz kromatogramı (a) Limonata (b) Kola Kola numunesi aynı zamanda QTrap™ teknolojisi kullanılarak analiz edilmiş ve elde edilen kütle spektrumları ile kütüphane karşılaştırması yapılmıştır. Böylece tek enjeksiyonda hem kantitatif sonuçlar elde edilir, hem de kütüphane taraması ile konfirmasyon sonucu güvenilirlik sağlanır. 2.0e5 1.5e5 1.0e5 4.7 5.0e4 1.0 1.5 2.0 -EPI (161.88) Charge (+0) FT (25... Intensity, cps 1.00e6 5.00e5 3.5 4.0 4.5 5.0 5.5 Time, min Max. 1.0e6 cps. -EPI (292.93) Ch arge (+0) FT (25... Acesulfame in cola 77.9 162.1 150 200 m/z, Da -EPI (161.88) Charge (+0) FT (25... 100 5.2e5 78.0 162.1 1.0e6 100 150 200 m/z, Da 250 2.0e5 81.0 97.0 157.2 100 173.2 217.1 1.0e6 5.0e5 261.2 200.2 1.5e6 Aspartame in cola 275.2 293.2 150 1.9e6 6.5 Max. 5.2e5 cps. 200 250 m/z, Da -EPI (292.93) Ch arge (+0) FT (25... Max. 3.6e6 cps. Acesulfame standard 4.0e5 6.0 261.2 200.2 0.0 50 250 82.0 2.0e6 0.0 50 3.0 82.0 0.00 50 3.6e6 3.0e6 2.5 300 350 400 Max. 1.9e6 cps. Aspartame standard 217.2 97.1 118.1 81.0 0.0 50 100 150 174.2 275.2 293.2 200 250 m/z, Da Şekil 19- QTrap-EPI kullanılarak analiz edilen kola numunesine ait tatlandırıcı kütle spektrumları 300 350 400 www.spektrotek.com 0.5 (c) Intensity, cps 0.0 Intensity, cps Max. 2.2e5 cps. 2.6 cola Intensity, cps Inten sity, cps TIC of -MRM (18 pairs): Exp 1, from Sample 4 (cola 1 in 100 dilution) of samples MRM -EPI.. 29 Gıda ve Çevre Uygulamaları İÇME SULARINDA POLİSİKLİK AROMATİK HİDROKARBON (PAH) ANALİZİ GİRİŞ Günümüzde hızla gelişen sanayileşme insan yaşamını önemli ölçüde kolaylaştırırken birçok çevre sorununu da bir arada getirmiştir. İnsan nüfusundaki ve şehirleşme oranındaki hızlı artış çevre kirliliğine neden olan diğer önemli etkenlerdir. Bu etkenler içerisinde yer alan Polisiklik aromatik hidrokarbonlar (PAH), karbon ve hidrojen atomunun iki ya da daha fazla aromatik zincirle oluşturduğu çeşitli organik bileşiklerin oluşturduğu bir grubu temsil eder. Pek çok PAH, çeşitli yanma prosesleri sonucu (orman yangınları, fosil yakıtların yanması vb.) ve piroliz kaynaklarından atmosfer yoluyla çevreye giriş yapar. Ancak düşük çözünürlüğü ve partiküler maddeye olan çekimi nedeniyle genellikle suda kayda değer konsantrasyonlarda görülmez. İçme suyunda PAH konsantrasyonlarının ana kaynağı, içme suyu dağıtım şebekesinde boruları korozyondan korumak için kullanılan kömür katranı kaplamasıdır. PAH’lar yağ içeren bütün vücut dokularımıza girebilir, çoğunlukla karaciğer, yağ ve böbrekte depolanma eğilimindedir. PAH’lar tümör başlatıcı, geliştirici ve ilerletici özellikleri olan bileşiklerdir. Hayvanlar ile yapılan çalışmalarda kısa ya da uzun vadede PAH’lara maruz kaldıklarında bağışıklık sisteminde, vücut sıvılarında sorunlara, akciğer, mesane ve deri kanserlerine neden olduğu görülmüştür. Doğada 100’ün üzerinde PAH bileşiği tespit edilmiştir. Ancak kanserojen ve toksik etkisinin daha fazla olduğu düşünülen 16 PAH bileşiği öncelikli kirleticiler arasında kabul edilmiştir. Su için limitler “İnsani Tüketim Amaçlı Sular Hakkında Yönetmeliği”nde belirlenmiştir. Bu bileşiklerin tespit ve tayini için birçok analitik yöntem kullanılmaktadır. Bu yöntemlerden en yaygın olarak kullanılan HPLC yöntemidir. Fakat bu yöntemde, oldukça uzun ve zahmetli aynı zamanda yüksek maliyetli bir numune ön hazırlığına ihtiyaç duyulmaktadır. Ayrıca elde edilen sonuçlar değerlendirildiğinde HPLC yöntemi ile yönetmelikte verilen limitleri karşılamakta zorluk çekildiği görülmüştür. Buna karşılık numune hazırlığına ihtiyaç duyulmayan direk olarak numunenin enjeksiyonuna dayanan LC-MS/MS metodu; hem zaman açısından hem de analiz maliyeti açısından avantaj getirmektedir YÖNTEM Analitik Koşullar Numune Hazırlığı Numuneler hiçbir ön işleme tabi tutulmadan direk olarak viale alınır ve LC-MS/MS’e enjeksiyonu yapılır. Analitik Kolon Analiz Süresi Mobil Faz İyonizasyon Tarama Modu : Phenomenex Kinetex Phenyl-Hexyl 1.7 um (100x2.1 mm) : 6 dakika : Su ve Asetonitril : APCI : Scheduled MRM™ MRM çiftleri: Max. 1,1e4 cps. XIC of +MRM (13 pa rs): 253,100/250,100 amu Expected RT: 3,6 ID: benzo(a)pyrene-2 from Sample 3 Polarite Pozitif Pozitif Pozitif Pozitif Pozitif Q1/Q3 253/252 252/250 252/250 276/274 276/274 Q1/Q3 253/250 252/224 252/224 276/272 276/272 2,6e4 2,5e4 2,4e4 2,3e4 2,2e4 (1) Benzo(b) fluoranthene (2) Benzo(k) fluoranthene (3) Benzo(a) pyrene (4) Benzo(g,h,i) fluoranthene (5) Indeno(1,2,3-c,d) pyrene 2,1e4 2,0e4 1,9e4 1,8e4 1,7e4 1,6e4 In te n s ty , c p s Bileşik Benzo(a)pyrene Benzo(b)fluorenthene Benzo(k)fluorenthene Benzo(g,h,i) perylene Indeno(1,2,3-c,d) pyrene 3 1,5e4 1,4e4 1,3e4 1,2e4 1,1e4 3,62 1,0e4 9000,0 8000,0 7000,0 4 6000,0 www.spektrotek.com SONUÇ 30 Su numunesinin hiçbir ön işleme tabi tutulmadan direk olarak LC-MS/MS sistemine verilmesi ile elde edilen sonuçlar incelendiğinde yönetmelikte belirlenen limitleri rahatlıkla karşıladığı görülmüştür. 5000,0 4000,0 3000,0 1 2000,0 2 5 1000,0 0,0 1,6 1,8 2,0 2,2 2,4 2,6 2,8 3,0 3,2 3,4 3,6 3,8 T me, m n 4,0 4,2 4,4 4,6 4,8 5,0 5,2 5,4 5,6 Şekil 20- Su numunesi için Scheduled MRM™ ile yapılan PAH analizine ait kromatogram 5,8 6,0 GİRİŞ Akrilamid, yıllardır ticari olarak üretilen ve çeşitli endüstri dallarında kullanılan bir monomerdir. En geniş kullanım alanı içme suyu ve endüstriyel atık suların arıtımında flokülant (topaklaştırıcı) olarak kullanılan suda çözünebilen poliakrilamidlerin üretimidir. Akrilamidin insanlarda ve deney hayvanlarında güçlü toksik etkileri bilinmektedir. Akrilamidin endüstride yaygın olarak kullanımı ve kalıntı akrilamid monomeri içeren polimerlerin suların arıtımında kullanılması, içme ve yüzey sularında akrilamid bulunabileceğini düşündürmektedir. Akrilamid, Uluslararası Kanser Araştırmaları Ajansı tarafından “İnsan İçin Muhtemel Kanserojenik Madde” olarak tanımlanmıştır. Bu sebeple içme sularında miktarlarının kontrol edilmesi oldukça önemlidir. Akrilamidin tayin ve tespiti için bir çok yöntem mevcuttur. Bu yöntemler arasından numune hazırlığına ihtiyaç duyulmadan numunenin direk olarak cihaza enjeksiyonu ile analiz edilmesine olanak sağlayan LC-MS/MS yöntemleri tercih edilmektedir. Numune ön hazırlığına ihtiyaç duyulmaması sebebiyle analiz maliyeti yok denecek kadar azdır. Yüksek seçicilik ve hassasiyet ile ön planda olan LC-MS/MS sistemleri hızlı ve kolay analiz imkanı sağlamaktadır. Ülkemizde Su için limitler “İnsani Tüketim Amaçlı Sular Hakkında Yönetmeliği”nde belirlenmiştir. YÖNTEM Gıda ve Çevre Uygulamaları İÇME SULARINDA AKRİLAMİD ANALİZİ Analitik Koşullar Numune Hazırlığı Analitik Kolon : Phenomenex Luna C18 3 um Analiz Süresi Mobil Faz İyonizasyon Tarama Modu MRM çiftleri: (150x3 mm) : 5 dakika : Su (Formik Asit) ve Asetonitril : ESI + : MRM XIC of +MRM (2 pa rs): 72,176/27,000 Da ID: Acrylam de 2 from Sample 8 (1 PPB) of 14102015 ACRYLAMIDE.w ff (Turbo Spray), Smoothed Polarite Q1/Q3 Akrilamid 1 Akrilamid 2 Akrilamid 3 Pozitif Pozitif Pozitif 72/55 72/44 72/27 SONUÇ Su numunesinin hiçbir ön işleme tabi tutulmadan direk olarak LC-MS/MS sistemine verilmesi ile elde edilen sonuçlar incelendiğinde yönetmelikte belirlenen limitleri rahatlıkla karşıladığı görülmüştür. 7,0e4 6,5e4 6,0e4 5,5e4 5,0e4 4,5e4 In te n s ty , c p s Bileşik Max. 6103,2 cps. 7,2e4 4,0e4 3,5e4 3,0e4 2,5e4 2,0e4 1,5e4 1,0e4 3,53 5000,0 0,0 0,0 0,2 0,4 0,6 0,8 1,0 1,2 1,4 1,6 1,8 2,0 2,2 2,4 2,6 T me, m n 2,8 3,0 3,2 3,4 3,6 3,8 4,0 4,2 4,4 4,6 Şekil 21- Su numunesi ile yapılan Akrilamid analizine ait kromatogram 4,8 www.spektrotek.com Numuneler hiçbir ön işleme tabi tutulmadan direk olarak viale alınır ve LC-MS/MS’e enjeksiyonu yapılır. 31 Gıda ve Çevre Uygulamaları İÇME SULARINDA MULTİ-PESTİSİT ANALİZİ GİRİŞ İnsan yaşamını kolaylaştırmak için üretilen birçok kimyasal, üretim aşamasından tüketim aşamasına kadar, insan sağlığı ve çevre açısından küresel bir tehdit oluşturmaktadır. Dünyadaki kimyasal sanayi üreticileri para kazanma içgüdüsüyle ve çoğunlukla insan sağlığı ve çevreye olan etkilerini ciddi boyutlarda araştırmadan her yıl binlerce kimyasal bileşiği üretip piyasaya sürmektedir. İnsan yaşam kalitesini arttırmak amacıyla kullanılmakta olan kimyasallar ve özellikle tarımsal üretimde kullanılan pestisitler; kontrolsüz, bilinçsiz ve gereksiz yere kullanılmaları sonucunda bireyin yaşamını ve yaşadığı çevreyi çok ciddi anlamda tehdit eder konuma gelmiştir. Mevcut sorun, sadece ülkemizin bir sorunu olmayıp, küresel bir problem olarak karşımıza çıkmaktadır. Tarımda kullanılan pestisitler, ayrıca kalıntılarıyla soframıza kadar sebze ve meyve olarak gelmekte ve pek çok hastalığa neden olabilmektedir. Tarımsal alanlara, orman veya bahçelere uygulanan pestisitler havaya, su ve toprağa, oradan da bu ortamlarda yaşayan diğer canlılara geçmekte ve ölmelerine sebep olmaktadır. Dünya sağlık örgütünün (WHO) 1995 yılında yayınlanan raporuna göre, her yıl dünyada kabaca 1 milyon insan pestisit sebebiyle zehirlenmekte, 20.000 kadarı da ölmektedir. Pestisitlerle insanların teması, ilaç üretimi, taşıma, depolama, kullanma ve ilaç kalıntısı içeren ürünlerin tüketimi sırasında olmaktadır. Bu etkileşim sonunda insan vücuduna girmeleri ise ağız, deri ve solunum yoluyla olmaktadır. Pestisitlerin yanı sıra, parçalanma ürünleri olan metabolitleri de insanlara zehir etkili olabilmektedir. Bu maddelerin bir kısmı birikime uğradığı, bir kısmı da birikmediği halde sinir hücrelerinde tahribat yaptığı için tehlikeli sonuçlar doğurabilmektedir. Bu kimyasalların tespiti için birçok analitik yöntem mevcuttur. Numuneye hiçbir ön işlem uygulanmadan direk olarak enjeksiyonuna dayanan LC-MS/MS metotları avantajları göz önüne alındığında birinci sıraya yerleşmiştir. Su için limitler “İnsani Tüketim Amaçlı Sular Hakkında Yönetmeliği”nde belirlenmiştir. Yapılan çalışmalar sonunda belirlenmiş limitlerin rahatlıkla karşılandığı görülmüştür. YÖNTEM Numune Hazırlığı Numuneler hiçbir ön işleme tabi tutulmadan direk olarak viale alınır ve LC-MS/MS’e enjeksiyonu yapılır. Analitik Koşullar Analitik Kolon Analiz Süresi Mobil Faz İyonizasyon Tarama Modu : Phenomenex Kinetex C18 2.6 um (50x2.1 mm) : 10 dakika : Su (Amonyum Format) ve Metanol (Amonyum Format) : ESI + / ESI : MRM SONUÇ www.spektrotek.com Bu çalışmada; Hızlı Polarite değişimi ve Scheduled MRM™ ile hassasiyette azalma olmadan kısa sürede analiz edilmiş ve elde edilen sonuçlar su için yönetmelikte verilen limitleri rahatlıkla karşılamaktadır. Aynı zamanda QTrap™ teknolojisi kullanılarak mevcut olan 666 adet pestisite ait kütüphane taraması ile konfirmasyon sonucu rapor güvenliği sağlanmaktadır. 32 Gıda ve Çevre Uygulamaları Pozitif Polarite Negatif Polarite Şekil 22-Negatif-pozitif polarite değişimi ve Scheduled MRM™ algoritması ile tek metotta analiz edilen 1ppb 30 adet pestisit etken maddesine ait kromatogram. Şekil 23-Negatif-pozitif polarite değişimi ve QTrap-EPI ile tek metotta analiz edilen su numunesine ait kromatogram. www.spektrotek.com Aynı zamanda su numunesi QTrap-EPI teknolojisi kullanılarak mevcut olan 666 adet pestisite ait kütüphane taraması ile konfirmasyon sonucu rapor güvenliği sağlanmaktadır. 33 SPEKTRALKÜTÜPHANETABLOLARI Spektral Kütüphane Tabloları Antibiotics High Resolution MS/MS Spectral Library Version 1.0 for Use in MasterView™ Software and LibraryView™ Software Antibiotics High Resolution MS/MS Library Version 1.0 An overview of the licensed mass spectral library for antibiotics and veterinary drugs compatible with MasterView™ and LibraryView™ software The MasterView™ and LibraryView™ software package is a fast way to analyze large batches of MS/MS data for accurate and efficient MS/MS library searching, data mining, and compound database management. We have assembled a high resolution, accurate mass MS/MS spectral library containing 244 antibiotic and veterinary drug entries. This library was created using certified reference materials and can be used in MasterView™ and LibraryView™ software to perform MS/MS library searching or to create custom screening and/or quantitation methods using the integrated MS and MS/MS information. www.spektrotek.com Features of this high resolution MS/MS spectra library: • Includes data on 244 antibiotics and veterinary drugs commonly tested for in food products of animal origin. • Includes 259 high resolution MS/MS spectral library entries including individual spectra acquired using distinct collision energies, as well as a single spectra using collision energy spread representing the sum of three collision energies. • Contains spectra for both positive and negative ionization for compounds that ionize in both polarities. 36 Compound 17a-Methyltestosterone 4,6-Dimethyl-2-Hydroxypyrimidine 5-Hydroxymebendazole 5-Hydroxymebendazole-D3 5-Hydroxythiabendazole a-Nortestosteron Acepromazine Acetoxyprogesterone-17a Acetyltylosin, 3-OAlbendazole Albendazole-2-amino-sulfone-D3 Albendazole-D3 Albendazole sulfoxide Albendazole sulfoxide-d3 Albendazolsulfon Albendazolsulfon-D3 Albendazolsulfonamin Aminoflubendazol Aminomebendazol Aminophenazon Formula C20H30O2 C6H8N2O C16H15N3O3 C16H12(2H)3N3O3 C10H7N3OS C18H26O2 C19H22N2OS C23H32O4 C48H79NO18 C12H15N3O2S C10H10(2H)3N3O2S C12H12 2H3N3O2S C12H15N3O3S C12H15N3O3S C12H15N3O4S C12H12 2H3N3O4S C10H13N3O2S C14H10FN3O C14H11N3O C13H17N3O Advantages of using this MS/MS spectral library: • Use the integrated MS and MS/MS information to build methods without the need to infuse standards and optimize conditions for a given compound. • Easily create processing methods for a TOF-MS-IDA-MS/ MS workflow for use on TripleTOF® LC/MS/MS systems. • Quickly set-up XIC tables for quantitation and identification in MasterView™ software. • Set-up smaller customer libraries by simply selecting only the compounds of interest from the list in LibraryView™ Software. The following is a list of the compounds currently in the library. This library is verified for use on AB SCIEX TripleTOF® and QTRAP® LC/MS/MS systems. Please note that this library is continuously being expanded to include additional compounds. Formula Weight 302.4572 124.1425 297.3137 300.3323 217.2499 274.4034 326.4613 372.5048 958.1505 265.3347 242.3153 268.3532 281.334 284.3525 297.3333 300.3518 239.2967 255.2518 237.2613 231.2978 CAS Number 58-18-4 108-79-2 60254-95-7 948-71-0 68-22-4 61-00-7 302-23-8 63409-10-9 54965-21-8 54029-12-8 75184-71-3 80983-34-2 82050-13-3 52329-60-9 58-15-1 # of Spectra 1 Formula Weight CAS Number 302.3767 3690-04-8 Amoxicillin C16H19N3O5S 365.4085 26787-78-0 Ampicillin C16H19N3O4S 349.4092 69-53-4 Arprinocid C12H9ClFN5 277.6887 55779-18-5 Avermectin B1a C48H72O14 873.091 71751-41-2 Azaperone C19H22FN3O 327.4021 1649-18-9 b-Boldenone C19H26O2 286.4144 846-48-0 Bamethan C12H19NO2 209.2884 3703-79-5 Baquiloprim C17H20N6 308.3867 102280-35-3 Benzylpenicillin, (Penicillin G) C16H18N2O4S 334.3945 61-33-6 Brillant green C27H34N2O4S 482.6427 633-03-4 Brombuterol C12H18Br2N2O 366.095 419337-02-4 Carazolol C18H22N2O2 298.3852 57775-29-8 Carbuterol C13H21N3O3 267.3282 34866-47-2 Carprofen C15H12ClNO2 273.7188 53716-49-7 Cefalonium C20H18N4O5S2 458.5159 5575-21-3 Cefazolin C14H14N8O4S3 454.51 25953-19-9 Cefoperazon C25H27N9O8S2 645.6742 62893-20-3 Ceftiofur C19H17N5O7S3 523.5667 80370-57-6 Cephalexin C16H17N3O4S 347.3933 15686-71-2 Cephapirin C17H17N3O6S2 423.4674 21593-23-7 Chloramphenicol C11H12Cl2N2O5 323.1321 56-75-7 Chlorbrombuterol C12H18BrClN2O 321.6442 37153-52-9 Chlormadinone acetate C23H29ClO4 404.9337 302-22-7 Chlorprothixene C18H18ClNS 315.8652 113-59-7 Chlortetracyclin C22H23ClN2O8 478.886 57-62-5 Cimaterol C12H17N3O 219.2868 54239-37-1 Cimbuterol C13H19N3O 233.3137 54239-39-3 Ciprofloxacin C17H18FN3O3 331.347 85721-33-1 Clenbuterol C12H18Cl2N2O 277.1934 21898-19-1 Clencyclohexerol C14H20Cl2N2O2 319.2307 157877-79-7 Clenhexerol C14H22Cl2N2O 305.2472 78982-88-4 Clenisopenterol C13H20Cl2N2O 291.2203 157664-68-1 Clenpenterol C13H20Cl2N2O 291.2203 37158-47-7 Clenproperol C11H16Cl2N2O 263.1665 38339-18-3 Clenproperol-D7 C11H9 2H7Cl2N2O 270.2098 1173021-09-4 Clobendazole C16H12ClN3O3 329.7427 Clorprenaline C11H16ClNO 213.707 3811-25-4 Clorsulon C8H8Cl3N3O4S2 380.6563 60200-06-8 Closantel C22H14Cl2I2N2O2 663.0804 57808-65-8 Closantel-13C(6) (13C6)C16H14Cl2I2N2O2 669.0343 Cloxacillin C19H18ClN3O5S 435.8864 61-72-3 Cyclopentylalbendazole C14H17N3O2S 291.3726 77723-30-9 Danofloxacin C19H20FN3O3 357.3849 112398-08-0 Dapson C12H12N2O2S 248.3041 80-08-0 Decoquinat C24H35NO5 417.5457 18507-89-6 Desacetylcephapirin C15H15N3O5S2 381.4301 38115-21-8 Dexamethasone C22H29FO5 392.4677 50-02-2 # of Spectra Spektral Kütüphane Tabloları Formula C16H22N4O2 1 2 1 2 1 www.spektrotek.com Compound Aminopropylon 37 Spektral Kütüphane Tabloları www.spektrotek.com 38 Compound Diclofenac Formula C14H11Cl2NO2 Formula Weight 296.1526 CAS Number Dicloxacillin C19H17Cl2N3O5S 470.3312 3116-76-5 Dienestrol C18H18O2 266.34 84-17-3 Dienestrol-D2 C18H16O2(2H)2 268.3523 Diethylstilbestroldipropionat C24H28O4 380.4841 130-80-3 Difloxacin C21H19F2N3O3 399.3974 98106-17-3 Dimetridazol C5H7N3O2 141.1296 551-92-8 Dimetridazol-D3 C5H4 2H3N3O2 144.1481 64678-69-9 Dinitrocarbanilid-D8 C13H2 2H8N4O5 310.2958 Doramectin C50H74O14 899.1289 117704-25-3 Doxycycline (Tautomer) C22H24N2O8 444.4412 564-25-0 Emamectin benzoate (B1a) C49H75NO13 886.1332 155569-91-8 Enrofloxacin C19H22FN3O3 359.4007 93106-60-6 Enrofloxacin-D5 C19(2H)5H17FN3O3 364.4316 epi-Chlortetracyclin C22H23ClN2O8 478.886 14297-93-9 epi-Oxytetracyclin C22H24N2O9 460.4405 35259-39-3 epi-Tetracyclin C22H24N2O8 444.4412 23313-80-6 Eprinomectin B1a C50H75NO14 914.1436 133305-88-1 Erythromycin A C37H67NO13 733.9374 59319-72-1 Erythromycin A-(13C)2 (13C)2C35H67NO13 735.922 114-07-08 Erythromycin A Anhydrid C37H65NO12 715.9222 23893-13-2 Ethidimuron C7H12N4O3S2 264.3262 30043-49-3 Febantel C20H22N4O6S 446.4825 58306-30-2 Fenbendazol-D3 C15H10 2H3N3O2S 302.3704 1228182-47-5 Fenbendazole C15H13N3O2S 299.3519 43210-67-9 Fenbendazole sulfone-D3 C15H10 2H3N3O4S 334.3691 1228182-49-7 Fenoterol C17H21NO4 303.3581 13392-18-2 Florfenicol C12H14Cl2FNO4S 358.2157 73231-34-2 Flubendazole C16H12FN3O3 313.2884 31430-15-6 Flubendazole-D3 C16H9 2H3FN3O3 316.3069 1173021-08-3 Flufenamic Acid C14H10F3NO2 281.2344 530-78-9 Flumequine C14H12FNO3 261.2528 42835-25-6 Flumethasone C22H28F2O5 410.4582 2135-17-3 Flunixin C14H11F3N2O2 296.2491 38677-85-9 Flunixin-D3 C14H8(2H)3F3N2O2 299.2676 1015856-60-6 Gamithromycin C40H76N2O12 777.0493 145435-72-9 Halofuginon C16H17BrClN3O3 414.6859 55837-20-2 Heliotrin C16H27NO5 313.394 303-33-3 Hydroxy-Ipronidazole-D3 C7H8(2H)3N3O3 188.2012 Hydroxymethylclenbuterol C12H18Cl2N2O2 293.1928 38339-18-3 14885-29-1 Ipronidazole C7H11N3O2 169.1834 Ipronidazole-D3 C7H8(2H)3N3O2 172.2019 Ipronidazole-OH C7H11N3O3 185.1827 # of Spectra 15307-86-5 35175-14-5 Isochlortetracyclin C22H23ClN2O8 478.886 514-53-4 Isoxsuprine C18H23NO3 301.3857 395-28-8 Ivermectin C48H74O14 875.1068 70288-86-7 Josamycin C42H69NO15 828.0071 56689-45-3 Ketoprofen C16H14O3 254.2855 22071-15-4 1 2 1 2 1 2 1 Formula Weight CAS Number 329.5693 Kristallviolett C25H30ClN3 407.9867 548-62-9 Labetalol C19H24N2O3 328.4114 36894-69-6 Lasalocid A C34H53NaO8 612.7797 25999-20-6 Leuco Malachite Green C23H26N2 330.4734 129-73-7 Leuco Malachite Green-D5 C23H21(2H)5N2 335.5043 # of Spectra 2 Leucocrystal Violet C25H31N3 373.5419 603-48-5 Leucomycin C35H59NO13 701.8519 1392-21-8 Levamisole C11H12N2S 204.2944 14769-73-4 Lincomycin C18H34N2O6S 406.542 154-21-2 Mabuterol C13H18ClF3N2O 310.7469 56341-08-3 Mapenterol C14H20ClF3N2O 324.7738 95656-68-1 Marbofloxacin C17H19FN4O4 362.361 115550-35-1 Mebendazol C16H13N3O3 295.2979 31431-39-7 Mebendazol-D3 C16H10 2H3N3O3 298.3164 Meclofenamic acid C14H11Cl2NO2 296.1526 644-62-2 Medroxyprogesterone acetate C24H34O4 386.5317 71-58-9 Mefenamic acid C15H15NO2 241.2899 61-68-7 Megestrol acetate C24H32O4 384.5158 595-33-5 Melengestrol acetate C25H32O4 396.5268 2919-66-6 Meloxicam C14H13N3O4S2 351.4039 71125-38-7 Meloxicam-D3 C14H10 2H3N3O4S2 354.4224 942047-63-4 Methapyrilene C14H19N3S 261.3898 135-23-9 Methicillin C17H20N2O6S 380.42 61-32-5 Methotrimeprazine C19H24N2OS 328.4772 851-68-3 Meticlorpindol, (Clopidol) C7H7Cl2NO 192.0443 2971-90-6 Metoprolol C15H25NO3 267.3684 37350-58-6 Metronidazol C6H9N3O3 171.1558 444-48-1 Metronidazol-D3 C6H6(2H)3N3O3 174.1743 Metronidazole-OH C6H9N3O4 187.1551 4812-40-2 Monensin C36H62O11 670.8813 17090-79-8 Monocrotalin C16H23NO6 325.3616 315-22-0 Nafcillin C21H22N2O5S 414.4807 147-52-4 Nalidixic acid C12H12N2O3 232.239 389-08-2 Nandrolon C18H26O2 274.4034 434-22-0 Naproxen C14H14O3 230.2635 22204-53-1 Netobimin-Micronized C14H20N4O7S2 420.4641 88255-01-0 Niflumic acid C13H9F3N2O2 282.2222 4394-00-7 Nitroxinil C7H3IN2O3 290.017 1689-89-0 Norfloxacin C16H18FN3O3 319.3359 70458-96-7 Oleandomycin C35H61NO12 687.8684 2751-09-9 Orciprenaline C11H17NO3 211.2609 586-06-1 Oxacillin C19H19N3O5S 401.4416 61-72-3 Oxfendazole C15H13N3O3S 315.3512 53716-50-0 Oxfendazole-D3 C15H10 2H3N3O3S 318.3698 1228182-54-4 Oxfendazolsulfon C15H13N3O4S 331.3506 54029-20-8 Oxibendazole C12H15N3O3 249.2696 20559-55-1 Oxibendazole-D7 C12H8 2H7N3O3 256.3128 1173019-44-7 1 Spektral Kütüphane Tabloları Formula C13H7Cl3N2O2 2 1 www.spektrotek.com Compound Ketotriclabendazole 39 Spektral Kütüphane Tabloları www.spektrotek.com 40 Compound Oxolinic acid Formula C13H11NO5 Formula Weight 261.234 CAS Number Oxyphenbutazone C19H20N2O3 324.3797 129-20-4 Oxytetracycline C22H24N2O9 460.4405 79-57-2 Phenylbutazone C19H20N2O2 308.3804 129-18-0 Phenylbutazone-D10 C19H10(2H)10N2O2 318.4422 Pirbuterol C12H20N2O3 240.3025 38677-81-5 Pirlimycin C17H31ClN2O5S 410.9606 79548-73-5 Praziquantel C19H24N2O2 312.4121 55268-74-1 Prednisolone C21H28O5 360.4503 50-24-8 Progesterone C21H30O2 314.4682 57-83-0 Promethazine C17H20N2S 284.4241 60-87-7 Propionylpromazine C20H24N2OS 340.4882 3568-24-9 Ractopamine C18H23NO3 301.3857 97825-25-7 Rafoxanide C19H11Cl2I2NO3 626.0161 22662-39-1 Ramifenazon C14H19N3O 245.3247 3615-24-5 Retrorsin C18H25NO6 351.3995 480-54-6 Ritodrine C17H21NO3 287.3588 26652-09-5 Robenidine C15H13Cl2N5 334.2079 25875-51-8 Ronidazole C6H8N4O4 200.154 7681-76-7 Ronidazole-D3 C6H5(2H)3N4O4 203.1725 1015855-87-4 Roxithromycin C41H76N2O15 837.0583 80214-83-1 Salbutamol C13H21NO3 239.3147 18559-94-9 Salmeterol C25H37NO4 415.5732 89365-50-4 Salmeterol-D3 C25H34 2H3NO4 418.5918 497063-94-2 Sarafloxacin C20H17F2N3O3 385.3705 98105-99-8 Secinidazol C7H11N3O3 185.1827 3366-95-8 Selamectin C43H63NO11 769.9732 220119-17-5 Semduramycin C45H76O16 873.0882 113378-31-7 Senecionin C 18H25NO5 335.4002 130-01-8 Seneciophyllin C18H23NO5 333.3843 480-81-9 Sotalol C12H20N2O3S 272.3668 3930-20-9 Spectinomycin C14H24N2O7 332.3535 1695-77-8 Spiramycin C43H74N2O14 843.0652 8025-81-8 Stanozolol C21H32N2O 328.4982 10418-03-8 Sulfabenzamide C13H12N2O3S 276.3145 127-71-9 Sulfacetamide C8H10N2O3S 214.2434 144-80-9 Sulfachloropyridazine C10H9ClN4O2S 284.7245 80-32-0 Sulfadiazine C10H10N4O2S 250.2797 68-35-9 122-11-2 Sulfadimethoxine C12H14N4O4S 310.3321 Sulfadimethoxine-D6 C12H8 2H6N4O4S 316.3692 # of Spectra 14698-29-4 Sulfadimidin C12H14N4O2S 278.3335 57-68-1 Sulfadoxine C12H14N4O4S 310.3321 2447-57-6 Sulfaguanidin C7H10N4O2S 214.2466 57-67-0 Sulfamerazine C11H12N4O2S 264.3066 127-79-7 Sulfameter C11H12N4O3S 280.3059 651-06-9 Sulfamethizol C9H10N4O2S2 270.3331 144-82-1 Sulfamethoxazole C10H11N3O3S 253.2802 723-46-6 Sulfamethoxypyridazine C11H12N4O3S 280.3059 80-35-3 1 2 1 Formula Formula Weight CAS Number C11H13N3O3S 267.3071 729-99-7 Sulfanilamide C6H8N2O2S 172.2062 63-74-1 Sulfaphenazole C15H14N4O2S 314.3666 526-08-9 Sulfapyridin C11H11N3O2S 249.2919 144-83-2 Sulfaquinoxaline C14H12N4O2S 300.3397 59-40-5 Sulfathiazole C9H9N3O2S2 255.3184 72-14-0 Terbutaline C12H19NO3 225.2878 23031-25-6 Testosterone C19H28O2 288.4303 58-22-0 Tetracycline C22H24N2O8 444.4412 60-54-8 Tetramisole-D5 C11H7 2H5N2S 209.3253 1173021-85-6 Thiabendazole C10H7N3S 201.2505 148-79-8 Thiamphenicol C12H15Cl2NO5S 356.2246 15318-45-3 Tiamulin C28H47NO4S 493.75 55297-95-5 Tilmicosin C46H80N2O13 869.1465 108050-54-0 Tinidazol C8H13N3O4S 247.2733 19387-91-8 Tolfenamic Acid C14H12ClNO2 261.7078 13710-19-5 Tolfenamic Acid-(13C)6 C8(13C)6H12ClNO2 267.6617 Trenbolone C18H22O2 270.3717 10161-33-8 Triamcinolone C21H27FO6 394.4401 124-94-7 Triclabendazole C14H9Cl3N2OS 359.6613 68786-66-3 Triclabendazole-D3 C14H6 2H3Cl3N2OS 362.6798 Triclabendazole sulfone C14H9Cl3N2O3S 391.66 100648-14-4 Triclabendazole sulfoxide C14H9Cl3N2O2S 375.6606 100648-13-3 Trimethoprim C14H18N4O3 290.3222 738-70-5 1 2 1 2 1 2 0 Tulobuterol C12H18ClNO 227.7339 41570-61-0 Tylosin A C46H77NO17 916.1133 8026-48-0 Tylosin B C39H65NO14 771.9429 11032-98-7 Tylvylosin (Aivlosin) C53H87NO19 1042.268 63409-12-1 Valnemulin C31H52N2O5S 564.8288 101312-92-9 Xylazine C12H16N2S 220.3372 23076-35-9 Zilpaterol C14H19N3O2 261.324 117827-79-9 Product Name Antibiotics High Resolution MS/MS Spectral Library Version 1.0 1 License Part Number permanent 5038640 one-year 5038642 © 2015 AB Sciex. For Research Use Only. Not for use in diagnostic procedures. The trademarks mentioned herein are the property of AB Sciex Pte. Ltd. or their respective owners. AB SCIEX™ is being used under license. Publication number: 11120615-01 www.spektrotek.com Tulathromycin Marker # of Spectra Spektral Kütüphane Tabloları Compound Sulfamoxol 41 Spektral Kütüphane Tabloları Mycotoxin Spectral Library v1.1 for LibraryView™ Software An overview of the licensed mass spectral library for mycotoxins compatible with LibraryView™ Software LibraryView™ Software is a fast way to analyze large batches of MS/MS data for accurate and efficient MS/MS library searching, data mining, and compound database management. We’ve assembled an MS/MS spectral library compatible with LibraryView™ Software containing 248 mycotoxin residue entries. This library was created using certified reference materials and can be used in LibraryView™ Software to perform MS/MS library searching or to create custom screening and/or quantitation methods using the integrated MRM information. Features of this MS/MS spectra library: • Includes data on 245 mycotoxins and other fungal/bacterial metabolites commonly tested for in grains, cereals, or other food products. • Contains 245 integrated MRM entries with up to 3 transitions per compound. • Includes 236 full MS/MS spectral library entries including individual spectra acquired using three distinct collision energies (20 eV, 35 eV, 50 eV), as well as a single spectra representing the sum of all three collision energies. • Contains spectra for both positive and negative ionization for compounds that ionize in both polarities. www.spektrotek.com Compound 15-Acetyl-deoxynivalenol 15-Monoacetoxyscirpenol 16-Ketoaspergillimide 2-Amino-14,16-dimethyloctadecan-3-ol 3-Acetyl-deoxynivalenol 3-Nitropropionic acid 3-O-Methylviridicatin A23187 AAL-TA1 Toxin Actinomycin D Aflatoxin B1 Aflatoxin B2 Aflatoxin G1 Aflatoxin G2 Aflatoxin M1 Aflatoxin M2 Agroclavine Alamethicin F30 42 Formula C17H22O7 C17H24O6 C20H27N3O4 C20H43ON C17H22O7 C3H5NO4 C16H13NO2 C29H37N3O6 C25H47NO10 C62H86N12O16 C17H12O6 C17H14O6 C17H12O7 C17H14O7 C17H12O7 C17H14O7 C16H18N2 C92H150N22O25 Advantages of using this MS/MS spectral library: • Use the integrated MRM information to build methods without the need to re-infuse standards and optimize MRM transitions for a given compound. • Easily create screening methods for an MRM triggered EPI workflow for use on QTRAP® LC/MS/MS systems. • Quickly set-up MRM quantitation methods for traditional MRM ratio quantitation and confirmation on a QTRAP® or Triple Quad™ LC/MS/MS system. • Set-up smaller customer libraries by simply selecting only the compounds of interest from the list in LibraryView™ Software. • Use LibraryView™ Software to automatically create your custom acquisition and quantitation methods. The following is a list of the antibiotics currently in the library. This library is verified for use on AB SCIEX QTRAP® LC/MS MS systems. Please note that this library is continuously being expanded to include additional compounds. Formula Weight 338.3573 324.3738 373.4523 313.5676 338.3573 119.0768 251.285 523.6296 521.6484 1255.436 312.2787 314.2945 328.278 330.2939 328.278 330.2939 238.3328 1964.336 CAS Number 88337-96-6 2623-22-5 199784-50-4 540770-33-0 50722-38-8 504-88-1 6152-51-4 52665-69-7 79367-52-5 50-76-0 1162-65-8 7220-81-7 1165-39-5 7241-98-7 6795-23-9 6885-57-0 548-42-5 27061-78-5 alpha-Zearalenol C18H24O5 320.3855 36455-72-8 alpha-Zearalenol-4-O-glucoside C24H34O10 482.5276 135626-94-7 Altenuene C15H16O6 292.2883 29752-43-0 Altenusin C15H14O6 290.2725 31186-12-6 Alternariol C14H10O5 258.2304 641-38-3 Alternariolmethylether C15H12O5 272.2573 26894-49-5 Altersolanol C16H16O7 320.2987 22268-16-2 # of Spectra 4 8 0 4 8 4 8 Formula Weight CAS Number # of Spectra 352.3435 56258-32-3 4 Altertoxin-II C20H14O6 350.3276 56257-59-1 Amphotericin B C47H73NO17 924.0926 1397-89-3 Anisomycin C14H19NO4 265.3092 22862-76-6 4 Apicidin C34H49N5O6 623.7934 183506-66-3 8 Ascomycin C43H69NO12 792.0201 104987-12-4 4 Aspercolorin C25H28N4O5 464.5215 29123-52-2 8 Aspergillimide C20H29N3O3 359.4688 195966-93-9 Asperlactone C9H12O4 184.1917 76375-62-7 Asperloxine A C21H19N3O5 393.3993 223130-52-7 Aspinonene C9H16O4 188.2234 157676-96-5 Aspyrone C9H12O4 184.1917 17398-00-4 Asterric acid C17H16O8 348.309 577-64-0 Atpenin A5 C15H21Cl2NO5 366.2409 119509-24-9 Aureobasidin A C60H92N8O11 1101.438 127757-30-6 Aurofusarin C30H18O12 570.4657 13191-64-5 Austdiol C12H12O5 236.2242 53043-28-0 Austocystin A C19H13ClO6 372.7614 55256-58-1 Avenacein Y C15H10O8 318.2394 102426-44-8 Bacitracin C66H103N17O16S 1422.713 22601-59-8 Bafilomycin A1 C35H58O9 622.8399 88899-55-2 Beauvericin C45H57N3O9 783.9626 26048-05-5 beta-Ergocryptine C32H41N5O5 575.7086 511-09-1 beta-Ergocryptinine C32H41N5O5 575.7086 511-10-4 beta-Zearalenol C18H24O5 320.3855 71030-11-0 beta-Zearalenol-4-O-glucoside C24H34O10 482.5276 135626-93-6 Brefeldin A C16H24O4 280.3641 20350-15-6 Brevicompanine B C22H29N3O2 367.4916 215121-47-4 Calphostin C C44H38O14 790.7773 121263-19-2 Cephalosporin C C16H21N3O8S 415.4223 61-24-5 Cerulenin C12H17NO3 223.2719 17397-89-6 Chaetocin C30H28N6O6S4 696.8471 28097-03-2 Chaetoglobosin A C32H36N2O5 528.6487 50335-03-0 Chanoclavine C16H20N2O 256.348 2390-99-0 Chetomin C31H30O6N6S4 710.874 1403-36-7 Chlamydosporol C11H14O5 226.229 135063-30-8 Chloramphenicol C11H12Cl2N2O5 323.1321 56-75-7 5 Chromomycin A3 C57H82O26 1183.261 7059-24-7 0 Citreoviridin C23H30O6 402.4876 25425-12-1 4 Citrinin C13H14O5 250.2511 518-75-2 8 Citromycetin C14H10O7 290.229 478-60-4 4 Cochliodinol C32H30N2O4 506.6018 11051-88-0 Curvularin C16H20O5 292.3317 10140-70-2 Cycloaspeptide A C36H43N5O6 641.7679 109171-13-3 Cycloechinulin C20H21N3O3 351.4054 143086-29-7 Cycloheximide C15H23NO4 281.3519 66-81-9 Cyclopenin C17H14N2O3 294.3101 19553-26-5 Cyclopeptine C17H16N2O2 280.3266 50886-63-0 Cyclopiazonic acid C20H20N2O3 336.3908 18172-33-3 Cyclosporin A C62H111N11O12 1202.63 59865-13-3 0 4 Spektral Kütüphane Tabloları Formula C20H16O6 8 4 8 4 8 4 8 4 8 4 8 4 8 www.spektrotek.com Compound Altertoxin-I 43 Spektral Kütüphane Tabloları www.spektrotek.com 44 Compound Cyclosporin C Formula C62H111N11O13 Formula Weight 1218.63 CAS Number # of Spectra 59787-61-0 Cyclosporin D C63H113N11O12 1216.657 63775-96-2 Cyclosporin H C62H111N11O12 1202.63 83602-39-5 Cytochalasin A C29H35O5N 477.6009 14110-64-6 Cytochalasin B C29H37O5N 479.6167 14930-96-2 Cytochalasin C C30H37O6N 507.6271 22144-76-9 Cytochalasin D C30H37O6N 507.6271 22144-77-0 Cytochalasin E C28H33O7N 495.5726 36011-19-5 Cytochalasin H C30H39NO5 493.6436 53760-19-3 Cytochalasin J C28H37NO4 451.6063 56144-22-0 Decarestrictine C10H16O5 216.2338 127393-89-9 4 Dechlorogriseofulvin C17H18O6 318.3262 3680-32-8 Deepoxy-deoxynivalenol C15H20O5 280.3207 88054-24-4 7 Deoxybrevianamide E C21H25N3O2 351.4489 34610-68-9 8 Deoxynivalenol C15H20O6 296.32 51481-10-8 6 Deoxynivalenol-3-glucoside C21H30O11 458.4621 131180-21-7 8 Diacetoxyscirpenol C19H26O7 366.411 2270-40-8 Dihydroergosine C30H39N5O5 549.6706 7288-61-1 Dihydroergotamine C33H37N5O5 583.6879 511-12-6 Dihydrolysergol C16H20N2O 256.348 18051-16-6 Dinactin C42H68O12 764.9944 20261-85-2 Elymoclavine C16H18N2O 254.3321 548-43-6 Elymoclavine fructoside C22H28N2O6 416.4742 12379-50-9 Emodin C15H10O5 270.2414 518-82-1 Enniatin A C36H63N3O9 681.9109 144446-20-8 Enniatin A1 C35H61N3O9 667.884 4530-21-6 Enniatin B C33H57N3O9 639.8302 917-13-5 Enniatin B1 C34H59N3O9 653.8571 19914-20-6 Enniatin B2 C32H55N3O9 625.8033 632-91-7 Enniatin B3 C31H53N3O9 611.7764 864-99-3 Equisetin C22H31NO4 373.4926 57749-43-6 Ergine C16H17N3O 267.3309 478-94-4 Erginine C16H17N3O 267.3309 N/A Ergocornine C31H39N5O5 561.6817 564-36-3 Ergocorninine C31H39N5O5 561.6817 564-37-4 Ergocristine C35H39N5O5 609.7258 511-08-0 Ergocristinine C35H39N5O5 609.7258 511-07-9 Ergocryptine C32H41N5O5 575.7086 511-09-1 Ergocryptinine C32H41N5O5 575.7086 511-10-4 Ergometrine C19H23N3O2 325.4109 60-79-7 Ergometrinine C19H23N3O2 325.4109 479-00-5 Ergosine C30H37N5O5 547.6548 561-94-4 Ergosinine C30H37N5O5 547.6548 596-88-3 Ergotamine C33H35N5O5 581.6721 113-15-5 Ergotaminine C33H35N5O5 581.6721 639-81-6 4 0 4 8 4 8 4 5 4 Ergovaline C29H35N5O5 533.6279 2873-38-3 Ergovalinine C29H35N5O5 533.6279 3263-56-7 0 Erythromycin C37H67NO13 733.9374 114-07-8 8 Festuclavine C16H20N2 240.3486 569-26-6 4 Formula Weight CAS Number # of Spectra 804.0312 104987-11-3 Fulvic acid C14H12O8 308.2442 479-66-3 Fumagillin C26H34O7 458.5517 23110-15-8 Fumigaclavine A C18H22N2O2 298.3852 6879-59-0 Fumitremorgin C C22H25N3O3 379.4592 118974-02-0 Fumonisin B1 C34H59NO15 721.8395 116355-83-0 Fumonisin B2 C34H59NO14 705.8402 116355-84-1 Fumonisin B3 C34H59NO14 705.8402 136379-59-4 Fumonisin B4 C34H59NO13 689.8409 136379-60-7 0 Fusaproliferin C27H40O5 444.6116 152469-17-5 4 Fusarenon-X C17H22O8 354.3566 23255-69-8 8 Fusaric acid C10H13NO2 179.2188 536-69-6 0 Fusarielin A C25H38O4 402.5744 132341-17-5 Fusidic acid C31H48O6 516.7185 6990/06/03 Geldanamycin C29H40N2O9 560.6445 30562-34-6 Geodin C17H12Cl2O7 399.1835 427-63-4 Gibberellic acid C19H22O6 346.38 1977/06/05 Gliotoxin C13H14O4N2S2 326.394 67-99-2 Griseofulvin C17H17O6Cl 352.7711 126-07-8 HC-Toxin C21H32N4O6 436.5084 83209-65-8 HT-2-Toxin C22H32O8 424.491 26934-87-2 hydrolyzed Fumonisin B1 C22H47NO5 405.6187 145040-09-1 Ionomycin C41H72O9 709.0171 56092-82-1 K252a C27H21N3O5 467.4813 97161-97-2 K252b C26H19N3O5 453.4545 99570-78-2 Kojic acid C6H6O4 142.1111 501-30-4 Lincomycin C18H34N2O6S 406.542 154-21-2 Lolitrem B C42H55NO7 685.9015 81771-19-9 8 Lysergol C16H18N2O 254.3321 602-85-7 4 Macrosporin C16H12O5 284.2683 22225-67-8 8 Malformin C C23H39N5O5S2 529.7222 59926-78-2 Marcfortine A C28H35N3O4 477.604 75731-43-0 Meleagrin C23H23N5O4 433.4673 71751-77-4 Methysergide C21H27N3O2 353.4647 361-37-5 Mevastatin C23H34O5 390.5199 73573-88-3 Mevinolin C24H36O5 404.5468 75330-75-5 Mithramycin C52H76O24 1085.16 18378-89-7 Mitomycin C C15H18N4O5 334.3319 1950/07/07 Monactin C41H66O12 750.9675 7182-54-9 4 Moniliformin C4H2O3 98.05797 71376-34-6 0 Mycophenolic acid C17H20O6 320.3421 24280-93-1 7 Myriocin C21H39NO6 401.5436 35891-70-4 Neosolaniol C19H26O8 382.4104 36519-25-2 Neoxaline C23H25N5O4 435.4831 71812-10-7 NG012 C32H38O15 662.6442 141731-76-2 Nidulin C20H17Cl3O5 443.7103 10089-10-8 Nigericin C40H68O11 724.973 28643-80-3 Nivalenol C15H20O7 312.3193 23282-20-4 8 Nonactin C40H64O12 736.9406 6833-84-7 4 8 4 8 Spektral Kütüphane Tabloları Formula C44H69NO12 4 8 4 8 4 8 4 4 8 4 4 8 4 www.spektrotek.com Compound FK 506 45 Spektral Kütüphane Tabloları www.spektrotek.com 46 Compound Formula Formula Weight CAS Number # of Spectra Nornidulin C19H15Cl3O5 429.6834 33403-37-1 4 Ochratoxin A C20H18NO6Cl 403.8188 303-47-9 8 Ochratoxin alpha C11H9ClO5 256.6421 19165-63-0 7 Ochratoxin B C20H19NO6 369.374 4825-86-9 Oligomycin A C45H74O11 791.0757 579-13-5 Oligomycin B C45H72O12 805.0592 11050-94-5 O-Methylsterigmatocystin C19H14O6 338.3166 17878-69-2 Ophiobolin A C25H36O4 400.5585 4611/05/06 Ophiobolin B C25H38O4 402.5744 5601-74-1 Oxaspirodion C13H14O5 250.2511 774538-95-3 oxidized Elymoclavine N/A N/A N/A 8 4 8 4 oxidized Luol N/A N/A N/A Paraherquamide A C28H35N3O5 493.6033 77392-58-6 6 Paspaline C28H39NO2 421.6235 11024-56-9 4 Paspalinine C27H31NO4 433.5478 63722-91-8 8 Paspalitrem A C32H39NO4 501.6663 63722-90-7 Paspalitrem B C32H39NO5 517.6657 63764-58-9 Patulin C7H6O4 154.1221 149-29-1 0 Paxilline C27H33NO4 435.5636 57186-25-1 8 Penicillic acid C8H10O4 170.1649 90-65-3 Penicillin G C16H18O4N2S 334.3945 61-33-6 4 4 Penicillin V C16H18N2O5S 350.3938 1987/08/01 Penigequinolone A C27H33NO6 467.5623 180045-91-4 Penitrem A C37H44O6NCl 634.2125 12627-35-9 Pentoxyfylline C13H18N4O3 278.3112 6493/05/06 Pestalotin C11H18O4 214.2614 34565-32-7 Phomopsin A C36H45ClN6O12 789.2392 64925-80-0 6 Phomopsin B C36H46N6O12 754.7944 64925-81-1 0 Physcion C16H12O5 284.2683 521-61-9 8 Pseurotin A C22H25NO8 431.4423 58523-30-1 7 Puromycin C22H29N7O5 471.5166 53-79-2 Pyrenophorol C16H24O6 312.3628 22248-41-5 Pyripyropene A C31H37NO10 583.6354 147444-03-9 Radicicol C18H17ClO6 364.7821 12772-57-5 Rapamycin C51H79NO13 914.187 53123-88-9 Roquefortine C C22H23N5O2 389.4576 58735-64-1 Roridin A C29H40O9 532.631 14729-29-4 Rubellin D C30H22O10 542.4987 121325-49-3 Rugulosin C30H22O10 542.4987 23537-16-8 Satratoxin G C29H36O10 544.5986 53126-63-9 Satratoxin H C29H36O9 528.5993 53126-64-0 Secalonic acid C32H30O14 638.5815 56283-72-8 Setosusin C29H38O8 514.6158 182926-45-0 Stachybotrylactam C23H31NO4 385.5036 163391-76-2 Staurosporine C28H26N4O3 466.5401 62996-74-1 Sterigmatocystin C18H12O6 324.2897 10048-13-2 Sulochrin C17H16O7 332.3097 519-57-3 T2-Tetraol C15H22O6 298.3359 34114-99-3 T2-Toxin C24H34O9 466.5283 21259-20-1 T2-Triol C20H30O7 382.4538 34114-98-2 8 4 4 8 4 8 0 8 4 8 4 Formula Weight CAS Number # of Spectra 853.9203 33069-62-4 Tentoxin C22H30N4O4 414.5049 28540-82-1 Tenuazonic acid C10H15O3N 197.234 610-88-8 Terphenyllin C20H18O5 338.36 52452-60-5 Territrem B C29H34O9 526.5835 70407-20-4 4 Tetracycline C22H24N2O8 444.4412 64-75-5 9 Thiolutin C8H8N2O2S2 228.2927 1987/11/06 Trichodermin C17H24O4 292.3751 4682-50-2 Trichostatin A C17H22N2O3 302.3735 58880-19-6 Tryprostatin A C22H27N3O3 381.4751 171864-80-5 Ustiloxin A C28H43N5O12S 673.7399 143557-93-1 Ustiloxin B C26H39N5O12S 645.6862 151841-41-7 Ustiloxin D C23H34N4O8 494.545 158243-18-6 Valinomycin C54H90N6O18 1111.338 2001-95-8 Vancomycin C66H75Cl2N9O24 1449.273 1404-93-9 Verrucarin A C27H34O9 502.5614 3148/09/02 Verrucarol C15H22O4 266.3372 2198-92-7 Verrucofortine C24H31N3O3 409.5288 113706-21-1 Verruculogen C27H33O7N3 511.5751 12771-72-1 Viomellein C30H24O11 560.5139 55625-78-0 Viridicatin C15H11NO2 237.2581 129-24-8 Wortmannin C23H24O8 428.4387 19545-26-7 Zearalenone C18H22O5 318.3697 17924-92-4 Zearalenone-4-glucoside C24H32O10 480.5118 105088-14-0 Zearalenone-4-sulfate C18H22O8S 398.432 132505-04-5 Product Name Part Number Mycotoxin Spectral Library Version 1.1 5023887 For Research Use Only. Not for use in diagnostic procedures. © 2012 AB SCIEX. The trademarks mentioned herein are the property of AB Sciex Pte. Ltd. or their respective owners. AB SCIEX™ is being used under license. Publication number: 6860212-01 8 4 Spektral Kütüphane Tabloları Formula C47H51NO14 8 4 8 4 8 4 www.spektrotek.com Compound Taxol 47 Spektral Kütüphane Tabloları Pesticide LC/MS/MS Library Version 1.0 for Cliquid® Software iMethods™ Test Pesticides Library Version 1.0 for Cliquid® Software The following description outlines the 603 pesticide MRM catalogue and 544 pesticide spectral library that is available for use with AB SCIEX API or QTRAP® LC/MS/MS systems and Cliquid® Software. This library and MRM catalogue, created using certified reference materials, can be used alone to create custom screening and/or quantitation methods or in conjunction with the iMethod™ test for pesticide screening. The iMethod™ test for pesticide screening is sold separately and provides a pre-configured test for the screening of 494 pesticides from vegetable, nut and citrus plant samples using the QuEChERS extraction and cleanup technique. This library is verified for use on AB SCIEX 3200 QTRAP®, 4000 QTRAP® and AB SCIEX QTRAP® 5500 LC/MS/MS Systems. www.spektrotek.com The MRM catalogue and spectral library contain information on the most common 603 pesticides and their metabolites that need to be monitored in vegetables or other food products. The MRM catalogue contains up to three transitions per compound. Each compound in the library has individual spectra acquired using three distinct collision energies (20 eV, 35 eV, 50 eV), as well as a single spectra representing 48 Compound 2.4-D 2.4-DB 2-Naphthyloxyacetic acid 3,4,5-Trimethacarb 3-Hydroxycarbofuran 4-CPA 5-Hydroxy-clethodim-sulfone 5-Hydroxy-imidacloprid 5-Hydroxy-thiabendazol 6-Chlor-3-phenyl-pyridazin-4-ol (Pyridate-Metabolit) Acephate Acequinocyl Acetamiprid Acetochlor Acibenzolar-S-methyl Formula C8H6Cl2O3 C10H10Cl2O3 C12H10O3 C11H15NO2 C12H15NO4 C8H7ClO3 C17H26ClNO6S C9H10ClN5O3 C10H7N3OS C10H7ClN2O C4H10NO3PS C24H32O4 C10H11ClN4 C14H20ClNO2 C8H6N2OS2 the sum of all three collision energies. If compounds ionize in both polarities, spectra for both are included, bringing the potential total number of spectra per compound to eight. The MRM catalogue can be used to build methods without the need to re-infuse standards and optimize MRM transitions for a given compound. Screening and/or quantitation methods can be created for use with an MRM triggered EPI workflow, for use on QTRAP® instruments, or for traditional quantitation where the ratio of the response of two or more transitions is used for compound confirmation. The latter MRM approach can be performed on either an API triple quadrupole or a QTRAP® series instrument. Users simply need to select the compounds of interest as well as the number of transitions to be monitored from the MRM catalogue. Once selected, the Cliquid® Software automatically creates the acquisition and processing methods. The following is a list of the 544 pesticides currently in the library. Please note that this library is continuously being expanded to include additional compounds. Formula Weight 219.9694 248.0007 202.063 193.1103 237.1001 186.0084 407.1169 271.0472 217.031 206.0247 183 384.2301 222.0672 269.1183 209.9922 CAS Number 94-75-7 94-82- 6 120-23-0 2686-99-9 16655-82-6 122-88 -3 not available not available 948-71-0 40020-01-7 40020-01-7 57960-19 -7 135410-2 0-7 34256-82 -1 135158-54-2 # of Spectra 4 Acifluorfen C14H7ClF3NO5 360.9965 50594-66 -6 Aclonifen Acrinathrin Alachlor Aldicarb-sulfoxid C12H9ClN2O3 C26H21F6NO5 C14H20ClNO2 C7H14N2O3S 264.0302 541.1324 269.1183 206.0725 74070-46 -5 101007-0 6-1 15972-60 -8 1646-87-3 4 1 Formula Weight CAS Number 222.0674 1646-88-4 Alloxydim C17H25NO5 323.1733 55634-91-8 Ametryn C9H17N5S 227.1205 834-12-8 Amidosulfuron C9H15N5O7S2 369.0413 120923-37-7 Aminocarb C11H16N2O2 208.1212 2032-59-9 Aminopyralid C6H4Cl2N2O2 205.965 150114-71-9 Amitraz C19H23N3 293.1892 33089-61-1 Amitrol C2H4N4 84.0436 61-82-5 AMPA (Aminomethyl phosphonic acid) CH6O3PN 111.0085 1066-51-9 Anilazine C9H5Cl3N4 273.958 101-05-3 Anilofos C13H19ClNO3PS2 367.0232 64249-01-0 Aramite C15H23ClO4S 334.1006 140-57-8 Atrazin C8H14ClN5 215.0938 1912-24-9 Atrazine-2-hydroxy C8H15N5O 197.1277 2163-68-0 Atrazine-desethyl C6H10N5Cl 187.0625 6190-65-4 Atrazine-desethyl-2-hydroxy C6H11ON5 169.0964 6190-65-4 Atrazine-desisopropyl C5H8N5Cl 173.0468 1007-28-9 Avermectin B1a C48H72O14 872.4922 65195-55-3 Azaconazole C12H11Cl2N3O2 299.0228 60207-31-0 Azamethiophos C9H10ClN2O5PS 323.9737 35575-96-3 Azimsulfuron C13H16N10O5S 424.1026 120162-55-2 Azinphos-ethyl C12H16N3O3PS2 345.0371 2642-71-9 Azinphos-methyl C10H12N3O3PS2 317.0058 86-50-0 Azoxystrobin C22H17N3O5 403.1168 131860-33-8 Beflubutamid C18H17F4NO2 355.1195 113614-08-7 Benalaxyl C20H23NO3 325.1678 71626-11-4 Benazolin C9H6ClNO3S 242.9757 5/6/3813 Bendiocarb C11H13NO4 223.0845 22781-23-3 Benfuracarb C20H30N2O5S 410.1875 82560-54-1 Benfuresate C12H16O4S 256.0769 68505-69-1 Benomyl C14H18N4O3 290.1379 17804-35-2 Benoxacor C11H11Cl2NO2 259.0167 98730-04-2 Bensulfuron-methyl C16H18N4O7S 410.0896 83055-99-6 Bensulide C14H24NO4PS3 397.0605 741-58-2 Bensultap C17H21NO4S4 431.0353 17606-31-4 Bentazone C10H12N2O3S 240.0569 25057-89-0 Benzoximate C18H18ClNO5 363.0874 29104-30-1 Bifenazate C17H20N2O3 300.1474 149877-41-8 Bifenox C14H9Cl2NO5 340.9858 42576-02-3 Bifenthrin C23H22ClF3O2 422.126 82657-04-3 Bioresmethrin C22H26O3 338.1882 28434-01-7 Bitertanol C20H23N3O2 337.179 55179-31-2 Boscalid C18H12Cl2N2O 342.0327 188425-85-6 Brodifacoum C31H23BrO3 522.083 56073-10-0 Bromacil C9H13BrN2O2 260.016 314-40-9 Bromadiolone C30H23BrO4 526.078 28772-56-7 Bromophos C8H8BrCl2O3PS 363.8492 2104-96-3 Bromophos-ethyl C10H12BrCl2O3PS 391.8805 4824-78-6 Bromoxynil C7H3Br2NO 274.8581 1689-84-5 Bromuconazole C13H12BrCl2N3O 374.9 116255-48-2 Bupirimate C13H24N4O3S 316.1569 41483-43-6 # of Spectra Spektral Kütüphane Tabloları Formula C7H14N2O4S 4 www.spektrotek.com Compound Aldoxycarb 49 Spektral Kütüphane Tabloları www.spektrotek.com 50 Compound Buprofezin Formula C16H23N3OS Formula Weight 305.1562 CAS Number # of Spectra 69327-76-0 Butafenacil C20H18ClF3N2O6 474.0805 134605-64-4 Butocarboxim-sulfoxid C7H14N2O3S 206.0725 34681-24-8 Butoxycarboxim C7H14N2O4S 222.0674 34681-23-7 Butralin C14H21N3O4 295.1532 33629-47-9 Buturon C12H13ClN2O 236.0716 3766-60-7 Butylate C11H23NOS 217.15 2008-41-5 Cadusafos C10H23O2PS2 270.0877 95465-99-9 Carbaryl C12H11NO2 201.079 63-25-2 Carbendazim C9H9N3O2 191.0695 10605-21-7 Carbetamide C12H16N2O3 236.1161 16118-49-3 Carbofuran C12H15NO3 221.1052 1563-66-2 Carbosulfan C20H32N2O3S 380.2134 55285-14-8 Carboxin C12H13NO2S 235.0667 5234-68-4 Carfentrazone-ethyl C15H14Cl2F3N3O3 411.0364 128639-02-1 Carpropamid C15H18Cl3NO 333.0454 104030-54-8 Cartap C7H15N3O2S2 237.0606 15263-52-2 Chinomethionate C10H6N2OS2 233.9922 1/2/2439 Chlorbromuron C9H10BrClN2O2 291.9614 13360-45-7 Chlorbufam C11H10ClNO2 223.04 1967-16-4 Chlorethoxyfos-oxon C6H11Cl4O4P 317.9149 54593-83-8 Chlorfenvinphos C12H14Cl3O4P 357.9695 470-90-6 Chlorfluazuron C20H9Cl3F5N3O3 538.963 71422-67-8 Chloridazon C10H8ClN3O 221.0356 1698-60-8 Chlorimuron-ethyl C15H15ClN4O6S 414.0401 90982-32-4 Chlormephos C5H12ClO2PS2 233.9705 24934-91-6 Chlorophacinone C23H15ClO3 374.071 3691-35-8 Chlorotoluron C10H13ClN2O 212.0716 15545-48-9 Chloroxuron C15H15ClN2O2 290.0822 1982-47-4 Chlorpropham C10H12ClNO2 213.0557 101-21-3 Chlorpyrifos C9H11Cl3NO3PS 348.9263 2921-88-2 Chlorpyrifos-methyl C7H7Cl3NO3PS 320.895 5598-13-0 Chlorsulfuron C12H12CIN5O4S 357.0299 64902-72-3 Chlorthiamid C7H5Cl2NS 204.952 1918-13-4 Chlorthiophos C11H15Cl2O3PS2 359.9 60238-56-4 Cinerin I C20H28O3 316.2038 25402-06-6 Cinerin II C21H28O5 360.1937 121-20-0 Cinidon-ethyl C19H17Cl2NO4 393.0535 142891-20-1 Cinosulfuron C15H19N5O7S 413.1005 94593-91-6 Clethodim C17H26ClNO3S 359.1322 99129-21-2 Clethodim-imin-sulfone C14H23NO4S 301.1348 not available Clethodim-imin-sulfoxide C14H23NO3S 285.1399 not available Clethodim-sulfone C17H26ClNO5S 391.122 not available Clethodim-sulfoxide C17H26ClNO4S 375.1271 not available Clodinafop-propargyl C17H13ClFNO4 349.0517 105512-06-9 Clofentezine C14H8Cl2N4 302.0126 74115-24-5 Clomazone C12H14ClNO2 239.0713 81777-89-1 Clomeprop C16H15Cl2NO2 323.048 84496-56-0 Clopyralid C6H3Cl2NO2 190.9541 1702-17-6 Cloquintocet-mexyl C18H22ClNO3 335.1288 99607-70-2 Clothianidin C6H8ClN5O2S 249.0087 210880-92-5 4 Formula Weight CAS Number 362.0145 56-72-4 Coumatetralyl C19H16O3 292.1099 5836-29-3 Crotoxyphos C14H19O6P 314.0919 7700-17-6 Cyanazine C9H13ClN6 240.089 21725-46-2 Cyanofenphos C15H14NO2PS 303.0483 13067-93-1 Cyanophos C9H10NO3PS 243.0119 2636-26-2 Cyazofamid C13H13ClN4O2S 324.0448 120116-88-3 Cyclanilide C11H9Cl2NO3 272.9959 113136--77-9 Cycloate C11H21NOS 215.1344 1134-23-2 Cycloxydim C17H27NO3S 325.1712 101205-02-1 Cyfluthrin C22H18Cl2FNO3 433.0648 68359-37-5 Cyhalofop-butyl C20H20FNO4 357.1376 122008-85-9 Cymoxanil C7H10N4O3 198.0753 57966-95-7 Cypermethrin C22H19Cl2NO3 415.0742 52315-07-8 Cyphenothrin C24H25NO3 375.1834 39515-40-7 Cyproconazole C15H18ClN3O 291.1138 113096-99-4 Cyprodinil C14H15N3 225.1266 121552-61-2 Cyromazine C6H10N6 166.0967 66215-27-8 Daminozide C6H12N2O3 160.0848 1596-84-5 Deltamethrin C22H19Br2NO3 502.9732 52918-63-5 Demeton-S-methyl C6H15O3PS2 230.02 919-86-8 Demeton-S-methyl-sulfon C6H15O5PS2 262.0098 17040-19-6 Desmedipham C16H16N2O4 300.111 13684-56-5 Desmethyl-formamido-pirimicarb C11H16N4O3 252.1222 59333-83-4 Desmethyl-pirimicarb C10H16N4O2 224.1273 30614-22-3 Desmetryne C8H15N5S 213.1048 1014-69-3 Dialifos C14H17ClNO4PS2 393.0025 10311-84-9 Di-allate C10H17Cl2NOS 269.0408 2303-16-4 Diazinon C12H21N2O3PS 304.101 333-41-5 Dichlofenthion C10H13Cl2O3PS 313.97 97-17-6 Dichlofluanid C9H11Cl2FN2O2S2 331.9623 1085-98-9 Dichlorprop-P C9H8Cl2O3 233.985 15165-67-0 Dichlorvos C4H7Cl2O4P 219.9459 62-73-7 Diclobutrazol C15H19Cl2N3O 327.0905 75736-33-3 Diclofop-methyl C16H14Cl2O4 340.0269 51338-27-3 Dicloran C6H4Cl2N2O2 205.965 99-30-9 Diclosulam C13H10Cl2FN5O3S 404.9865 145701-21-9 Dicrotophos C8H16NO5P 237.0766 3735-78-3 Dicyclanil C8H10N6 190.0967 112636-83-6 Diethofencarb C14H21NO4 267.1471 87130-20-9 Difenacoum C31H24O3 444.1725 56073-07-5 Difenoconazole C19H17Cl2N3O3 405 119446-68-3 Difenoxuron C16H18N2O3 286.1317 14214-32-5 Difenzoquat C17H17N2 249.1392 49866-87-7 Diflubenzuron C14H9ClF2N2O2 310.0321 35367-38-5 Diflufenican C19H11F5N2O2 394.0741 83164-33-4 Diflufenzopyr C15H12F2N4O3 334.0877 109293-97-2 Dimefuron C15H19ClN4O3 338.1146 34205-21-5 Dimepiperate C15H21NOS 263.1344 61432-55-1 Dimethachlor C13H18ClNO2 255.1026 50563-36-5 Dimethametryn C11H21N5S 255.1518 22936-75-0 # of Spectra Spektral Kütüphane Tabloları Formula C14H16ClO5PS 4 www.spektrotek.com Compound Coumaphos 51 Spektral Kütüphane Tabloları www.spektrotek.com 52 Compound Dimethenamide Formula C12H18ClNO2S Formula Weight 275.0747 CAS Number # of Spectra 87674-68-8 Dimethoate C5H12NO3PS2 228.9996 60-51-5 Dimethomorph C21H22ClNO4 387.1237 110488-70-5 Dimetilan C10H16N4O3 240.1222 644-64-4 Dimoxystrobin C19H22N2O3 326.163 149961-52-4 Diniconazole C15H17Cl2N3O 325.0749 83657-24-3 Dinoseb C10H12N2O5 240.0746 88-85-7 Dinoterb C10H12N2O5 240.0746 1420-07-1 Dioxathion C12H26O6P2S4 456.0087 78-34-2 Diphacinone C23H16O3 340.1099 82-66-6 Diphenamid C16H17NO 239.131 957-51-7 Diphenylamine C12H11N 169.0891 122-39-4 Diquat C12H12N2 184.1 2764-72-9 Dithianon C14H4N2O2S2 295.9714 3347-22-6 Dithiopyr C15H16F5NO2S2 401.0543 97886-45-8 Diuron C9H10Cl2N2O 232.017 330-54-1 DNOC C7H6N2O5 198.0277 534-52-1 Dodemorph C18H35NO 281.2719 1593-77-7 Dodine C15H33N3O2 287.2573 10/3/2439 Edifenphos C14H15O2PS2 310.0251 17109-49-8 Endosulfansulfate C9H6Cl6O4S 419.8118 1031-07-8 EPN C14H14NO4PS 323.0381 2104-64-5 Epoxiconazole C17H13ClFN3O 329.0731 106325-08-0 EPTC C9H19NOS 189.1187 759-94-4 Esfenvalerate C25H22ClNO3 419.1288 66230-04-4 Ethametsulfuron-methyl C15H18N6O6S 410.1009 97780-06-8 Ethidimuron C7H12N4O3S2 264.0351 30043-49-3 Ethiofencarb C11H15NO2S 225.0823 29973-13-5 Ethiofencarb-sulfon C11H15NO4S 257.0722 53380-23-7 Ethiofencarb-sulfoxid C11H15NO3S 241.0773 53380-22-6 Ethion C9H22O4P2S4 383.9876 563-12-2 Ethirimol C11H19N3O 209.1528 23947-60-6 Ethofumesate C13H18O5S 286.0875 26225-79-6 Ethoprophos C8H19O2PS2 242.0564 13194-48-4 Ethoxyquin C14H19NO 217.1467 91-53-2 Ethoxysulfuron C15H18N4O7S 398.0896 126801-58-9 Ethylenthiourea C3H6N2S 102.0252 96-45-7 Etofenprox C25H28O3 376.2038 80844-07-1 Etoxazole C2H23F2NO2 359.1697 153233-91-1 Etrimfos C10H17N2O4PS 292.0647 38260-54-7 Famoxadone C22H18N2O4 374.1267 131807-57-3 Famphur C10H16NO5PS2 325.0207 52-85-7 Fenamidone C17H17N3OS 311.1092 161326-34-7 Fenamiphos C13H22NO3PS 303.1058 22224-92-6 Fenarimol C17H12Cl2N2O 330.0327 60168-88-9 Fenazaquin C20H22N2O 306.1732 120928-09-8 Fenbuconazole C19H17ClN4 336.1142 114369-43-6 Fenfuram C12H11NO2 201.079 24691-80-3 Fenhexamid C14H17Cl2NO2 301.0636 126833-17-8 Fenitrothion C9H12NO5PS 277.0174 122-14-5 Fenobucarb C12H17NO2 207.1259 3766-81-2 4 Formula Weight CAS Number 267.9461 93-72-1 Fenothiocarb C13H19NO2S 253.1136 62850-32-2 Fenoxaprop-ethyl C18H16ClNO5 361.0717 71283-80-2 Fenoxycarb C17H19NO4 301.1314 79127-80-3 Fenpiclonil C11H6Cl2N2 235.9908 74738-17-3 Fenpropathrin C22H23NO3 349.1678 39515-41-8 Fenpropidin C19H31N 273.2456 67306-00-7 Fenpropimorph C20H33NO 303.2562 67306-03-0 Fenpyroximate C24H27N3O4 421.2002 111812-58-9 Fenthion C10H15O3PS2 278.02 55-38-9 Fentin C18H15Sn 351.0196 668-34-8 Fenuron C9H12N2O 164.095 101-42-8 Fenvalerate C25H22ClNO3 419.1288 51630-58-1 Fipronil C12H4Cl2F6N4OS 435.9387 120068-37-3 Fipronil-desulfinyl C12H4Cl2F6N4 387.9717 205650-65-3 Fipronil-sulfide C12H4Cl2F6N4S 419.9438 120067-83-6 Fipronil-sulfone C12H4Cl2F6N4O2S 451.9336 120068-36-2 Flamprop-M-isopropyl C19H19ClFNO3 363.1037 63782-90-1 Flamprop-M-methyl C17H15ClFNO3 335.0724 63729-98-6 Flazasulfuron C13H12F3N5O5S 407.0511 104040-78-0 Florasulam C12H8F3N5O3S 359.03 145701-23-1 Fluazifop (free acid) C15H12F3NO4 327.0718 83066-88-0 Fluazifop-butyl C19H20F3NO4 383.1344 69806-50-4 Fluazinam C13H4Cl2F6N4O4 463.9514 79622-59-6 Flucycloxuron C25H20ClF2N3O3 483.1161 113036-88-7 Flucythrinate C26H23F2NO4 451.1595 70124-77-5 Fludioxonil C12H6F2N2O2 248.0397 131341-86-1 Flufenacet C14H13F4N3O2S 363.0665 142459-58-3 Flufenoxuron C21H11ClF6N2O3 488.0362 101463-69-8 Flumetsulam C12H9F2N5O2S 325.0445 98967-40-9 Flumioxazin C19H15FN2O4 354.1016 103361-09-7 Fluometuron C10H11F3N2O 232.0823 2164-17-2 Fluoroglycofene-ethyl C18H13ClF3NO7 447.0333 77501-90-7 Fluoxastrobin C21H16ClFN4O5 458.0793 361377-29-9 Flupyrsulfuron-methyl C15H14F3N5O7S 465.0566 144740-54-5 Fluquinconazole C16H8Cl2FN5O 375.009 136426-54-5 Flurenol C14H10O3 226.063 467-69-6 Fluridone C19H14F3NO 329.1027 59756-60-4 Flurochloridone C12H10Cl2F3NO 311.0092 61213-25-0 Fluroxypyr C7H5Cl2FN2O3 253.9661 69377-81-7 Fluroxypyr-meptyl C15H21Cl2FN2O3 366.0913 81406-37-3 Flurprimidole C15H15F3N2O2 312.1086 56425-91-3 Flurtamone C18H14F3NO2 333.0977 96525-23-4 Flusilazole C16H15F2N3Si 315.1003 85509-19-9 Flusulfamide C13H7Cl2F3N2O4S 413.9456 106917-52-6 Fluthiacet-methyl C15H15ClFN3o3S2 403.0227 117337-19-6 Flutolanil C17H16F3NO2 323.1133 66332-96-5 Flutriafol C16H13F2N3O 301.1027 76674-21-0 Fluxofenim C12H11ClF3NO3 309.038 88485-37-4 Fomesafen C15H10ClF3N2O6S 437.99 72178-02-0 Fonofos C10H15OPS2 246.0302 944-22-9 # of Spectra Spektral Kütüphane Tabloları Formula C9H7Cl3O3 4 www.spektrotek.com Compound Fenoprop 53 Spektral Kütüphane Tabloları www.spektrotek.com 54 Compound Foramsulfuron Formula C17H20N6O7S Formula Weight 452.1114 CAS Number # of Spectra 173159-57-4 Formetanate C11H15N3O2 221.1164 22259-30-9 Fosthiazate C9H18NO3PS2 283.0466 98886-44-3 Fuberidazole C11H8N2O 184.0637 3878-19-1 Furalaxyl C17H19NO4 301.1314 57646-30-7 Furathiocarb C18H26N2O5S 382.1562 65907-30-4 Glufosinate C5H12NO4P 181.0504 77182-82-2 Halfenprox C24H23BrF2O3 476.0799 111872-58-3 Halofenozide C18H19ClN2O2 330.1135 112226-61-6 Halosulfuron-methyl C13H15ClN6O7S 434.0411 100784-20-1 Haloxyfop-etotyl C19H19ClF3NO5 433.0904 87237-48-7 Haloxyfop-P C15H11ClF3NO4 361.0329 95977-29-0 Haloxyfop-P-methyl C16H13ClF3NO4 375.0485 72619-32-0 Heptenophos C9H12ClO4P 250.0162 23560-59-0 Hexaconazole C14H17Cl2N3O 313.0749 79983-71-4 Hexaflumuron C16H8Cl2F6N2O3 459.9816 86479-06-3 Hexazinone C12H20N4O2 252.1586 51235-04-2 Hexythiazox C17H21ClN2O2S 352.1012 78587-05-0 Hydramethylnon C25H24F6N4 494.1905 67485-29-4 Imazalil C14H14Cl2N2O 296.0483 35554-44-0 Imazamethabenz-methyl C16H20N2O3 288.1474 81405-85-8 Imazapic C14H17N3O3 275.127 104098-48-8 Imazapyr C13H15N3O3 261.1113 81334-34-1 Imazaquin C17H17N3O3 311.127 81335-37-7 Imazosulfuron C14H13ClN6O5S 412.0357 122548-33-8 Imibenconazole C17H13Cl3N4S 409.9926 86598-92-7 Imidacloprid C9H10ClN5O2 255.0523 138261-41-3 Imidacloprid-Olefin C9H8ClN5O2 253.0367 not available Indoxacarb C22H17ClF3N3O7 527.0707 173584-44-6 Iodosulfuron-methyl-sodium C14H13IN5NaO6S 506.971 185119-76-0 Ioxynil C7H3I2NO 370.8304 1689-83-4 Iprobenfos C13H21O3PS 288.0949 26087-47-8 Iprodione C13H13Cl2N3O3 329.0334 36734-19-7 Iprovalicarb C18H28N2O3 320.21 140923-17-7 Isazofos C9H17ClN3O3PS 313.0417 42509-80-8 Isofenphos C15H24NO4PS 345.1164 25311-71-1 Isofenphos-oxon C15H24NO5P 329.1392 31120-85-1 Isoprocarb C11H15NO2 193.1103 2631-40-5 Isoprothiolane C12H18O4S2 290.0646 50512-35-1 Isoproturon C12H18N2O 206.1419 34123-59-6 Isoxaben C18H24N2O4 332.1736 82558-50-7 Isoxadifen-ethyl C18H17NO3 295.1208 163520-33-0 Isoxaflutole C15H12F3NO4S 359.0439 141112-29-0 Isoxathion C13H16NO4PS 313.0538 18854-01-8 Jasmolin I C21H30O3 330.2195 4466-14-2 Jasmolin II C22H30O5 374.2093 1172-63-0 Kresoxim-methyl C18H19NO4 313.1314 143390-89-0 lambda-Cyhalothrin C23H19ClF3NO3 449.1006 91465-08-6 Lenacil C13H18N2O2 234.1368 8/1/2164 Linuron C9H10Cl2N2O2 248.0119 330-55-2 Lufenuron C17H8Cl2F8N2O3 509.9784 103055-07-8 4 Formula Weight CAS Number 314.0589 1634-78-2 Malathion C10H19O6PS2 330.0361 121-75-5 Maleic hydrazide C4H4N2O2 112.0273 123-33-1 MCPA C9H9ClO3 200.024 94-74-6 MCPA-2-Ethylhexylester C17H25ClO3 312.1492 29450-45-1 MCPA-butotyl C14H21ClO4 300.1128 19480-43-4 MCPB C11H13ClO3 228.0553 94-81-5 Mecarbam C10H20NO5PS2 329.052 2595-54-2 Mecoprop-P C10H11ClO3 214.0397 16484-77-8 Mefenacet C16H14N2O2S 298.0776 73250-68-7 Mefenpyr-diethyl C16H18Cl2N2O4 372.0644 135590-91-9 Mepanipyrim C14H13N3 223.1109 110235-47-7 Mepiquat C7H16N 114.1283 24307-26-4 Mepronil C17H19NO2 269.1416 55814-41-0 Mesosulfuron-methyl C17H21N5O9S2 503.0781 208465-21-8 Mesotrione C14H13NO7S 339.0413 104206-82-8 Metalaxyl C15H21NO4 279.1471 70630-17-0 Metamitron C10H10N4O 202.0855 41394-05-2 Metazachlor C14H16ClN3O 277.0982 67129-08-2 Metconazole C17H22ClN3O 319.1451 125116-23-6 Methabenzthiazuron C10H11N3OS 221.0623 18691-97-9 Methacrifos C7H13O5PS 240.0221 30864-28-9 Methamidophos C2H8NO2PS 141.0013 10265-92-6 Methfuroxam C14H15NO2 229.1103 28730-17-8 Methidathion C6H11N2O4PS3 301.9619 950-37-8 Methiocarb C11H15NO2S 225.0823 2032-65-7 Methiocarb-sulfoxid C11H15NO3S 241.0773 10/1/2635 Methomyl C5H10N2O2S 162.0463 16752-77-5 Methomyl-oxime C3H7NOS 105.0248 13749-94-5 Methoxyfenozide C22H28N2O3 368.21 161050-58-4 Metobromuron C9H11BrN2O2 258.0004 3060-89-7 Metolachlor C15H22ClNO2 283.1339 51218-45-2 Metolcarb C9H11NO2 165.079 1129-41-5 Metosulam C14H13Cl2N5O4S 417.0065 139528-85-1 Metoxuron C10H13ClN2O2 228.0666 19937-59-8 Metrafenone C19H21BrO5 408.0572 220899-03-6 Metribuzin C8H14N4OS 214.0888 21087-64-9 Metsulfuron-methyl C14H15N5O6S 381.0743 74223-64-6 Mevinphos C7H13O6P 224.045 7786-34-7 Molinate C9H17NOS 187.1031 2212-67-1 Monocrotophos C7H14NO5P 223.061 6923-22-4 Monolinuron C9H11ClN2O2 214.0509 1746-81-2 Monuron C9H11ClN2O 198.056 150-68-5 Myclobutanil C15H17ClN4 288.1142 88671-89-0 Naled C4H7Br2Cl2O4P 377.7826 300-76-5 Napropamide C17H21NO2 271.1572 15299-99-7 Neburon C12H16Cl2N2O 274.064 555-37-3 Nicarbazin (1,3- N,N’-bis (4-nitrophenyl)urea) C13H10N4O5 302.0651 330-95-0 Nicosulfuron C15H18N6O6S 410.1009 111991-09-4 Nicotine C10H14N2 162.1157 54-11-5 # of Spectra Spektral Kütüphane Tabloları Formula C10H19O7PS 4 www.spektrotek.com Compound Malaoxon 55 Spektral Kütüphane Tabloları www.spektrotek.com 56 Compound Nitenpyram Formula C11H15ClN4O2 Formula Weight 270.0884 CAS Number # of Spectra 120738-89-8 Norflurazon C12H9ClF3N3O 303.0386 27314-13-2 Norflurazon-desmethyl C11H7ClF3N3O 289.023 23576-24-1 Novaluron C17H9ClF8N2O4 492.0123 116714-46-6 Nuarimol C17H12ClFN2O 314.0622 63284-71-9 Ofurace C14H16ClNO3 281.0819 58810-48-3 Omethoate C5H12NO4PS 213.0225 1113-02-6 Orbencarb C12H16ClNOS 257.0641 34622-58-7 Oxadiargyl C15H14Cl2N2O3 340.0381 39807-15-3 Oxadiazon C15H18Cl2N2O3 344.0694 19666-30-9 Oxadixyl C14H18N2O4 278.1267 77732-09-3 Oxamyl C7H13N3O3S 219.0678 23135-22-0 Oxamyl-oxime C5H10N2O2S 162.0463 30558-43-1 Oxasulfuron C17H18N4O6S 406.0947 144651-06-9 Oxycarboxin C12H13NO4S 267.0565 5259-88-1 Oxydemeton-methyl C6H15O4PS2 246.0149 301-12-2 Oxyfluorfen C15H11ClF3NO4 361.0329 42874-03-3 Paclobutrazol C15H20ClN3O 293.1295 76738-62-0 Paraoxon C10H14NO6P 275.0559 311-45-5 Paraoxon-methyl C8H10NO6P 247.0246 950-35-6 Parathion C10H14NO5PS 291.033 56-38-2 Parathion-methyl C8H10NO5PS 263.0017 298-00-0 Pebulate C10H21NOS 203.1344 1114-71-2 Penconazole C13H15Cl2N3 283.0643 66246-88-6 Pencycuron C19H21ClN2O 328.1342 66063-05-6 Pendimethalin C13H19N3O4 281.1376 40487-42-1 Permethrin C21H20Cl2O3 390.0789 52645-53-1 Pethoxamid C16H22ClNO2 295.1339 106700-29-2 Phenmedipham C16H16N2O4 300.111 13684-63-4 Phenthoate C12H17O4PS2 320.0306 3/7/2597 Phorate C7H17O2PS3 260.0128 298-02-2 Phorat-sulfon C7H17O4PS3 292.0027 4/7/2588 Phorat-sulfoxide C7H17O3PS3 276.0077 3/6/2588 Phosalone C12H15ClNO4PS2 366.9869 2310-17-0 Phosmet C11H12NO4PS2 316.9945 732-11-6 Phosphamidon C10H19ClNO5P 299.0689 13171-21-6 Phoxim C12H15N2O3PS 298.0541 14816-18-3 Picolinafen C19H12F4N2O2 376.0835 137641-05-5 Picoxystrobin C18H16F3NO4 367.1031 117428-22-5 Piperonyl butoxide C19H30O5 338.2093 51-03-6 Piperophos C14H28NO3PS2 353.1248 24151-93-7 Pirimicarb C11H18N4O2 238.143 23103-98-2 Pirimiphos-ethyl C13H24N3O3PS 333.1276 23505-41-1 Pirimiphos-methyl C11H20N3O3PS 305.0963 29232-93-7 Primisulfuron-methyl C15H12F4N4O7S 468.0363 86209-51-0 Prochloraz C15H16Cl3N3O2 375.0308 67747-09-5 Procymidone C13H11Cl2NO2 283.0167 32809-16-8 Profenofos C11H15BrClO3PS 371.9351 41198-08-7 Prohexadione C10H12O5 212.0685 88805-35-0 Promecarb C12H17NO2 207.1259 2631-37-0 Prometon C10H19N5O 225.159 1610-18-0 4 Formula Formula Weight CAS Number C10H19N5S 241.1361 7287-19-6 Propachlor C11H14ClNO 211.0764 1918-16-7 Propamocarb C9H20N2O2 188.1525 24579-73-5 Propanil C9H9Cl2NO 217.0061 709-98-8 Propaquizafop C22H22ClN3O5 443.1248 111479-05-1 Propargite C19H26O4S 350.1552 2312-35-8 Propazin-2-hydroxy C9H17N5O 211.1433 not available Propazine C9H16ClN5 229.1094 139-40-2 Propetamphos C10H20NO4PS 281.0851 31218-83-4 Propham C10H13NO2 179.0946 122-42-9 Propiconazole C15H17Cl2N3O2 341.0698 60207-90-1 Propoxur C11H15NO3 209.1052 114-26-1 Propoxycarbazone sodium C15H18N4O7S 398.0896 181274-15-7 Propyzamide C12H11Cl2NO 255.0218 23950-58-5 Prosulfocarb C14H21NOS 251.1344 52888-80-9 Prosulfuron C15H16F3N5O4S 419.0875 94125-34-5 Prothioconazole C14H15Cl2N3OS 343.0313 178928-70-6 Prothioconazole, Desthiometabolit (JAU C14H15Cl2N3O 6476-desthio) 311.0592 not available Prothiofos C11H15Cl2O2PS2 343.9628 34643-46-4 Pymetrozine C10H11N5O 217.0964 123312-89-0 Pyraclofos C14H18ClN2O3PS 360.0464 89784-60-1 Pyraclostrobin C19H18ClN3O4 387.0986 175013-18-0 Pyrazophos C14H20N3O5PS 373.0861 13457-18-6 Pyrethrin I C21H28O3 328.2038 121-21-1 Pyrethrin II C22H28O5 372.1937 121-29-9 Pyridaben C19H25ClN2OS 364.1376 96489-71-3 Pyridaphenthion C14H17N2O4PS 340.0647 119-12-0 Pyridate C19H23ClN2O2S 378.1169 55512-33-9 Pyrifenox C14H12Cl2N2O 294.0327 88283-41-4 Pyrimethanil C12H13N3 199.1109 53112-28-0 Pyriproxyfen C20H19NO3 321.1365 95737-68-1 Pyroquilon C11H11NO 173.0841 57369-32-1 Quinalphos C12H15N2O3PS 298.0541 13593-03-8 Quinmerac C11H8ClNO2 221.0244 90717-03-6 Quinoclamine C10H6ClNO2 207.0087 2797-51-5 Quinoxyfen C15H8Cl2FNO 306.9967 124495-18-7 Quizalofop-ethyl C19H17ClN2O4 372.0877 76578-14-8 Quizalofop-P (free acid) C17H13ClN2O4 344.0564 76578-12-6 Resmethrin C22H26O3 338.1882 10453-86-8 Rimsulfuron C14H17N5O7S2 431.0569 122931-48-0 Rotenone C23H22O6 394.1416 83-79-4 Sebuthylazine C9H16ClN5 229.1094 7286-69-3 Sebuthylazine-desethyl C7H12ClN5 201.0781 not available Sethoxydim C17H29NO3S 327.1868 74051-80-2 Siduron C14H20N2O 232.1576 1982-49-6 Silthiofam C13H21NOSSi 267.1113 175217-20-6 Simazine C7H12ClN5 201.0781 122-34-9 Simazine-2-hydroxy C7H13N5O 183.112 11/3/2599 Simetryn C8H15N5S 213.1048 1014-70-6 129630-17-7 4 www.spektrotek.com Pyraflufen-ethyl # of Spectra Spektral Kütüphane Tabloları Compound Prometryne 57 Spektral Kütüphane Tabloları www.spektrotek.com 58 Compound Spinosyn A Formula C41H65NO10 Formula Weight 731.4608 CAS Number # of Spectra 131929-60-7 Spinosyn D C42H67NO10 745.4765 131929-63-0 Spiroxamine C18H35NO2 297.2668 118134-30-8 Sulcotrione C14H13ClO5S 328.0172 99105-77-8 Sulfentrazone C11H10Cl2F2N4O3S 385.9819 122836-35-5 Sulfometuron-methyl C15H16N4O5S 364.0841 74222-97-2 Sulfosulfuron C16H18N6O7S2 470.0678 141776-32-1 Sulfotep C8H20O5P2S2 322.0227 3689-24-5 Sulprofos C12H19O2PS3 322.0285 35400-43-2 tau-Fluvalinate C26H22ClF3N2O3 502.1271 102851-06-9 Tebuconazol C16H22ClN3O 307.1451 107534-96-3 Tebufenozide C22H28N2O2 352.2151 112410-23-8 Tebufenpyrad C18H24ClN3O 333.1608 119168-77-3 Tebupirimfos C13H23N2O3PS 318.1167 96182-53-5 Tebutam C15H23NO 233.178 35256-85-0 Tebuthiuron C9H16N4OS 228.1045 34014-18-1 Teflubenzuron C14H6Cl2F4N2O2 379.9742 83121-18-0 Temephos C16H20O6P2S3 465.9897 3383-96-8 TEPP C8H20O7P2 290.0684 107-49-3 Tepraloxydim C17H24ClNO4 341.1394 149979-41-9 Terbumeton C10H19N5O 225.159 33693-04-8 Terbuthylazine C9H16ClN5 229.1094 5915-41-3 Terbuthylazine-2-hydroxy C9H17N5O 211.1433 not available Terbuthylazine-desethyl C7H12ClN5 201.0781 30125-63-4 Terbutryn C10H19N5S 241.1361 886-50-0 Tetrachlorvinphos C10H9Cl4O4P 363.8993 22248-79-9 Tetraconazole C13H11Cl2F4N3O 371.0215 112281-77-3 Tetramethrin C19H25NO4 331.1784 7696-12-0 Thiabendazole C10H7N3S 201.0361 148-79-8 Thiacloprid C10H9ClN4S 252.0236 111988-49-9 Thiamethoxam C8H10ClN5O3S 291.0193 153719-23-4 Thidiazuron C9H8N4OS 220.0419 51707-55-2 Thifensulfuron-methyl C12H13N5O6S2 387.0307 79277-27-3 Thiobencarb C12H16ClNOS 257.0641 28249-77-6 Thiodicarb C10H18N4O4S3 354.049 59669-26-0 Thiofanox-sulfone C9H18N2O4S 250.0987 39184-59-3 Thiofanox-sulfoxide C9H18N2O3S 234.1038 39184-27-5 Thiophanate C14H18N4O4S2 370.0769 23564-06-9 Thiophanate-methyl C12H14N4O4S2 342.0456 23564-05-8 Tolclofos-methyl C9H11Cl2O3PS 299.9544 57018-04-9 Tolylfluanid C10H13Cl2FN2O2S2 345.978 731-27-1 Tralkoxydim C20H27NO3 329.1991 87820-88-0 Triadimefon C14H16ClN3O2 293.0931 43121-43-3 Triadimenol C14H18ClN3O2 295.1088 55219-65-3 Tri-allate C10H16Cl3NOS 303.0018 2303-17-5 Triasulfuron C14H16ClN5O5S 401.0561 82097-50-5 Triazamate C13H22N4O3S 314.1413 112143-82-5 Triazophos C12H16N3O3PS 313.065 24017-47-8 Triazoxide C10H6ClN5O 247.0261 72459-58-6 Tribenuron-methyl C15H17N5O6S 395.09 101200-48-0 Trichlorfon C4H8Cl3O4P 255.9226 52-68-6 4 Formula Formula Weight CAS Number C7H4Cl3NO3 254.9257 55335-06-3 Tricyclazole C9H7N3S 189.0361 41814-78-2 Tridemorph C19H39NO 297.3032 24602-86-6 Trietazine C9H16ClN5 229.1094 1912-26-1 Trifloxystrobin C20H19F3N2O4 408.1297 141517-21-7 Triflumizole C15H15ClF3N3O 345.0856 68694-11-1 Triflumuron C15H10ClF3N2O3 358.0332 64628-44-0 Triflusulfuron-methyl C17H19F3N6O6S 492.1039 126535-15-7 Trinexapac-ethyl C13H16O5 252.0998 95266-40-3 Triticonazole C17H20ClN3O 317.1295 131983-72-7 Tritosulfuron C13H9F6N5O4S 445.0279 142469-14-5 Uniconazole C15H18ClN3O 291.1138 83657-22-1 Vamidothion C8H18NO4PS2 287.0415 2275-23-2 Warfarin C19H16O4 308.1049 81-81-2 Ziram C6H12N2S4Zn 303.9175 137-30-4 # of Spectra 4 Spektral Kütüphane Tabloları Compound Triclopyr Ordering Information Product Name Part Number Pesticide LC/MS/MS Library V.1.0 for Cliquid Software ® 1037032 Legal Acknowledgements/Disclaimers The suppliers identified in this document are provided for information purposes only and is not intended to be an exhaustive representation of all manufacturers or suppliers of the referenced product. AB SCIEX makes no warranties or representations as to the fitness or the continued fitness of a specific product by any of the manufacturers/suppliers referenced herein or the supplier. AB SCIEX assumes no responsibility or contingent liability, including indirect or consequential damages, for any use to which the purchaser may put the referenced suppliers’ products, or for any adverse circumstances arising therefrom. For Research Use Only. Not for use in diagnostic procedures. © 2010 AB SCIEX. The trademarks mentioned herein are the property of AB Sciex Pte. Ltd. or their respective owners. AB SCIEX™ is being used under license. Publication number: 1810110-01 www.spektrotek.com The iMethod™ test described above has been developed by AB SCIEX to provide all the sample prep and instrument parameters required to accelerate the adoption of this method for routine testing. The performance of this method will need to be verified in a given lab due to potential variations in instrument performance, maintenance, chemicals and procedures used, technical experience, sample matrices and environmental conditions It is the responsibility of the end user to make adjustments to this method to account for slight differences in equipment and/or materials from lab to lab as well as to determine and validate the performance of this method for a given instrument and sample type. Please note that a working knowledge of Analyst® Software may be required to do so. 59 GIDA&ÇEVREUYGULAMALARI Gıda ve Çevre Uygulamaları Simultaneous Analysis of 14 Mycotoxins and 163 Pesticides in Crude Extracts of Grains by LC-MS/MS Kristin Von Czapiewski1; Angela Voller2; Birgit Schlutt1; André Schreiber3 1 AB SCIEX, Darmstadt (Germany); 2SGS, Hamburg (Germany); 3AB SCIEX, Concord, ON (Canada) Overview Multi-component methods for the detection of different compound classes, such as mycotoxins or pesticides, have been established and are widely used to analyze a broad range of food or feed. However, there is a continuing demand to test for a larger number of compounds in shorter times. The development of a combined method for different compound classes can help to meet those new challenges. In this paper we present a fast, robust, and reliable method, which has been validated for the detection of 14 mycotoxins and 163 pesticides in the matrix grain. The LC-MS/MS method using the Scheduled Multiple Reaction Monitoring (Scheduled MRM™ algorithm) detects all mycotoxins with Limits of Quantitation (LOQ) between 1µg/kg and 10µg/kg. The LOQ for pesticides were found to be 10µg/kg and less. All LOQ meet the requirements of the EU. Introduction Pesticides and mycotoxins are known to harm the health of humans and animals. Many of these compounds are known either as carcinogenic, cytotoxic, or ecotoxic. Therefore, different countries have set regulations on pesticides and mycotoxins. For example, in the EU, maximum residue levels of pesticides in or on certain products are regulated by EC/396/2005 and the amended regulation EC/839/2008 and, in Japan, by the Japanese Positive List Syoku-An No.0124001 January 14, 2005 and amendments May 26, 2006. Mycotoxin limits are harmonized in the regulation for contaminants in foodstuffs EC 1881/2006 and the amended regulation EC 1126/2007 in the EU.1-6 Regulations on food and environmental analysis require the analysis of contaminants using confirmatory techniques, such as GC-MS and LC-MS/MS. More than 1000 pesticides are used worldwide and, along with their metabolites and degradation products, are present in food and the environment. Thus, there is a demand for powerful and rapid analytical methods that can detect very low concentrations of pesticides in mycotoxins in a variety of sample matrices. Over the last years, LC-MS/MS replaced traditional GC and LC methods for the screening of pesticides and mycotoxins because of its ability to analyze a wider range of compounds in a single analysis and the unmatched selectivity and sensitivity of Multiple Reaction Monitoring (MRM). Traditionally, mycotoxins and pesticides require different sample preparation. A simplified extraction procedure was established to analyze the two compound classes simultaneously in one sample, without additional cleanup steps by SPE or immunoaffinity columns. This new simplified sample preparation in combination with high resolution LC, and sensitive MRM detection allows detecting pesticides and mycotoxins faster and less labor-intensive and time-saving. www.spektrotek.com Experimental 62 Sample Preparation LC 10g of grain sample was extracted using a mixture acetonitrile/water. The extract was filtered and diluted with water + 5 mM ammonium acetate to optimize LC peak shape.7 A Shimadzu Prominence LC system with an Agilent ZORBAX Eclipse XDB C18, 100x4.6 mm, 1.8µm column at 40°C with a gradient of eluent A water/methanol (80/20) + 5 mM ammonium acetate and eluent B water/ methanol (10/90) + 5 mM ammonium acetate was used at a flow rate of 500 µL/min. The injection volume was set to 100 µL. An AB SCIEX API 4000™ LC/MS/MS system with Turbo V™ source and Electrospray Ionization (ESI) probe was used. A number of 14 mycotoxins and 163 pesticides were detected using 2 MRM transitions per compound to allow quantitation and identification based on the ratio of quantifier and qualifier transitions as defined by regulation 2002/657/EC. The Scheduled MRM™ algorithm was used for best accuracy and reproducibility (Figure 1). Every sample was injected twice in positive and negative polarity. Results and Discussion A method for quantitation and identification of 9 fusarium toxins: Nivalenol (NIV), Deoxynivalenol (DON), Fusarenon X (FUS X), 3-Acetyldeoxynivalenol (3-AcDON), 15-Acetyldeoxynivalenol (15-AcDON), Diacetoxyscirpenol (DAS), HT-2 toxin, T-2 toxin, Zearalenon (ZON), and Ochratoxin A (OTA) was developed (Figure 1). This method was extended to also detect aflatoxins B1, B2, G1, and G2 (Figure 2). The complete method was validated for the analysis of wheat, barley, corn, and oat samples (Table 1).7-8 (p ), p( _ p x5 0 . NIV: DON: FUS X: 3-AcDON: 15-AcDON: DAS: OTA: HT-2: T-2: ZON: 1.10e5 1.00e5 9.00e4 8.00e4 7.00e4 6.00e4 371/281 295/265 413/353 337/307 337/219 384/307 404/239 447/345 484/215 317/131 5.00e4 FUS X 6.4min 4.00e4 3.00e4 3.54 .0 4.55 B1: B2: G1: G2: 1.8e4 1.6e4 313/285 315/287 329/243 331/245 G1 313/241 315/259 329/311 331/189 B1 1.4e4 OTA 8.1min 1.2e4 1.0e4 T-2 8.8min AcDON 7.2min B2 8000.0 HT-2 8.5min 6000.0 4000.0 G2 2000.0 NIV 4.4min 1.00e4 7.5 1.9e4 ZON 9.3min DON 5.8min 2.00e4 0.00 DAS 8.0min 311/281 295/138 413/263 337/173 337/150 384/105 404/358 447/285 484/185 317/175 .0 5.56 .0 Gıda ve Çevre Uygulamaları MS/MS 6.57 .0 Time, min 7.58 .0 8.59 .0 9.51 0.0 Figure 1. Detection of fusarium toxins and Ochratoxin A by LC-MS/MS 0.0 3.54 .0 4.55 .0 5.56 .0 6.57 .0 Time, min 7.58 .0 8.59 .0 9.51 0.0 Figure 2. Detection of aflatoxins by LC-MS/MS Table 1. LOQ and linear range of detected mycotoxins LOQ (µg/kg) Linear Range (µg/kg) EU MRL# 10 400 (1) 15-AcDON 10 150 (1) DON 10 10000 1750* 1250** (2) FUS X 10 2000 (1) DAS 10 400 (1) NIV 10 4000 (1) OTA 1 >10 5*** HT-2 5 200 (2) T-2 5 1000 (2) ZON 5 80 100*** (2) Aflatoxin B1 1 >20 2 Aflatoxins 1 >20 1=4 Footnotes to Table 1: EC 1881/2006 and the amended EC 1126/2007 * Unprocessed durum wheat and oats ** Unprocessed cereals other than durum wheat and oats *** Unprocessed cereals (1) Due to co-occurrences and as “generally low” considered levels no MRL was estimated (2) Appropriateness of setting a maximum level should be considered by 1 July 2008 www.spektrotek.com Mycotoxin 3-AcDON 63 XIC o f +MRM (331 pairs): 4 04 .1/372. 1 a... 1.0e 6 9.0e 5 Pesticides Positive ESI Max. 8.9e5 cps. X IC of -MRM (36 pa irs): 421.0/97.0 a mu ... 1 .0e6 8.7 9 .0e5 8.0e 5 8 .0e5 7.0e 5 7 .0e5 6.0e 5 5 .0e5 4.0e 5 4 .0e5 3.0e 5 3 .0e5 2.0e 5 2 .0e5 1.0e 5 1 .0e5 0.00 5 10 Time , min 0.0 15 XIC o f +MRM (331 pairs): 4 84 .1/215. 2 a... Max. 5.2e4 cps. 4.5e 4 5 Time, min 10 X IC of -MRM (36 pa irs): 337.1/307.1 amu... 8.8 5.0e 4 9.8 6 .0e5 5.0e 5 Ma x. 5.7e 5 cp s. Pesticides Negative ESI In tensity, cp s Inten sity, cps Gıda ve Çevre Uygulamaları The developed method was recently updated to also quantify and identify 163 pesticides (Figure 3). The use of the Scheduled MRM™ algorithm allows the monitoring of such a large panel of analytes without sacrificing sensitivity and reproducibility. The method was validated in different grain matrices. Limits of Quantitation (LOQ) of all mycotoxins were found between 1 µg/kg and 10 µg/kg. Pesticides were quantified at 10 µg/kg and less. All LOQ meet the requirements of the EU. Positive findings in two selected grain samples are shown in Figure 4. 1 .0e5 Mycotoxins Positive ESI 9 .0e4 15 Ma x. 5.7e 4 cp s. Mycotoxins Negative ESI 8 .0e4 4.0e 4 In tensity, cp s Inten sity, cps 7 .0e4 3.5e 4 7.2 6 .0e4 3.0e 4 5 .0e4 2.5e 4 4 .0e4 2.0e 4 1.5e 4 3 .0e4 1.0e 4 2 .0e4 1 .0e4 5000.0 0 .0 5 10 Time, min 0.00 15 5 Time, min 10 15 Figure 3. Detection of 14 mycotoxins and 163 pesticides using LC/MS/MS in two injections (positive and negative polarity) using the Scheduled MRM™ algorithm for best sensitivity and reproducibility XIC of +MRM (331 pairs): 331.1/285.1 amu Expect... 2.0e6 1.0e6 5.0e5 0.0 1.5e5 DON NIV ZEA 6 10 12 14 Max. 1.0e5 cps . 1850 g/kg 500 g/kg 30 g/kg 5.0e4 0.0 2 4 1.0e5 6 8 Time, min 10 12 14 3 g/kg 3 g/kg 5.0e4 0.0 2 4 6 8 Time, min XIC of -MRM (36 pairs): 295.1/265.0 amu Expected... 3.8e5 5.7 1.0e5 Max. 795.2 cps. Azoxystrobin Pyraclostrobin 1.5e5 Intensity , cps Intens ity, cps 2.0e5 4 9.0 8 Time, min XIC of -MRM (36 pairs): 295.1/265.0 amu Expected... 2.4e5 2 g/kg g/kg g/kg g/kg g/kg XIC of +MRM (331 pairs): 384.2/105.2 amu Expect... Intensity, cps Intens ity, cps 1.5e6 T-2 1850 HT-2 500 Malathion 2000 Pirimiphos-methyl 2400 Piperonylbutoxide 680 Max. 2.0e6 cps . 3.0e5 2.0e5 1.0e5 0.0 DON 290 NIV 300 ZEA 20 3-AcDON 20 MCPA 60 Bentazone 6 2 4 10 12 14 Max. 3.7e4 cps. g/kg g/kg g/kg g/kg g/kg g/kg 5.7 6 8 Time, min 10 12 14 Figure 4. Detection of mycotoxins and pesticides in a durum wheat sample (left) and a barley sample (right) Summary www.spektrotek.com A fast, robust, and reliable method, for the detection 14 mycotoxins and 163 pesticides in the matrix grain was developed and validated. A generic extraction procedure followed by a dilution step was used to cover the large panel of analytes. High resolution LC was combined with high sensitivity detection using an AB SCIEX API 4000™ LC/MS/MS system. Multiple Reaction Monitoring (MRM) was used because of its high selectivity and sensitivity. With the Scheduled MRM™ algorithm activated for accuracy and reproducibility. The method was validated in different grain matrices. Limits of Quantitation (LOQ) of all mycotoxins were found between 1µg/ kg and 10µg/kg. Pesticides were quantified at 10µg/kg and less. All LOQ meet the requirements of the EU. 64 References 1 D. Elbert et al.: presentation at AOAC conference (2008) in Dallas 2 A. Voller et al.: presentation at AOAC conference (2009) in Philadelphia For Research Use Only. Not for use in diagnostic procedures. © 2010 AB SCIEX. The trademarks mentioned herein are the property of AB Sciex Pte. Ltd. or their respective owners. AB SCIEX™ is being used under license. Publication number: 2110210- Stephen Lock1 and Hermann Unterluggauer2 1 AB SCIEX Warrington (UK) 2 Austrian Agency for Health and Food Safety (AGES GmbH), Innsbruck (Austria) Introduction Glyphosate is a common broad-spectrum systemic herbicide used widely to kill weeds especially annual broadleaf weeds and grasses known to compete with crops. Usually Glyphosate, as it is very polar, undergoes FMOC derivatization by reacting the native glyphosate with fluorenylmethyloxycarbonyl chloride (FMOC-Cl) before analysis. This derivatization step complicates the analysis and there is a growing need for a method which can detect not only Glyphosate (and it´s major metabolite AMPA) but also Glufosinate and similar highly polar compounds, in their underivatized states. In addition a simplified approach to sample extraction using either QuEChERS (Quick, Easy, Cheap, Effective, Rugged, and Safe) or a solvent extraction would be beneficial. Here we present initial data using a new LC-MS/MS method which combines the use of a HILIC type chromatography on an AB SCIEX LC/MS/MS system to detect underivatized glyphosate and other polar pesticides which have been spiked in different food matrices. A simple solvent extraction has been used and initial data will be presented to show how applicable this approach is to food analysis. Gıda ve Çevre Uygulamaları Detection of Underivatized Glyphosate and Similar Polar Pesticides in Food of Plant Origin by LC-MS/MS Experimental Sample Preparation LC For linearity and sensitivity tests calibration standards were prepared in 50/50 methanol/water from concentrations 1 to 500 ng/mL. Matrix samples were prepared by spiking the polar pesticides into 50% aqueous methanol extracts of onion, wheat, rice and grapes prepared as per the QuPPe (Quick Polar Pesticides) Method from the EU Reference Laboratories for Residues of Pesticides.1 These extracts were then diluted 5x with 50% aqueous methanol before injection to reduce possible matrix effects. The LC system used for this analysis was a ShimadzuXR LC system consisting of two Shimadzu LC20AD pumps, SIL 20AC autosampler, and a CTO20A column oven. The analyses were performed at 50ºC on an Obelisc N phase HPLC column. An injection volume of 50 µL was used using the gradient separation as shown in Table 1 where mobile phase A was acidified 85% acetonitrile/water (85/15) containing ammonium acetate and mobile phase B was acidified water containing ammonium acetate. The gradient used is shown in Table 1. HO NH O HO OH P H2N O O Glyp hosate OH AMPA H3C OH P O O NH2 Glufos inate OH P HO Cl OH P O Ethephon www.spektrotek.com OH 65 XICo f- MRM( 11 pairs):1 68.000/63.000D a ID:G lyphosate3 ...M Time Flow (mL/min) A (%) B (%) 0 2 1.2 100 0 1.6e4 1 3 1.2 100 0 1.2e4 2 3.6 1.2 0 100 8 1.2 0 100 4 8 1.5 0 100 5 8.2 1.5 100 0 6 13.5 1.5 100 0 7 13.8 1.2 100 0 8 14 1.2 100 0 Intensity, cps 1.4e4 ax.1 .8e4 cps. ax.2 .3e4 cps. 6.01 2.2e4 Glyphosate 2.0e4 1.8e4 Glufosinate 1.6e4 1.0e4 8000.0 1.4e4 1.2e4 1.0e4 8000.0 6000.0 6000.0 4000.0 4000.0 2000.0 0.0 XICo f- MRM( 11 pairs):1 80.000/62.900D aI D: Glufosinate1 ...M 6.82 2000.0 4.04 .5 5.05 .5 6.06 .5 7.07 .5 Time,m in XICo f- MRM( 11 pairs):1 09.923/62.900D a ID: AMPA 2f rom. .. 8.08 .5 9.09 .5 Max.4 .2e4 cps. 4.29 4.2e4 4.0e4 0.0 3.54 .0 4.55 .0 5.56 .0 6.57 Time,m in XICo f- MRM( 11 pairs):1 43.000/106.900 Da ID:E thephon2 f... 7.58 .0 8.59 .0 Max.5 .7e4 cps. Ethephon 5.0e4 4.5e4 3.0e4 .0 7.43 5.5e4 AMPA 3.5e4 4.0e4 2.5e4 Intensity,c ps 3 1.8e4 Intensity, cps Step Intensity, cps Gıda ve Çevre Uygulamaları Table 1. Gradient conditions used for separation 2.0e4 1.5e4 3.5e4 3.0e4 2.5e4 2.0e4 1.5e4 1.0e4 1.0e4 5000.0 0.0 5000.0 1.52 .0 2.53 .0 3.54 .0 4.55 Time,m in .0 5.56 .0 6.57 .0 7.5 0.0 4.55 .0 5.56 .0 6.57 .0 7.58 Time,m in .0 8.59 .0 9.51 0.0 Figure 1. Injection of a 10 ng/mL standard MS/MS The analyses were performed on an AB SCIEX QTRAP® 5500 LC/MS/MS system using the Turbo V™ source operated in electrospray ionization and negative polarity with an IonSpray (IS) voltage of -4500 V. The curtain gas was set at 35 psi, nebulizer gas (Gas 1) set at 60 psi, drying gas (Gas 2) set at 70 psi, CAD gas set at medium, and the temperature set at 650ºC. The MRM transitions used as well as the retention times for the compounds are shown in Table 2. Each MRM was monitored with a dwell time of 50 ms. Table 2. LC-MS/MS parameters for the analyzed compounds Retention time (min) Q1 (amu) Q3 (amu) DP (V) CE (V) AMPA 4.3 110 79 -60 -24 110 63 -60 -26 Ethephon 7.4 143 79 -45 -26 143 107 -45 -12 180 63 -60 -66 180 95 -60 -24 168 79 -110 -54 168 63 -110 -32 Step Glufosinate Glyphosate 6.0 6.8 Figure 2 and Table 3 shows typical calibration lines obtained the target pesticides. The response over the range tested, 1 to 500 ng/mL, was linear with a 1/x weighting. All accuracy values were well in between 80 and 120%. The sensitivity of the different pesticides is also shown in Table 3. All pesticides were easily identified and quantified at the maximum residue limits (MRL) set by EU and CODEX Alimentarius where limits for most fruit and vegetables are 0.1 mg/kg. 2, 3 The extra sensitivity also allowed dilution of sample extract to minimize possible matrix effects. Table 3. Linearity with a 1 /x weighting (1 to 500 ng/mL range) and signal-to-noise (S/N*) from a 1 ng/mL standard injected Step AMPA Ethephon Results and Discussion www.spektrotek.com Figure 1 shows a typical chromatogram obtained from an injection of a 10 ng/mL standard of all studied pesticides. The monitoring of two transitions per compound also allows compound identification using the MRM ratio. 66 Glufosinate Glyphosate MRM transition Linear fit (r value) S/N at 1 ng/mL 110/79 0.999 131 110/63 0.999 234 143/79 0.979 58 143/107 0.984 155 180/63 1.000 88 180/95 0.999 47 168/79 0.999 52 168/63 0.999 102 * S/N values were calculated in MultiQuant™ software Ethephon Glufosinate Glufosinate 1.00e5 Intensity, cps Glyphosate Intensity, cps Intensity, cps Intensity, cps 2.0 2.0 2.5 2.5 3.0 3.0 2.0e4 1.0e5 0.0 Intensity, cps Intensity, cps Intensity, cps 1.5 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 Time, min 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 Time, min 3.5 7.5 7.55 8.0 8.5 9.0 Max. 1.7e5 cps. 4.5 0.0 8.0e4 4.5 5.0 5.0 5.5 5.5 6.0 6.0 6.5 6.5 7.0 7.5 8.0 Time, min 7.0 7.5 8.0 Time, min 8.5 8.5 9.0 9.0 9.5 9.5 10.0 10.0 6.0e4 4.0e4 3.0e4 Figure 3. 100 μg/kg spike into rice extract diluted 5x with acetonitrile 2.0e4 2.0e4 1.0e4 2.5 3.0 3.5 4.0 4.5 Time, min 5.0 5.5 6.0 6.5 3.5e4 3.0e4 5.5e4 4.5e4 Intensity, cps 0.0 5.0 5.5 Intensity, cps 6.35 6.0 6.5 7.0 7.5 Time, min XIC of -MRM (11 pairs): 109.923/62.900 Da ID: AMPA 2 from ... 2.0e4 0.0 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 4.24 Time, min 8.5e4 XIC of -MRM 1.5e4 8.0e4(11 pairs): 109.923/62.900 Da ID: AMPA 2 from ... 8.5e4 1.0e4 7.0e4 8.0e4 5000.0 6.0e4 7.0e4 AMPA AMPA Intensity, cps 2.0e4 6.0e4 0.0 1.0e4 5.0e4 0.0 4.0e4 1.5 AMPA 1.5 2.0 2.0 2.5 2.5 3.0 3.0 3.5 3.0e4 8.5 8.0 8.5 9.0 9.0 9.5 7.0 7.5 Time, min 8.0 8.5 9.0 9.5 10.0 Max. 7.1e4 cps. Max. 7.1e4 cps. Glufosinate Glufosinate 5.77 4.5e4 3.5e4 XIC of -MRM (11 pairs): 180.000/62.900 Da ID: Glufosinate 1 ... 3.0e4 4.0e4 5.77 2.5e4 3.5e4 7.0e4 2.0e4 3.0e4 6.5e4 1.5e4 2.5e4 6.0e4 1.0e4 2.0e4 5.5e4 Max. 7.1e4 cps. Glufosinate 8.00e4 5000.0 1.00e5 3.21 7.00e4 0.0 9.00e4 9.5 Max. 8.5e4 cps. Ethephon Ethephon 7.65 7.77 8.118.61 8.0 8.5 9.0 3.49 4.24 4.39 4.71 5.11 5.43 6.33 6.54 7.06 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 6.00e4 Time, min 8.00e4 XIC of -MRM (11 pairs): 143.000/106.900 Da ID: Ethephon 2 f... 5.00e4 7.00e4 7.14 4.00e4 6.00e4 1.20e5 3.00e4 5.00e4 1.10e5 2.00e4 4.00e4 1.00e5 1.00e4 3.00e4 9.00e4 0.00 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 2.00e4 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.00e4 Time, min Time, min 1.00e4 7.00e4 0.00 6.00e4 4.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 Time, min Time, min 5.00e4 7.5 Max. 1.2e5 cps. Ethephon 8.5 9.0 9.5 10.0 8.5 9.0 9.5 10.0 8.5 9.0 9.5 10.0 4.00e4 3.00e4 2.0e4 2.00e4 1.0e4 0.0 6.5 5000.0 1.5e4 5.0e4 7.65 7.77 8.118.61 3.21 3.49 4.24 4.39 4.71 5.11 5.43 6.33 6.54 7.06 0.0 1.0e4 4.5e4 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 Time, min 5000.0 Max. 8.5e4 cps. 4.0e4 XIC of3.21 -MRM 3.49 (11 pairs): 143.000/106.900 Da ID: Ethephon 1.2e5 cps. 7.65 7.77 Max. 4.24 4.39 6.332 f... 6.54 7.06 8.118.61 4.71 5.11 5.43 0.0 3.5e4 9.0 9.5 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 7.14 Time, min 3.0e4 Max. 8.5e4 cps. XIC 1.20e5 of -MRM (11 pairs): 143.000/106.900 Da ID: Ethephon 2 f... Max. 1.2e5 cps. 2.5e4 1.10e5 7.14 2.0e4 1.00e5 1.20e5 1.5e4 9.00e4 1.10e5 1.0e4 8.5 4.24 5.0e4 0.0 6.0e4 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 Time, min 4.0e4 XIC of -MRM (11 pairs): 109.923/62.900 Da ID: AMPA 2 from ... 5.0e4 3.0e4 4.24 8.5e4 4.0e4 8.0e4 2.0e4 3.0e4 7.0e4 1.0e4 8.0 8.0 Intensity, cps 4.5 6.0 5.0e4 4.0e4 Max. 2.4e4 cps. Glyphosate 4.0 5.5 Intensity, cps Intensity, cps Intensity, cps 6.0e4 5.0e4 2.0e4 1.5e4 5000.0 3.0e4 1.0e4 5.0 5.77 XIC of7.0e4 -MRM (11 pairs): 180.000/62.900 Da ID: Glufosinate 1 ... 6.5e4 5.5e4 6.35 2.5e4 2.0e4 XIC of -MRM (11 pairs): 168.000/63.000 Da ID: Glyphosate 3 ... 1.0e4 3.5e4 1.5e4 4.5 XIC of -MRM (11 pairs): 180.000/62.900 Da ID: Glufosinate 1 ... 6.5e4 7.0e4 6.0e4 6.35 3.0e4 2.5e4 Intensity, cps Max. 2.4e4 cps. Glyphosate Glyphosate 3.5e4 2.5e4 5000.0 0.0 7.5 Max. 2.4e4 cps. XIC of -MRM (11 pairs): 168.000/63.000 Da ID: Glyphosate 3 ... Intensity, cps 7.0 Intensity, cps 2.0 Intensity, cps 1.5 Intensity, cps 0.0 XIC of -MRM (11 pairs): 168.000/63.000 Da ID: Glyphosate 3 ... The method was then applied to spiked matrices. Figures 3 and 4 show that all the different polar pesticides, spiked at the level of the EU MRL (0.1 mg/kg), can be detected in different matrices. The S/N data is also shown in Table 4 for the results of spiking experiments in four different matrices. What can also be seen is that even with a 5x dilution of the food extract matrix effects can be observed as there is a slight shift in retention times and some suppression / enhancement was also observed. For that reason it is recommended to use isotopically labeled standards for quantitation. 7.0 8.0 8.5 9.0 8.0 8.5 9.0 Max. 1.7e5 cps. Max. 1.7e5 cps. Ethephon 4.0e4 Figure 2. Calibration lines (2 MRM transitions each) for analyzed polar pesticides from 1 to 500 ng/mL 7.5 7.5 4.0e4 2.0e4 1.2e5 5.0e4 Glyphosate 7.55 7.55 7.0 7.0 Ethephon Ethephon AMPA 3.0e4 2.0e4 1.0e5 1.0e4 2.0e4 9.0e4 0.0 1.0e4 8.0e4 0.0 7.0e4 1.5 6.0e4 Max. 7.4e4 cps. Glufosinate AMPA AMPA Glufosinate Glyphosate Glyphosate Max.7.4e4 7.4e4cps. cps. Max. Glufosinate Glufosinate Intensity, cps Glyphosate Glyphosate Intensity, cps Intensity, cps Intensity, cps Intensity, cps Area 1.00e4 1.5 2.0 2.5 3.0 3.5 4.0 4.5 Time, min 5.0 5.5 6.0 6.5 7.0 7.5 0.00 4.5 5.0 5.5 6.0 6.5 7.0 7.5 Time, min 8.0 Figure 4. 100 μg/kg spike into grape extract diluted 5x with acetonitrile Table 4. Signal-to-noise (S/N*) observed from 0.1 mg/kg spikes into different matrices indicating matrix suppression and enhancement even after sample dilution. AMPA 110/79 Ethephon 110/63 143/79 Glufosinate 143/107 180/63 180/95 Glyphosate 168/79 168/63 Rice 2900 5483 998 998 3058 180/95 911 3110 Onion 761 1379 281 2514 2310 180/95 249 1312 Grapes 1187 2344 133 1149 2892 180/95 534 1799 Wheat 1636 3117 174 1014 3062 180/95 588 2708 www.spektrotek.com Area AMPA Ethephon Ethephon Area 5.83 5.83 7.4e4 7.4e4 7.0e4 7.0e4 6.5e4 9.00e4 6.5e4 9.00e4 6.0e4 6.0e4 8.00e4 8.00e4 5.5e4 5.5e4 5.0e4 7.00e4 5.0e4 7.00e4 6.59 6.59 4.5e4 6.00e4(11 pairs): 168.000/63.000 Da ID: Glyphosate 3 ... 4.5e4 XIC of -MRM (11 pairs): 180.000/62.900 Da ID: Glufosinate 1 ... XIC of -MRM Max. 6.4e4 cps. 6.00e4 4.0e4 4.0e4 5.00e4 3.5e4 5.83 7.4e4 5.00e4 3.5e4 1.00e5 3.0e4 7.0e4 4.00e4 3.0e4 4.00e4 2.5e4 6.5e4 9.00e4 2.5e4 3.00e4 2.0e4 6.0e4 3.00e4 2.0e4 8.00e4 1.5e4 2.00e4 5.5e4 1.5e4 2.00e4 1.0e4 5.0e4 7.00e4 1.00e4 1.0e4 6.59 5000.0 4.5e4 1.00e4 6.00e4 5000.0 0.00 4.0e4 0.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 0.00 0.0 Time, min 5.00e4 4.0 3.5e4 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 3.5 4.0 4.5 5.0 5.5 Time, 6.0 min6.5 ID: AMPA Max. 1.4e5 cps. XIC of -MRM (11 pairs): 143.000/106.900 Da ID:Time, Ethephon XIC of -MRM (11 pairs): 109.923/62.900 DaTime, min 2 from ... min 2 f... 3.0e4 4.00e4 XIC of -MRM (11 pairs): 109.923/62.900 Da ID: AMPA 2 from ... Max. 1.4e5 cps. XIC of -MRM (11 pairs): 143.000/106.900 Da ID: Ethephon 2 f... 4.28 7.21 2.5e4 1.7e5 3.00e4 1.4e5 4.28 7.21 2.0e4 1.6e5 1.7e5 1.4e5 1.3e5 1.6e5 1.5e4 2.00e4 1.3e5 1.2e5 1.4e5 1.0e4 1.2e5 1.1e5 1.00e4 1.4e5 5000.0 1.2e5 1.1e5 1.0e5 0.0 0.00 1.2e5 3.5 4.0 4.5 5.0 5.5 6.0 6.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 1.0e5 9.0e4 1.0e5 Time, min Time, min 9.0e4 8.0e4 XIC of -MRM (11 pairs): 109.923/62.900 Da ID: AMPA 2 from ... Max. 1.4e5 cps. XIC of -MRM (11 pairs): 143.000/106.900 Da ID: Ethephon 2 f... 1.0e5 8.0e4 7.0e4 8.0e4 4.28 7.21 1.7e5 7.0e4 6.0e4 1.4e5 8.0e4 1.6e5 6.0e4 6.0e4 5.0e4 1.3e5 6.0e4 5.0e4 4.0e4 1.2e5 4.0e4 1.4e5 4.0e4 3.0e4 1.1e5 1.00e5 Gıda ve Çevre Uygulamaları of -MRM pairs): 180.000/62.900 Glufosinate 6.4e4 Max.Max. 6.4e4 cps.cps. XICXIC of -MRM (11(11 pairs): 180.000/62.900 DaDa ID:ID: Glufosinate 11 ...... XIC of (11 -MRM (11 pairs): 168.000/63.000 ID: Glyphosate XIC of -MRM pairs): 168.000/63.000 Da ID:Da Glyphosate 3 ... 3 ... AMPA AMPA 67 Gıda ve Çevre Uygulamaları Table 5. Recoveries observed from 100 μg/kg spikes into different matrices without the use of any internal standards. This shows the need for internal standards or matrix matched calibration lines to counter matrix effects which lead to recoveries varying with matrix. AMPA Ethephon Glufosinate Glyphosate 151% 159% 148% 156% Onion 48% 243% 99% 92% Grapes 110% 167% 145% 95% Wheat 106% 213% 155% 155% Data was processed using MultiQuant™ software version 2.1 with the ‘Multicomponent’ query. Query files are customizable commands to perform custom querying of the result table. The ‘Multicomponent’ query automatically calculates and compares MRM ratios for compound identification and highlights concentrations above a user specified level. An example of the results and peak review after running the query file is shown in Figure 5. Summary This study has clearly demonstrated that Glyphosate and other polar pesticides can be detected at low levels in their underivatized state using a highly sensitive LC-MS/MS system, like the AB SCIEX QTRAP® 5500, and separation using a new HILIC type LC column. The detection of these compounds is quick even in the non-optimal acidic mobile phase conditions and is additionally only possible due to the ability of the Turbo V™ source to deal with highly aqueous solvents at high flow rates in excess of 1 mL/min. This means that FMOC derivatization or lengthy ion chromatography is no longer needed. All the compounds were identified and quantified using two MRM transitions at 0.1 mg/kg after 5x dilution of QuPPe extraction. However, matrix effects were observed so in routine analysis it is recommended that matrix matched calibration standards or ideally heavy labeled internal standards are used. References 1 http://www.crl-pesticides.eu/library/docs/srm/meth_ QuPPe.pdf 2 Regulation (EC) ‘concerning the placing of plant protection products on the market’ No 1107/2009 3 Commission Regulation (EU) ‘regards maximum residue levels’ No 441/2012 www.spektrotek.com Figure 5. Automatic reporting of pesticides using the ‘Multicomponent’ query in MultiQuant™ software: the query calculates MRM ratios and flags samples with MRL violations. 68 For Research Use Only. Not for use in diagnostic procedures. © 2013 AB SCIEX. The trademarks mentioned herein are the property of AB Sciex Pte. Ltd. or their respective owners. AB SCIEX™ is being used under license. Publication number: 6940213-01 Julia Jasak1, Yves LeBlanc2, Ralf Schöning3, Uwe Thuss3, Karl Speer1, and André Schreiber2 1 Technische Universität, Food Chemistry, Dresden (Germany); 2 AB SCIEX, Concord, Ontario (Canada) 3 Bayer CropScience AG, Residue Analysis, Monheim (Germany) Introduction Table 1. Structure of studied triazole derivative metabolites Compound Structure 1,2,4-triazole TRZ N NH N HO Triazole acetic acid (TAA) O N N N Triazole lactic acid (TLA) Triazole alanine TAL N N N N N O HO OH H2N OH N O Orificep late DMSc ell Curtainp late SelexION™ Technology The SelexION™ Technology is a planar differential mobility device (DMS) that attaches between the curtain plate and orifice plate of the 5500 QTRAP® system. Gas draws the ions through the DMS cell towards the orifice while an asymmetric waveform applied to the plates, which alternates between high field and low field. Unlike traditional ion mobility, ions are not separated in time as they traverse the cell. They are separated in trajectory based on difference in their mobility between the high field and low field portions of the applied Separation Voltage (SV). As the ions migrate towards the walls of the DMS cell at different rates, they will be separated. By applying a second voltage offset (the Compensation Voltage, CoV) the trajectory of a desired ions can be corrected along the axis of the DMS cell and transmitted to the mass analyzer (Figure 1). Chemical modifiers, like isopropanol, methanol, or acetonitrile, can be and introduced into the transport gas via the curtain gas, to alter the separation characteristics of analytes. The planar design of SelexION™ Technology yields a stable, easy to tune system with high resolving power over a short distance. This gives high speeds and short residence times, resulting in minimal diffusion losses and enabling the use of short MS/MS cycle times. By simply turning off the separation voltage, the cell becomes transparent with ions moving normally along the centre line of the device. Thus it is possible to transmit ions through the mobility cell when not using the DMS mode. www.spektrotek.com 1,2,4-triazole (TRZ), triazole alanine (TAL),triazole acetic acid (TAA) and triazole lactic acid (TLA) are metabolites that commonly occur as plant or soil metabolites of triazole fungicides and they are collectively known as the ‘triazole derivative metabolites’ (Table 1). Therefore, the determination of levels of triazole derivative metabolites in soils and plant materials is the key in assessing the fate of triazole fungicides. However, analysis of these metabolites by Liquid Chromatography coupled to tandem Mass Spectrometry (LC-MS/MS) is challenging because of their polar nature and their poor fragmentation efficiency (fragmentation into a single fragment only). In addition, when dealing with soil and plant extracts, LC-MS/MS analysis typically suffers from high chemical noise and many interferences. Here we evaluated the use of differential mobility spectrometry (DMS) using the AB SCIEX SelexION™ technology coupled to a QTRAP® 5500 LC/MS/MS system to improve the selectivity of LC-MS/MS detection of triazole derivative metabolites Gıda ve Çevre Uygulamaları Improving the LC-MS/MS Selectivity of Triazole Derivative Metabolites with AB SCIEX SelexION™ Technology 69 Gıda ve Çevre Uygulamaları SelexION™ Settings Gasf low To MS/MS SV Compensation Voltage( COV) CoV Figure 1. Differential Mobility Separation Process. Innovative planar design of the DMS cell uses an asymmetric RF waveform (SV) to separate ions based on differential mobility between the high and low fields. The compensation voltage (CoV) is used to correct the trajectory of the ion of interest which traverses the cell and into the orifice while interferences are deflected into the cell walls. Method Details Sample preparation The following matrices were evaluated in the present study; carrot leafs, carrot roots, 2 different lots of rape green material, rape seeds, lettuce head, grape, and water. Each matrix was extracted using the following procedure: • Weighing 5g of material • Homogenization in methanol/water (4/1) with an Ultra Turrax • Filtration with Celite • SPE cleanup using C18 material • Evaporation of eluate to dryness • Reconstitution in water • Addition of 15N-labeled internal standard Each sample was prepared at three different concentrations: control (0), recovery LOQ (0.01 mg/kg) and 10x LOQ (0.1 mg/kg www.spektrotek.com LC separation LC was performed using a Shimadzu UFLCXR system with an Aquasil C18 (3x150 mm; 3 μm) column using a 2 minute gradient of 100% to 90% aqueous. The mobile phase consisted of (A) water + 0.5% acetic acid and (B) methanol + 0.5% acetic acid. 70 SV was set to 3400 V and CoV were tuned for each analyte of interests to obtain highest selectivity (Figure 2). No chemical modifier was introduced. The DMS cell was used in ‘transparent’ mode (SV and CoV turned off) to mimic conventional MS/MS operation. MRM transitions for all compounds, retention time (RT) and CoV values are listed in Table 2. Table 2. MRM transitions, optimized CoV, and retention time (RT) of each triazole derivative metabolite Compound MRM CoV RT (min) TRZ 70/43 -17.0 1.70 TAA 128/70 -4.0 1.91 TLA 158/70 0.5 1.96 TAL 157/70 2.0 1.30 TRZ TAA TLA TAL Figure 2. Optimization of CoV of each triazole derivative metabolite to obtain highest selectivity MS/MS Detection Results An AB SCIEX QTRAP® 5500 system with Turbo V™ source and the Electrospray Ionization (ESI) probe was used. The source was operated at 600°C with Gas 1 and Gas 2 at 40 and 80 psi, respectively. Curtain gas was set at 20 psi. High background and matrix interferences are the analytical challenges associated with the LC-MS/MS analysis of triazole derivative metabolites (Figure 3). As can be seen, each analytes exhibits variable interferences (high background levels as well as multiple LC peaks) that depends on the matrix analyzed. arrotR oots Rape Green( 1) Rape Green( 2) Rape Seed LettuceH eadG rapes TAA TLA TAL Gıda ve Çevre Uygulamaları Carrot LeafsC TRZ Figure 3. MRM traces for recovery LOQ (0.01 mg/kg) in various matrices when acquisition was performed with DMS cell in transparent mode Carrot LeafsC arrotR oots Rape Green( 1) Rape Green( 2) Rape Seed LettuceH eadG rapes TAA TLA TAL Figure 4. MRM traces for recovery LOQ (0.01 mg/kg) in various matrices when acquisition was performed with DMS cell optimized for each analyte www.spektrotek.com TRZ 71 Gıda ve Çevre Uygulamaları Furthermore, minimal chromatographic separation was achieved due to the polar nature of the analytes, but still required to minimize isotope contribution in MRM channels. Figure 4 shows the same matrix spiked samples analyzed with DMS optimized for each triazole derivative metabolite. Due to the increased selectivity single LC peaks were observed for each analyte, with the exception of TAL in some matrices. Even in cases where LC interferences were observed the dominant LC peaks were associated with TAL. In addition, the noise level was significantly reduced. In order to quantify the reduction of the noise level, all spiked samples (at 0.01 and 0.1 mg/kg) were integrated by summing all intensities within a 15 sec window around the retention time of the analyte (LC peak width at peak base). This value was divided by the sum of all intensities within a 60 sec window (4x LC peak width). If the noise levels (either chromatographically resolved or unresolved) around the peak of interest is low, than this ratio approaches a value of 1. A value significantly below 1 indicates strong matrix interferences. Figure 5 shows the results obtained for all spiked samples when DMS was operated in transparent mode (A) and optimized for each analyte (B). 1 0.9 Figure 5 A shows that the noise around the LC peaks is elevated since the ratio is still <0.7 in many cases even when the analytes are spiked at 10x LOQ. In contrast, Figure 5 B shows that the ratio is greater than 0.8 in all but 3 cases (TAL in 3 matrices), at both the LOQ and 10x LOQ level when DMS is used. Thus, the SelexION™ Technology provided additional selectivity that increases confidence in the detection of triazole derivative metabolites, reduced the LC requirements, and simplified the data review and peak integration process. Figure 6 shows the MRM signal across multiple CoV values over the entire LC analysis. This is performed by monitoring the MRM transition while ramping CoV throughout the chromatographic run. This provides a ‘map’ in CoV space of the analyte versus interferences of the same MRM. Rape green spiked at 10x LOQ was used to generate the CoV map of TRZ and TAA. Figure 6 clearly shows that the analytes of interest are clearly separated from the chemical interferences in terms of CoV values, in addition to LC time. (A) TIC7 0/43 TIC1 28/70 0.8 0.7 0.6 TAA 0.5 TAL TLA 0.4 TRZ 2.0 0.0 0.2 GF (LOQ) GF (10xLOQ) CR (LOQ) CR (10xLOQ) CL (LOQ) CL (10xLOQ) LH (LOQ) LH (10xLOQ) RGM-1 (LOQ) RGM-1 (10xLOQ) RGM-2 (LOQ) RGM-2 (10xLOQ) RS (LOQ) -4.0 -6.0 7.6 6.0 4.4 2.8 -8.0 -10.0 RS (10xLOQ) (B) TRZ CoV( V) CoV( V) 0 1 map 70/43 -2.0 0.1 0.9 9.2 4.0 0.3 0.4 2.0 -12.0 -3.6 -14.0 -16.0 -5.2 -18.0 -8.4 -10.0 -20.0 TAA 1.2 -6.8 map1 28/70 0.8 0.7 0.6 TAA 0.5 TAL TLA 0.4 TRZ 0.3 Figure 6. Separation of interferences of TRZ (left) and TAA (right) at 10x LOQ in rape green in the CoV space and on the LC time scale 0.2 0.1 0 GF (LOQ) GF (10xLOQ) CR (LOQ) CR (10xLOQ) CL (LOQ) CL (10xLOQ) LH (LOQ) LH (10xLOQ) RGM-1 (LOQ) RGM-1 (10xLOQ) RGM-2 (LOQ) RGM-2 (10xLOQ) RS (LOQ) RS (10xLOQ) www.spektrotek.com Figure 5. Complexity of noise around LC peak of interest across for all matrices at the LOQ and 10x LOQ with DMS operated in (A) transparent mode and (B) optimized for each analytes 72 Finally, quantitative performance under three different LCMS/MS configurations was compared: DMS on, DMS off (cell mounted and operated in transparent mode) and DMS removed (cell physically removed). Linearity (linear regression with 1/x weighting), precision, and accuracy were found to be similar using all three configurations (Table 3). DMS on DMS off DMS removed TAA TLA Actual conc. (ng/mL) Calculated conc. (ng/mL) Accuracy Calculated conc. (ng/mL) TAL TRZ Accuracy Calculated conc. (ng/mL) Accuracy Calculated conc. (ng/mL) Accuracy 0.5 0.57 114.2 0.53 106.0 0.58 115.7 0.50 100.1 1.0 1.07 107.1 0.94 94.4 0.89 89.0 1.03 102.5 2.5 2.42 96.7 2.52 100.6 2.43 97.4 2.59 103.4 5.0 4.66 93.1 4.88 97.6 4.90 98.0 4.84 96.8 10 8.54 85.4 10.2 101.5 9.95 99.5 9.65 96.5 50 51.8 103.5 50.0 100.0 50.3 100.5 50.4 100.8 0.5 0.55 110.6 0.55 109.0 0.45 89.6 0.42 84.5 1.0 1.02 101.8 0.97 96.6 1.06 105.8 1.16 115.8 2.5 2.43 97.4 2.43 97.3 2.37 94.8 2.67 106.8 5.0 4.63 92.6 4.96 99.3 5.11 102.2 4.73 94.6 10 9.62 96.2 9.72 97.2 10.1 109.5 9.79 97.9 50 50.8 101.5 50.4 100.8 49.1 98.1 50.2 100.5 0.5 0.386 77.3 0.30 59.1 0.30 59.1 0.48 96.3 1.0 1.05 105.0 0.98 97.5 0.98 97.5 1.03 102.5 2.5 2.60 104.1 2.77 110.8 2.77 110.8 2.29 91.5 5.0 5.30 106.0 5.90 120.5 5.90 118.0 5.28 105.6 10 11.0 110.4 12.1 120.5 12.1 120.5 10.5 105.2 50 48.6 97.3 47.0 94.0 47.0 94.0 49.4 98.8 Summary References The combination of LC-DMS-MS/MS provides a high degree of selectivity for the analysis to triazole derivative metabolites across several matrices extracted. Significant reduction in noise levels was obtained when using the AB SCIEX SelexION™ Technology. Single LC peaks were obtained for TRZ, TAA, and TLA in all matrices and for TAL in most matrices. Overall, combining the DMS with the AB SCIEX QTRAP® 5500 system enabled the detection of triazole derivative metabolites with high confidence at desired LOQ levels of 0.01 mg/kg and excellent precision. This technique proved to be extremely useful in the detection and monitoring of these species. 1 B.B. Schneider, T. R. Covey, S.L. Coy, E.V. Krylov, E.G. Nazarov: Int. J. Mass Spectrom. 298 (2010) 45-54 2 B.B. Schneider, T. R. Covey, S.L. Coy, E.V. Krylov, E.G. Nazarov: Anal.Chem. 82 (2010) 1867-1880 For Research Use Only. Not for use in diagnostic procedures. © 2011 AB SCIEX. The trademarks mentioned herein are the property of AB Sciex Pte. Ltd. or their respective owners. AB SCIEX™ is being used under license. Publication number: 3690211-01 Gıda ve Çevre Uygulamaları Compound www.spektrotek.com Table 3. Precision and accuracy obtained for single injections of solvent standards using three instrument configurations (DMS on, DMS off, and DMS removed) 73 Gıda ve Çevre Uygulamaları Fast and Sensitive Analysis of Paraquat and Diquat in Drinking Water Houssain El Aribi AB SCIEX Concord, Ontario (Canada) Overview This application note describes a fast and sensitive LC-MS/MS method for the determination of Paraquat and Diquat in drinking water. Using the Ultra Quat HPLC column and the AB SCIEX API 3200™ LC/MS/MS System equipped with a Turbo V™ source, the limits of quantitation (LOQ) for this method in drinking water are 0.1 μg/L and 5 μg/L respectively for Diquat and Paraquat using a 10 μL injection volume without sample preparation prior to analysis. Introduction Paraquat (1,1’-dimethyl-4,4’-bipyridylium dichloride, C12H14N2Cl2), and Diquat (1,1’-ethylene-2,2’-bipyridilium dibromide, C12H12N2Br2), are nonselective and nonsystematic contact herbicides widely used in agriculture to control broadleaf and grassy weeds. The use of these herbicides is very important because weeds compete vigorously with crops for water, light and other nutrients. As a result, if they are not suppressed they reduce crop yields by up to 80%. However both Parquat and Diaquat are toxic and ingestion of either compound can have serious effects as they can alter reduction-oxidation activities in biological systems. The analysis of these highly charged dual quaternary amines is complicated because of their ionic nature and therefore Paraquat and Diquat are difficult to retain by standard reversed phase HPLC. For drinking water the United States Environmental Protection Agency (EPA) has established a maximum contaminant level of 20 μg/L for Diquat.1 Paraquat is currently not regulated in drinking water to our knowledge. The EPA 549.2 method for the analysis of Paraquat and Diquat uses reversed phase/ion-pair extraction utilizing C8 SPE cartridges followed by ion-pair LC with ultraviolet (UV) and/or photodiode array (PDA) detection.2 This method is timeconsuming and requires large sample volume, and suffers from stability and reproducibility problems associated with ionexchange chromatography. Recently, various mass spectrometry (MS) methods have been developed for the analysis of these herbicides. Although these methods have lower limit of detection, an extensive cleanup is generally required.3-4 Experimental Chemicals www.spektrotek.com Paraquat (1,1’-dimethyl-4,4’-bipyridylium dichloride, C12H14N2Cl2), and Diquat (1,1’-ethylene-2,2’-bipyridilium dibromide, C12H12N2Br2), are non-selective and nonsystematic contact herbicides widely used in agriculture to control broadleaf and grassy weeds. The use of these herbicides is very important because weeds compete vigorously with crops for water, light and other nutrients. As a result, if they are not suppressed they reduce crop yields by up to 80%. However both Parquat and Diaquat are toxic and ingestion of either compound can have serious effects as they can alter reduction-oxidation activities in biological systems. The analysis of these highly charged dual quaternary amines is complicated because of their ionic nature and therefore Paraquat and Diquat are difficult to retain by standard reversed phase HPLC. For drinking water the United States Environmental Protection Agency (EPA) has established a maximum contaminant level of 20 μg/L for Diquat.1 Paraquat is currently not regulated in drinking water to our knowledge. The EPA 549.2 method for the analysis of Paraquat and Diquat uses reversed phase/ion-pair extraction utilizing C8 SPE cartridges followed by ion-pair LC with ultraviolet (UV) and/or photodiode array (PDA) detection.2 This method is timeconsuming and requires large sample volume, and suffers from stability and reproducibility problems associated with ionexchange chromatography. Recently, various mass spectrometry (MS) methods have been developed for the analysis of these herbicides. Although these methods have lower limit of detection, an extensive cleanup is generally required.3-4 74 LC An Agilent 1100 series equipped with degasser, quaternary pump, and autosampler was used. HPLC separation was performed on a Restek Ultra Quat 3μm (50x2.1mm) with guard column Ultra Quat 3 μm (20x2.1 mm) and an isocratic mobile phase of 95% water + 5% acetonitrile + 10mM of HFBA at a flow rate of 500 μL/min. The injection volume was set to 10 μL. Low concentrations of HFBA effectively shield the positive charges of Paraquat and Diquat, increasing interaction with the Ultra Quat stationary phase, resulting in more retention required to separate analytes from matrix components. Results and Discussion An AB SCIEX API 3200™ LC/MS/MS system equipped with a Turbo V™ source operating in Electrospray Ionization (ESI) mode and positive polarity was used. The following source and gas parameters were applied: TEM=700°C; CUR=15 psi; GS1=70 psi; GS2=60 psi; IS=5500 V; and CAD=7. Compound dependent parameters, such as Declustering Potentials (DP), Collision Energies (CE), and Collision Cell Exit Potential (CXP) for each detected MRM transition are listed in Table 1. Two transitions a quantifier and a qualifier were monitored. A dwell time of 200 ms were used per transition. At the analytical conditions used, Paraquat and Diquat preferentially form the singly charged [M2+-H+] ions as the MS base peaks. However, the doubly charged [M2+] ions at m/z 92 (Diquat) and m/z 93 (Paraquat) and the radical [M+.] cations at m/z 184 (Diquat) and m/z 186 (Paraquat) have also been formed at much lower relative intensities. The MS/ MS spectrum of singly charged Diquat (m/z 183) is quiet simple compared to that of the singly charged Paraquat (m/z 185) as illustrated in Figure 1. Gıda ve Çevre Uygulamaları MS/MS Table 1. Detected MRM transitions for the analysis of Paraquat and Diquat Analyte Name MRM transition Diquat [M2+-H+] ( 3 0 ): 2 0 M C A 40 35 193/178 29 183/157 32 183/168 D4-Diquat [M2+-D+] 35 fr o m S a m p le 2 ( C ID o f 1 8 5 _ C E = 3 0 V _ Q 3 3 35 186/158 s c a n s CXP (V) 30 185/169 D8-Paraquat [M2+-H+] (1 8 5 . 0 0 ) C E CE (V) 185/170 Paraquat [M2+-H+] + M S 2 DP (V) 32 h ig h R e s ) o f D iq u a t a n d P a r a q u a t . w i f f ( T u r b o S p r a y ) M a x . 3 . 2 e 5 c p s . 1 8 5 .3 3 .2 e 5 3 .0 e 5 Paraquat 2 .8 e 5 [M2+ - H+] a – quantifier MRM 185/170 b – qualifier MRM 185/169 2 .6 e 5 2 .4 e 5 2 .2 e 5 a 1 7 0 .2 2 .0 e 5 1 .8 e 5 1 .6 e 5 b 1 5 8 . 2 1 .4 e 5 1 4 4 .3 1 .2 e 5 1 .0 e 5 1 1 8 .3 8 .0 e 4 1 4 3 .2 6 .0 e 4 1 0 7 .2 1 8 3 .2 4 .0 e 4 1 4 2 . 1 2 .0 e 4 4 3 .2 2 0 + M S 2 3 0 (1 8 3 . 0 0 ) C E 4 0 ( 2 5 ): 2 0 5 5 . 2 5 7 .0 5 0 M C A s c a n s 9 2 .3 7 7 . 1 6 5 . 1 6 9 .2 6 0 fr o m 7 0 S a m p le 3 ( C ID 1 0 6 .1 8 3 .2 1 1 5 .2 1 1 7 .3 1 2 8 .3 1 3 9 .2 1 2 1 .3 1 6 8 .0 1 5 5 .0 1 3 1 .2 1 4 5 .3 8 0 9 0 1 0 0 1 1 0 1 2 0 1 3 0 1 4 0 m /z , a m u o f 1 8 3 _ D iq u a t _ C E = 2 5 V ) o f F r a g m e n t a t i o n _ M a r c h 7 _ 0 6 . w i f f ( T u r b o S p r a y ) 1 5 9 .2 1 5 3 . 2 1 5 0 1 6 0 1 8 2 .1 1 7 0 1 8 0 1 9 0 M a x . 2 . 8 e 6 2 0 0 c p s . 1 5 6 .9 2 .8 e 6 Diquat 2 .6 e 6 2 .4 e 6 a – quantifier MRM 183/157 b – qualifier MRM 183/168 2 .2 e 6 2 .0 e 6 1 .8 e 6 [M2+- H+] a 1 .6 e 6 1 8 2 .9 1 .4 e 6 1 .2 e 6 1 .0 e 6 8 .0 e 5 6 .0 e 5 b 2 .0 e 5 4 3 .3 3 0 4 0 5 4 .8 5 0 5 6 .7 7 8 . 1 6 6 .8 6 0 7 0 7 9 .8 8 0 8 2 . 7 9 2 .7 9 0 Figure 1. MS/MS spectra of Paraquat and Diquat 9 8 .8 1 0 0 1 0 4 .2 1 6 8 .1 1 3 0 .0 1 1 7 .2 1 2 2 . 9 1 1 4 .8 1 1 0 1 2 0 m /z , a m u 1 3 9 .7 1 3 0 1 5 5 .3 1 4 2 .1 1 4 0 1 5 0 1 6 5 .1 1 6 0 1 7 0 1 8 2 .0 1 8 0 1 8 4 .2 1 9 0 2 0 0 www.spektrotek.com 4 .0 e 5 75 Gıda ve Çevre Uygulamaları XIC of +MRM( 6 pairs): 183.0/157.0 amu from Sample 21( P_D_Quats_500ng_mL_500ng_mL ISTD) of P_D_Quats_ISTDs_CAL_Marc... Max. 3.1e5 cps 5.03 100% 95% Diquat 90% Paraquat MRM1 83/157 MRM1 83/168 MRM1 86/158 (ISTD) 85% 80% 75% MRM1 85/170 MRM1 85/169 MRM1 93/178 (ISTD) 70% 65% 60% 55% 50% 45% 40% 35% 30% 25% 20% 15% 10% 5% 0% 0.51 .0 1.52 .0 2.5 3.03 .5 4.04 .5 5.05 Time, min .5 6.06 .5 7.07 .5 8.08 .5 9.09 .5 Figure 2. Separation and detection Diquat and Paraquat in drinking water (500 μg/L) by LC-MS/MS For the highest sensitivity and selectivity used Multiple Reaction Monitoring (MRM) was used to quantify Paraquat and Diquat in DI water and drinking water. Figure 2 shows the analysis of drinking water spiked with 500 μg/L of Paraquat, D8-Paraquat, Diquat, and D4-Diquat. Two MRM transitions were selected for each analyte. Internal standards were used to improve the accuracy of quantitation, to compensate for matrix effects, and to correct for random and systematic errors in separation and detection. Triplicate injections of 9 concentrations of analytes in DI water and in drinking water, from 0.1 to 500 μg/L for Diquat and from 0.5 to 500 μg/L for Paraquat were used to investigate the performance of the developed method. Correlation coefficients for calibration curves were >0.999, using a linear fit and 1/x weighting factor. These results indicate that quantification can be performed with good linearity and sensitivity. Figure 3 and 4 show the calibration curve for Diquat (MRM 183/157) and Paraquat (185/170) in the case of drinking water. Table 2 summarizes the statistical parameters for the analysis of Diquat and Paraquat in drinking water. The limits of quantitation (LOQ) of the analytes were calculated from the chromatograms, at a signal-to-noise-ratio of >10. Table 2. Summary of statistical parameters www.spektrotek.com Analyte Name 76 MRM transition LOQ (µg/L) Linear range ( µg/L) R2 Diquat 183/157 0.1 0.1 – 5000 0.9996 Paraquat 185/170 0.5 0.5 – 5000 0.9999 10.0 Gıda ve Çevre Uygulamaları Di_Para_Quats_ISTD_Mar ch 9_06.rdb (183.0 /1 57.0): "Linear" Regression ("1/ x" weighting):y =1 .01x +0 .000817( r= 0.9996) Diquat 9.5 MRM1 83/157 R2 =0 .9996 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 0.00 .5 1.01 .5 2.02 .5 3.03 .5 4.04 .5 5.05 .5 Analyte Conc./ IS Conc. 6.06 .5 7.07 .5 8.08 .5 9.09 .5 10.0 Figure 3. Calibration curve for Diquat (183/157) in drinking water from 0.1 μg/L to 5000 μg/L Di_Para_Quats_ISTD_March9 _06.rdb (185.0/ 170.0): "Linear" Regression ("1 / x" weighting):y = 1.28 x+ -0.00099( r= 0.9999) 13 13 12 12 11 11 10 Paraquat MRM1 85/170 R2 =0 .9999 10 9 9 8 8 7 7 6 6 5 5 4 4 3 3 2 2 1 1 0 Figure 4. Calibration curve for Paraquat (185/170) in drinking water from 0.5 μg/L to 5000 μg/L Summary The use of the Restek Ultra Quat 3 μm HPLC column with an eluent containing Heptafluorobutyric acid allows sufficient separation of Paraquat and Diquat. Coupled to an API 3200™ LC/MS/MS systems enough sensitivity of detection is provided to inject water samples directly without any time-consuming sample preparation prior to analysis. The method was found to be robust, selective and sensitive. References US EPA, Drinking Water Health Advisory: Pesticides, US Environmental Protection Agency, Lewis, Chelsea, MI, 1989 J. W. Munch, W. J. Bashe, US EPA 549.2, US Environmental Protection Agency, Cincinnati, OH, 1997 R. Castro, E. Moyano, M. T. Galceran J. Chromatogr. A 2001, 914, 111-121 L. Grey, B. Nguyen, P. Yang J. Chromatogr. A 2002, 958, 25-33 For Research Use Only. Not for use in diagnostic procedures. © 2010 AB SCIEX. The trademarks mentioned herein are the property of AB Sciex Pte. Ltd. or their respective owners. AB SCIEX™ is being used under license. Publication number: 1281110-01 www.spektrotek.com 1 2 3 4 77 Gıda ve Çevre Uygulamaları The Quantitation and Identification of Coccidiostats in Food by LC-MS/MS using the AB SCIEX 4000 Q TRAP® System Bertram Nieland1 and Stephen Lock2 1 AB SCIEX Nieuwerkerk aan den Ijssel, The Netherlands; 2 AB SCIEX Warrington, UK Introduction Coccidiostats are antiprotozoal agents that act upon parasites. In animal production, particularly in intensive animal rearing coccidiostats are used to treat infections and as such meat, chicken, egg and milk are regularly tested for these compounds. Recently maximum levels for these compounds (due to unavoidable carry-over of authorized coccidiostats to non-target feed) were set by the EU in Commission Regulations [(EC) No 124/2009]1 so methods for their detection were required. This work compares the traditional approach to sample preparation of solid phase extraction (SPE) followed by separation on a conventional 5µm particle column with that of the quicker and simpler QuEChERS2-3 technique followed by separation with a newer 2.6 µm particle column and shows how liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) can be used to detect coccidiostats including Narasin, Diclazuril and Monensin in milk. Experimental 1) Conventional Approach Sample Preparation LC Milk (2.0 g) in a Polypropylene Tube was mixed with acetonitrile (2 mL) and vortexed for 40 seconds. Another 2 mL of acetonitrile was added and the the tube was sealed, shaken by hand and then continually mixed using a head over head mixer for 15 minutes. The sample was then centrifuged for 15 minutes (3600 g at 4°C). The supernatant was removed and water (16 mL) and ammonia solution (1 mL, 25%) were added and this mixture was shaken. The whole extract was loaded onto an OASIS HLB SPE cartridge (3 cm3, 60 mg) which previously had been conditioned with methanol (3 mL) and water (3 mL). The cartridge was washed with ammonia (5 mL, 1.25%) dried for 2 minutes under vacuum and eluted with methanol (5 mL). The eluent was evaporated to dryness, the sample was reconstituted in methanol/water (1 mL, 50/50), vortexed, and sonicated for 5 minutes before injection Column : Agilent Zorbax Eclipse XDB-C8, 5 µm, 150 x 4.6 mm Flow rate : 400 μL/min Oven temperature: 40 ºC Injection Volume : 40 µL Mobile Phase A : water + 0.2% acetic acid Mobile Phase B : methanol + 0.2% acetic acid www.spektrotek.com Table 1. LC gradient profile of conventional approach 78 Step Time (min) A (%) B (%) 1 0.5 100 0 2 1.5 20 80 3 10 10 90 4 13 0 100 5 18 0 100 6 18.5 100 0 7 23 100 0 The sample extraction was based on a QuEChERS method by Anastassiades et al. and Lehotay et al.2-3 Milk in a polypropylene tube (50 mL) was roller mixed with acetonitrile. To this mixture anhydrous magnesium sulfate and sodium acetate were added and samples were shaken vigorously and centrifuged. Anhydrous magnesium sulfate, PSA and C18 were added to an aliquot (2 mL) of the upper layer and these samples were shaken by hand. This mixture was centrifuged and the supernatant transferred into an autosampler vial for analysis. were additionally acquired to increase confidence in compound identification using mass spectral library searching. In this mode an information dependent acquisition (IDA) experiment was used to automatically trigger the MS/MS spectra acquisition when a chromatographic MRM signal exceeded a threshold of 1000 cps. Results and Discussion The maximum residue limits for the coccidiostats vary with analyte (Table 3). The analysis is further complicated by the fact that Diclazuril ionizes in negative polarity so to maximize sensitivity the method contains periods, so it switches from positive to negative and back to positive as shown in Figure 1. Gıda ve Çevre Uygulamaları 2) New Approach Sample Preparation LC Table 3. Maximum Residue limits (MRL) for some coccidiostats1 Coccidiostats Table 2. LC gradient profile of new approach with a Phenomenex Kinetex column using 2.6 μm core-shell particles for increased efficiency and improved performance 1 1.0 100 0 2 2.5 20 80 3 5.0 10 90 4 7.5 0 100 5 9.2 0 100 6 9.5 100 0 7 11.5 100 0 MS/MS 1 Maduramycin 2 Monensin 2 Narasin 1 Robenidine 5 Salinomycin 2 XICo f +MRM (12p airs): Period 3, 787.596/431.200 Da ID: Narasin0 2f romS ample1 0( 2.00...M 2.6e5 positive polarity 2.4e5 Negative and positive polarities were used with polarity switching during, the chromatographic run, to cover all target analytes. For best selectivity and sensitivity Multiple Reaction Monitoring (MRM) mode was used for detection. Two MRM transitions were detected per compound to allow quantitation and identification by MRM ratios (Table 4). However, since detection in MRM mode only can lead to false positive results full scan MS/MS spectra positive polarity 2.0e5 1.8e5 1.6e5 1.4e5 1.2e5 1.0e5 8.0e4 Robenidine 4.0e4 The AB SCIEX 4000 Q TRAP system was used with Turbo V™ source and Electrospray Ionization (ESI) probe. The source was heated to 600ºC with 45 psi nebulizer and heater gas. ax.2 .6e5 cps. 16.0 2.2e5 6.0e4 ® negative polarity 2.0e4 0.0 2468 10 12 Time,m in 14 16 18 20 Figure 1. Example of an LC-MS/MS chromatogram from a milk matrix matched calibration standard (concentration of coccidiostats ranging from 2 to 10 μg/kg) prepared and analyzed using the conventional approach www.spektrotek.com B (%) 5 Lasalocid Narasin A (%) Diclazuril Monensin A Lasalocid Maduramycin Salinomycin Time (min) Intensity, cps Step MRL in milk (μg/kg) Diclazuril Column : Phenomenex Kinetex C8, 2.6 µm, 100 x 4.6 mm Flow : 600 μL/min Oven temperature: 40 ºC Injection Volume : 40 µL Mobile Phase A : water + 0.2% acetic acid Mobile Phase B : methanol + 0.2% acetic acid 79 Gıda ve Çevre Uygulamaları Table 4. Targeted coccidiostats with retention times, polarity, and detected MRM transitions using the Phenomenex Kinetex C8 column Coccidiostats CAS Structure RT (min) Polarity Q1 (amu) Q3 (amu) N Cl Diclazuril O 101831-37-2 Cl Cl Decoquinate 18507-89-6 H3C CH3 O O OC 25999-31-9 O HO O CH3 CH3 204 372 7.1 613 377 595 7.2 939 877 895 7.0 693 461 479 6.8 787 279 431 531 7.8 747 703 501 4.6 334 6.6 773 431 531 265 6.4 423 377 OH OH O OO H3C H CH3 CH3 H3C CH3 O O O H3C H3C CH3 O H3C Maduramycin 418 H3 CH3 H3C Lasalocid 6.4 O O N H H3C 334 336 negative NH N O 405 407 5.3 N O O 84878-61-5 CH3 OH O H3C O CH3 OH O OH O CH3 O OH CH3 CH3 O O H3C CH3 H3C H3C Monensin A O O 17090-79-8 OH OH O H3C CH3 O O OH O CH3 CH3 O CH3 CH3 CH3 CH3 CH3 CH3 positive Narasin O H3C 55134-13-9 O OH O CH3 O O H3C O O H3C CH3 OH OH CH3 HO H3C CH3 H3C H3C Nigericin O O OH OH O 28643-80-3 H3C O CH3 O OH O H3C H3C CH3 O Robenidine N 25875-51-8 CH3 NN Cl H3C www.spektrotek.com H3C 80 N Cl CH3 O O CH3 CH3 OH O O O O OH 138 111 CH3 O 53003-10-4 H3C Decoquinate D5 (internal standard) H NH2 CH3 Salinomycin O CH3 OH CH3 HO XICo f +MRM (3 pairs):P eriod1 ,3 34.055/138.100 Da ID: Robenidine1 from Sample 25 (2 ...M positive polarity 4.5e4 Robenidine 4.6 4.0e4 3.0e4 2.5e4 Diclazuril Intensity,c ps 3.5e4 2.0e4 1.5e4 1.0e4 5000.0 0.0 1.02 .0 3.04 .0 5.06 .0 Time,m in Lasalocid Decoquinate 5.0e4 ax.4 .2e4 cps. positive polarity negative polarity 5.5e4 When both approaches, the conventional using SPE and the new one using QuEChERS, were compared both showed coefficients of variation (% CV) of less than 10% at or below the LOD levels needed except for Robenidine whose CV was 19% using the SPE methodology (Table 5). This showed that both methods could be applied to food samples. Both approaches produced linear responses and r values > 0.985 (see examples in Figure 3). This included the QuEChERS method which used spiked calibration standards whose concentration ranged from 0.2 to 50 μg/L with the exception of Decoquinate whose fit was quadratic over this range. The internal standard Decoquinate D5 was later used to correct the non linearity and additional internal standards could further improve these results. Salinomycin Narasin Monensin A Maduramycin Nigericin 5.9e4 To assess the sensitivity of the developed method the coccidiostats were spiked into milk and extracted using the QuEChERS procedure. The results showed that this technique was capable of detecting all the coccidiostats reproducibly in milk at concentrations below 1 μg/L. 7.08 .0 9.01 0.01 Gıda ve Çevre Uygulamaları The conventional approach using a 5 µm column, as shown in Figure 1, produced peaks with peak widths in the range of 12 to 30 seconds and a run time of 23 minutes. When this method was switched to the Kinetex core-shell particle column the peak widths were reduced to between 7 and 12 seconds and the run time could be reduced to 11.5 minutes (Figure 2). 1.0 Figure 2. Example of an LC-MS/MS chromatogram from a milk matrix matched calibration standard (concentration of coccidiostats ranging from 2 to 10 μg/kg) prepared and analyzed using the new approach Robenidine To further speed up the analysis the off-line SPE was replaced by the simpler QuEChERS sample preparation technique, which is commonly used in pesticide residue analysis. The resulting simplification of the extraction produced dirtier extracts but the background interferences did not co-elute with analytes so this approach was shown to be a feasible alternative. � �� � �� ��� Diclazuril Figure 3. Calibration line for Robenidine (top) and Diclazuril (bottom) 0.2 to 50 μg/L in milk using the new approach with QuEChERS extraction and fast chromatography Table 5. Reproducibility from the repeat analysis of a low spiked matrix matched standard Concentration of spiked SPE extract (μg/L) % CV (4 replicates) using the conventional approach Concentration of QuEChERS extract (μg/L) % CV (4 replicates) using the new approach 1 7.7 Diclazuril 1.25 2.6 Lasalocid 0.25 6.3 Maduramycin 0.5 0.7 Monensin 0.5 2.9 Narasin 0.25 4.7 Robenidine 1.25 18.8 1 Salinomycin 0.5 3.6 0.5 5.1 0.5 3.5 3.8 4.7 7.9 www.spektrotek.com Coccidiostats 81 Gıda ve Çevre Uygulamaları There are known cases, especially in food analysis, when MRM ratios can be misleading and produce false positive results therefore additional information for identification is beneficial. So in addition to collecting MRM data there is the possibility of automatically acquiring full scan MS/MS spectra when an MRM signal exceeds a defined threshold. These full scan MS/ MS spectra [Enhanced Product Ion (EPI) spectra] are highly characteristic and sensitive using this unique scan function of a Q TRAP® system. Figure 4 shows two examples of how MRM triggered EPI spectra further aids identification of coccidiostats in food samples. XICo f+ MRM( 16 pairs) : Exp1 ,7 47.600 /703.600 Da I... 65 00 positive polarity 60 00 55 00 Max. 6600.0 cp s. 4500 4000 In te n s it y , cp s 45 00 40 00 35 00 30 00 25 00 20 00 3500 3000 2500 2000 1500 15 00 1000 10 00 500 500 5.0 6.07 .0 Time ,m in +EPI (747.60) Ch arge (+ 0) CE (35)C ES (15)F T( 25 0)...M 1.02 .0 3.04 .0 8.09 .0 10 .0 11.0 ax.7 .4 e5 cps. 0 24 68 Time ,m in -EPI (406 .93) Ch arge (+0) FT (50) :E xp 2, 5.3 26 minf r... 74 7.5 7. 4e5 7. 0e5 1.8e6 EPIs pectrumf or Diclazuril 1.6e6 1.4e6 I n te ns ity , c ps 5.0e5 4. 0e5 3. 0e5 1.2e6 1.0e6 8.0e5 6.0e5 2. 0e5 437. 3 1. 0e5 10 02 00 465.2 3004 00 325.2 4.0e5 729. 5 333. 2 187. 1 10 Ma x. 1.9e 6c ps 406. 9 EPI spectrum for Nigericin 6. 0e5 0. 0 negative polarity 5000 7.76 ax.5 36 7.5 cps 5.3 0 5368 5000 0 XICo f- MR M( 2p airs): Exp1 ,4 06.931 /335.7 00 Da ID...M 500 6007 m/z, Da 2.0e5 706.7 00 8009 00 10 00 0.0 10 02 00 3004 00 500 6007 m/z, Da 00 8009 00 10 00 Summary The LC-MS/MS approaches discussed in this work have been shown to be suitable for the detection of coccidiostats in food at the required sanctioned levels. When the sample preparation was simplified using a QuEChERS procedure and a core-shell particle column was used the additional sensitivity of this assay enabled the detection of these residues below the MRL required but at over twice the speed of the conventional method which enables a reduction in cost of the analysis. References 1. Commission Regulation (EC) No 124/2009 ‘Setting maximum levels for the presence of coccidiostats or histomonostats in food resulting from the unavoidable carry-over of these substances in non-target feed’ 2. M. Anastassiades et al.: ‘Fast and easy multi-residue method employing acetonitrile extraction/partitioning and dispersive solid-phase extraction for the determination of pesticide residues in produce’ J. AOAC Int. 86 (2003) 412-431 3. S. J. Lehotay et al.: ‘Validation of a fast and easy method for the determination of residues from 229 pesticides in fruits and vegetables using gas and liquid chromatography and mass spectrometric detection’ J. AOAC Int. 88 (2005) 595-614 www.spektrotek.com Figure 4. Example of an LC-MS/MS chromatogram from a 2 μg/L matrix matched calibration standard run in positive polarity with an EPI spectrum of Nigericin (left) and an LCMS/MS chromatogram from the same sample run in negative polarity where a spectrum of Diclazuril has been automatically acquired 82 For Research Use Only. Not for use in diagnostic procedures. © 2011 AB SCIEX. The trademarks mentioned herein are the property of AB Sciex Pte. Ltd. or their respective owners. AB SCIEX™ is being used under license. Publication number: 4482011-01 Gıda ve Çevre Uygulamaları Quantitation and Identification of 13 Azo-dyes in Spices using LC-MS/MS André Schreiber1, Kristin von Czapiewski2 AB SCIEX Concord, Ontario (Canada), AB SCIEX Darmstadt (Germany) Overview This application note describes a new and simple method including extraction, HPLC separation and MS/MS detection for the analysis of 13 different azo-dyes in spices using Multiple Reaction Monitoring (MRM) on a 3200 QTRAP® LC/MS/MS System. The developed method is available as an iMethod™ test for Cliquid® Software which can be used for the analysis and automatic reporting. In addition the results of a study of ion suppression in various spice matrices comparing quantitation with solvent standards, matrix matched standards and standard addition are presented. Standard addition gave highest accuracies while quantifying azo-dyes in extracts of spices. Introduction Methods described in literature apply GC-MS, LC-UV, LCMS and LC-MS/MS to analyze azo-dyes.1 Extensive sample preparation is typically necessary to achieve required limits of quantitation (10 μg/kg). Spices are very complex, concentrated and variable matrices and matrix effects (ion suppression or ion enhancement) can be very strong and can depend on the origin of the spice sample. Ideally, isotopically labeled internal standards of all azo-dyes should be used to improve accuracy of detection in unknown samples, but such internal standards are not available. Three different possibilities to quantify unknown samples (calibration with solvent standards, calibration with matrix matched standards and standard addition) were investigated. The results were compared regarding their accuracy when analyzing azo-dyes in different spice matrices. Figure 1 illustrates theoretical calibration curves obtained using these three different procedures. In general, when using a calibration curve the signal intensity of an unknown sample is compared to an external set of standard samples. These standards can be prepared in solvent or in matrix. The smaller slope of the calibration curve with matrix matched standards in comparison to solvent standards in Figure 1 indicates ion suppression effects. 100 0 Solvents tandards Matrix matcheds tandards Standard addition 800 600 unknown 400 concentration 200 0 -40- 30 -20- 10 01 02 03 04 05 06 07 08 09 01 00 Figure 1. Calibration curves using solvent standards, matrix matched standards, and standard addition www.spektrotek.com The International Agency for Research on Cancer (IARC) classified azo-dyes as potential carcinogenic substances. After oral uptake azo-dyes can be reduced to amines which are classified as partially carcinogenic substances. As a result various azo-dyes are banned as food additives and maximum residue levels exist in several countries. 83 Gıda ve Çevre Uygulamaları When using standard addition, defined concentration(s) of pure standards are added to aliquots of the unknown sample. These standards, along with an aliquot which does not contain any added standard, are analyzed. The resulting calibration curve is extrapolated and the absolute value of the intercept with the concentration axis determines the concentration of the target compound in the unknown sample as shown in Figure 1. Generally, standard addition requires more time for analysis because one calibration curve per unknown sample and per analyte has to be prepared. However, standard addition can be used to solve the matrix effect problem because all analytes are quantified in the matrix itself. Experimental Chemicals Solvents, reagents and dye standards were obtained at highest available purity from Sigma-Aldrich (dye content 80-98%). Internal standards (D5-Sudan I and D6-Sudan IV) were obtained from WITEGA laboratories (Berlin, Germany). Stock solutions were prepared in acetonitrile freshly due to degradation of some azo-dyes. Solvent standards were diluted in the starting mobile phase. Spice Samples Spice samples were purchased on local markets in India (Garam Masala), Korea (Red Chili), and Egypt (Saffron) and analyzed by LC-MS/MS. Not one of the 13 investigated azodyes was detected in the selected spice samples. Matrix matched standards were prepared in Garam Masala extract. In addition every matrix was spiked with known concentrations of a mix of azo-dyes prior to analysis. These samples were used to investigate standard addition. Sample Preparation The goal was to develop a generic sample preparation procedure that is easy extendable to other emerging azo-dyes. www.spektrotek.com 1.Weigh 1 g of homogenized sample (multiple times for standard addition). 2.Add 20 μL of internal standard solution (1 μg/mL of D5Sudan I and D6-Sudan IV). 3.Add standard solution(s) in case of standard addition. 4.Add 10 mL of acetonitrile. 5.Shake for 10 min. 6.Add 10 mL of water. 7.Shake and centrifuge (or filtrate) before injection. 84 HPLC The goal was to develop a flexible HPLC method to separate a variety of emerging dyes. A gradient of 30 min was chosen to allow sufficient separation of analytes from matrix components. This method can be shortened easily, but matrix effects might increase significantly. No HPLC conditions could be identified for the separation of the two isomeric dyes Sudan IV and Sudan Red B, although various columns (C8 and C18), mobile phases (water, methanol, acetonitrile), buffers (ammonium formate, ammonium acetate, formic, and acetic acid), and pH values were investigated. An Agilent 1100 HPLC system with binary pump (without static mixer), well plate autosampler, and column oven was used. A Phenomenex LUNA 5u C8,150x2 mm column and a gradient of eluent A: water + 0.2% formic acid + 2 mM ammonium formate and eluent B: water/acetonitrile (10/90) + 0.2% formic acid + 2 mM ammonium formate was used at a flow rate of 300 μL/ min. Details of the gradient are given in Table 1. The column oven temperature was set to 30°C. A volume of 50 μL of each sample was injected. Table 1. HPLC gradient Step Total Time (min) 0 10 1 15 2 29 3 30 A (%) B (%) 80 20 0 100 80 20 MS/MS A 3200 QTRAP® LC/MS/MS System equipped with Turbo V™ Source and Electrospray Ionization (ESI) probe was used. ESI was found to be suitable for the ionization of azo-dyes. The ion source temperature (450°C) was optimized for the highest sensitivity of Orange II and Para Red, the two compounds showing lowest sensitivity in positive polarity. Two MRM transitions were monitored per analyte to allow quantitation and identification using ion ratios (Table 2). Two additional MRM transitions were detected for Sudan IVand Sudan Red B to allow differentiating between both coeluting and isomeric compounds.2 Analyte Name CAS Q1 (amu) Q3-1 (amu) Q3-2 (amu) Q3-3 (amu) Q3-3 (amu) tR (min) S/N at 10ng/mL Dimethyl Yellow 60-11-7 226.1 120.1 105.1 - - 14.5 980 Fast Garnet GBC 97-56-3 226.1 91.1 107.1 - - 13.5 300 Orange II (positive) 633-96-5 329.1 156.0 128.0 - - 13.0 30 Orange II (negative) 633-96-5 327.0 171.0 80.0 - - 13.0 220 Para Red 6410-10-2 294.1 156.1 128.1 - - 14.2 300 Rhodamine B 81-88-9 443.2 399.1 355.1 - - 8.7 10600 Sudan I 842-07-9 249.1 93.0 156.1 - - 15.0 500 Sudan II 3118-97-6 277.1 121.1 106.1 - - 16.6 1090 Sudan III 85-86-9 353.1 197.1 128.1 - - 17.4 200 Sudan IV 85-83-6 381.1 224.1 225.1 143.1 104.1 18.8 80 Sudan Orange G 2051-85-6 215.1 93.1 122.1 - - 11.8 310 Sudan Red 7B 6368-72-5 380.2 183.1 115.1 - - 18.9 1860 Sudan Red B 3176-79-2 381.2 224.1 225.1 156.1 134.1 18.8 140 Sudan Red G 1229-55-6 279.1 123.1 108.1 - - 14.7 1910 D5-Sudan Red I 254.1 156.0 - - - 14.9 - D6-Sudan Red IV 387.1 106.0 - - - 18.7 - Gıda ve Çevre Uygulamaları Table 2. MRM transitions, retention times (tR), of detected azo-dyes and signal-to-noise (S/N) of the qualifier MRM transition at a concentration of 10 ng/mL Results and Discussion Standard chromatograms in positive and negative polarity using Electrospray Ionization are given in Figures 2 and 3. Orange II had ~10 times higher sensitivity in negative polarity. The method developed provides enough sensitivity to detect all 13 azo-dyes at required concentration of 10 μg/ kg in matrix. This is indicated by Signal-to-Noise ratios (S/N) calculated using 3x standard deviation (Table 2). The complete range of linearity was not of interest for this study. Only the range from one order below to one order above the level of 10 μg/kg was investigated. The following quality control parameters were observed: r2>0.99 with accuracy between 90-110% for each concentration and %CV<15% at 1 μg/kg and <5% at 10 μg/kg (n=3). XICof-MRM(2pairs):327.0/171.0amufromSample9(10ng/mL)o fCalibration_neg.wiff( TurboSpray),Smoothed 8.7 RhodamineB 4.0e4 3.5e4 3.0e4 1.5e4 1.0e4 5000.0 67 89 10 11 12 13 Para Red 2.0e4 Orange II SudanO range G 2.5e4 14 15 Time,min 8000.00 SudanR ed 7B SudanI V+ SudanR ed B+ D6-Sudan IV 4.5e4 SudanI I 5.0e4 8500.00 7500.00 7000.00 6500.00 6000.00 5500.00 5000.00 4500.00 4000.00 3500.00 3000.00 2500.00 2000.00 1500.00 SudanI II 5.5e4 9000.00 DimethylYellow 6.0e4 0.0 Orange II 1.00e4 9500.00 SudanR ed G 6.5e4 1.05e4 SudanI + D5-Sudan I 7.0e4 Fast Garnet GBC+ Red2 G 7.5e4 Max.1.1e4cps. 12.9 1.09e4 16 17 1000.00 500.00 18 19 20 21 22 Figure 2. Detection of 13 selected azo-dyes in positive polarity 0.00 67 89 10 11 12 13 14 Time,min 15 16 17 18 19 Figure 3. Detection of Orange II in negative polarity 20 21 22 www.spektrotek.com 8.0e4 Matrix effects and how to compensate them using different calibration procedures were investigated. A comparison of accuracies based on calibration with solvent standards, matrix matched standards and standard addition is summarized in Table 3. Values ~100% indicate that no matrix effects occur or that they were compensated completely. These results indicate that ion suppression varies strongly depending on the spice matrix. Using a calibration curve based on solvent standards did not provide sufficiently accurate data when analyzing spices. A calibration curve based on matrix matched standards provided more accuracy and can be used when matrices of similar composition have to be analyzed. But standard addition provided the best accuracy and is highly recommended if a broad range of complex matrices, such as different spices, have to be analyzed. 85 Gıda ve Çevre Uygulamaları Table 3. Accuracy of quantifying azo-dyes in 3 different spice matrices using calibration with solvent standards, matrix matched standards (prepared in Masala extract), and standard addition Matrix Matched Standards (Prepared in Masala Extract) Solvent Standards Analyte Name Masala Chili Saffron Masala Chili Standard Addition Saffron Masala Chili Saffron Dimethyl Yellow 10% 43% 20% 96% 288% 143% 96% 97% 95% Fast Garnet GBC 36% 67% 51% 97% 195% 143% 97% 99% 94% Orange II (positive) 25% 24% 29% 101% 101% 150% 101% 82% 95% Rhodamine B 52% 44% 47% 101% 73% 95% 101% 89% 104% Sudan I 47% 77% 48% 100% 176 105% 100% 91% 110% Sudan II 35% 44% 34% 97% 126% 104% 97% 94% 108% Sudan III 66% 80% 53% 97% 133% 81% 97% 98% 111% The colors represented in this table reference the data from the calibration curves in Figure 1. ® Figure 4. Cliquid® Software; easy-to-use LC-MS/MS software with preconfigured iMethod™ Tests and automatic reporting www.spektrotek.com Cliquid® Software and iMethod™ Tests 86 Cliquid® Software was specifically developed for LC-MS/MS analysis in routine food testing laboratories. The software provides an easy-to-use interface with a four step wizard to perform sample analysis and automatic report generation. These four steps include choosing a test to perform, building the sample list, customizing reporting options, and submitting the samples for analysis. The developed method for the analysis of azo-dyes in spices is available as an iMethod™ Test. Screenshots illustrating the wizard and example reports generated when analyzing unknown contaminated spice samples are shown in Figure 4 and 5. Gıda ve Çevre Uygulamaları Summary A new analytical procedure was developed to determine 13 azo-dyes, which are of high priority in many European and Asian countries, by simple solvent extraction and LC-MS/MS analysis. Ion suppression varied strongly from matrix to matrix. Thus, standard addition is recommended to quantify dyes in spices due to a lack of isotopically labeled internal standards. The detection of two MRM transitions per compound is needed to match regulatory requirements. Cliquid™ Software is easy-to-use software focusing on the typical workflow from LC-MS/ MS analysis to automatic report generation. The described method for the analysis of azodyes in spices is available as an iMethod™ Test. References 1.Lutz Hartig et al.: ‘Detection of 6 Sudan Dyes, Dimethyl Yellow and Para Red in Spices and Sauces with HPLC/MS/MS’ poster presented at ASMS conference on Mass Spectrometry (2005) San Antonio, Texas, USA 2.André Schreiber et al.: ‘Accuracy of quantitation using external and internal calibration to analyze dyes in extracts of spices’ poster presented at ASMS conference on Mass Spectrometry (2006) Seattle, Washington, USA For Research Use Only. Not for use in diagnostic procedures. © 2010 AB SCIEX. The trademarks mentioned herein are the property of AB Sciex Pte. Ltd. or their respective owners. AB SCIEX™ is being used under license. Publication number: 1281510-01 www.spektrotek.com Figure 5. Example reports generated automatically by Cliquid® Software showing calibration curves, statistical information of accuracy and reproducibility, and detected azo-dyes in unknown samples with highlighted analytes when identified by MRM ratio 87 Gıda ve Çevre Uygulamaları Increasing Selectivity and Confidence in Detection when Analyzing Phthalates by LC-MS/MS André Schreiber1, Fanny Fu2, Olivia Yang2, Eric Wan3, Long Gu4, and Yves LeBlanc1 1 AB SCIEX, Concord, Ontario (Canada) 2 AB SCIEX, Taipei, (Taiwan) 3 AB SCIEX, Hong Kong (Hong Kong) 4 AB SCIEX, Shanghai (China) Overview Recent issues with the determination of phthalates in food and beverages like yogurt, sport drinks and fruit juices have highlighted the need for both food manufacturers and regulatory agencies to utilize fast and accurate analytical techniques to proactively ensure product safety. A fast and sensitive LC-MS/MS method was developed for the analysis of 22 phthalates utilizing a simple extraction, fast LC separation using a Phenomenex Kinetex™ C18 column with a run time of 10 minutes, and selective MS/MS detection using an AB SCIEX QTRAP® 5500 system operated in Multiple Reaction Monitoring (MRM) mode. Major challenges of method development were the presence of chemical background and matrix interferences. To address these challenges we successfully applied the unique MRM3 mode to enhance detection selectivity by detecting second generation product ions and Enhanced Product Ion (EPI) scanning to increase confidence in identification using the molecular fingerprint of each target analyte saved into the MS/MS spectrum. In addition, the AB SCIEX SelexION™ technology was used to separate critical isomers using Differential Mobility Spectrometry (DMS). Introduction Phthalates are widely used industrial chemicals with an estimated annual production of over 8,000,000 tons. Phthalates are added to plastics to increases flexibility, transparency, and longevity. By weight, they contribute 1060% of plastic products. Phthalates are used in a variety of products, including building materials (caulk, paint, adhesives), household products (vinyl upholstery, shower curtains, food containers and wrappers), and cosmetics.1 The use of various phthalates is restricted in many countries because of health concerns.2-3 www.spektrotek.com In 2011, the illegal use of bis(2-ethylhexyl) phthalate (DEHP) and Diisononyl phthalate (DINP) in clouding agents for use in food and beverages has been reported in Taiwan.4 88 As a result fast and reliable methods for the detection of different phthalates in food and beverages are needed. Chromatographic techniques coupled to mass spectrometry are methods of choice because of their sensitivity and selectivity.5 Here we present a new and unique LC-MS/MS method using the AB SCIEX QTRAP® 5500 system operated in MRM, MRM3, and EPI mode to detect 22 phthalates. In comparison to GC-MS the developed LC-MS/MS method has several advantages: •Reduced sample preparation and no need for derivatization •Superior quantitative results with shorter run times •Higher degree of confidence due to the presence of the quasi-molecular ion and characteristic fragment ions In addition, DMS was used to separate isomeric phthalates using the AB SCIEX SelexION™ technology. Sample Preparation One gram sample was homogenized and extracted with 45 mL methanol using ultra sound for 30 min. An aliquot of 5 mL was transferred into a vial and centrifuged for 10 min (3500 rpm). The supernatant was further diluted for LC-MS/MS analysis. LC Separation LC separation was achieved using an Agilent 1200 system with a Phenomenex Kinetex C18 (100 x 4.6 mm; 2.6 μm) column and a fast gradient of water + 10 mM ammonium acetate and methanol at a flow rate of 500 μL/min. MS/MS Detection The AB SCIEX QTRAP® 5500 system was used with Turbo V™ source and Electrospray Ionization (ESI) source. Two selective MRM transitions were monitored for each targeted analyte (Table 1). MRM3 was used to differentiate between isomers and to increase selectivity to reduce interferences. DMS Separation The AB SCIEX SelexION™ technology was used to selectively detect isomeric phthalates. A Separation voltage (SV) of 3800 V was used with acetonitrile as chemical modifier. The Compensation Voltage (CoV) was optimized for each target analyte specifically. Results Solid Phase Extraction (SPE) is known to be a major source of phthalate contamination resulting in over-estimation and false positive results.5 Thus, a simple and fast procedure using liquid extraction was developed and successfully applied to the analysis of food and beverage samples. Different LC conditions were evaluated during method development. In general C18 material with a neutral buffer of ammonium acetate was found to give good separation. Methanol is organic modified was more efficient in separating isomers. The Phenomenex Kinetex C18 column was finally chosen because of its UHPLC like efficiency and resolution at significantly lower column pressure resulting in high robustness and long instrument up time. Gıda ve Çevre Uygulamaları Experimental The final gradient started at 50% methanol and included a cleanup step at 98% methanol at a flow rate of 1000 μL/min to reduce background levels. In addition, a trap column was used between pump and autosampler to retain any phthalates originating from the HPLC system. MRM transitions were fully optimized with M+H+ as precursor ion and two compound dependent fragment ions. The dominating fragment ions were protonated phthalic acid (167), phthalic anhydride (149), and different esters of phthalic acid and phthalic anhydride (Figure 1). Phthalates are esters of 1,2-benzenedicarboxylic acid. O R1 O O R2 Targeted analytes of this project are listed in Table 1. All plastic material (i.e. pipette tips) was avoided when handling samples and making dilutions. All glassware was cleaned carefully to avoid contamination. Different organic solvents (LC and LC-MS grade) were evaluated and distilled water was used to minimize background interferences. Figure 1. EPI spectrum of BBP, the molecular fingerprint saved into the MS/MS spectrum was used for compound identification with highest confidence www.spektrotek.com O 89 Gıda ve Çevre Uygulamaları Table 1. Targeted phthalates, compound information, and optimized MRM transitions (Q1 and Q3 ions) Phthalate CAS Formula M.W. Q1 Q3 Dimethyl phthalate DMP 131-11-3 C10H10O4 194.18 195 163 / 133 Diethyl phthalate DEP 84-66-2 C12H14O4 222.24 223 149 / 177 Diallyl phthalate DAP 131-17-9 C14H14O4 246.26 247 189 / 149 Dipropyl phthalate DPrP 131-16-8 C14H18O4 250.29 251 149 / 191 Diisopropyl phthalate DIPrP 605-45-8 C14H18O4 250.29 251 149 / 191 Dibutyl phthalate EU, EPA DBP 84-74-2 C16H22O4 278.34 279 149 / 205 Diisobutyl phthalate EPA DIBP 84-69-5 C16H22O4 278.34 279 149 / 205 Bis(2-methoxyethyl) phthalate DMEP 117-82-8 C14H18O6 282.29 283 207 / 59 Dipentyl phthalate EPA DPP 131-18-0 C18H26O4 306.40 307 219 / 149 Diisopentyl phthalate DIPP 605-50-5 C18H26O4 306.40 307 219 / 149 Bis(2-ethoxyethyl) phthalate DEEP 605-54-9 C16H22O6 310.34 311 221 / 149 Benzyl butyl phthalate EU, EPA BBP 85-68-7 C19H20O4 312.37 313 149 / 205 Diphenyl phthalate DPhP 84-62-8 C20H14O4 318.32 319 225 / 77 Dicyclohexyl phthalate DCHP 84-61-7 C20H26O4 330.42 331 167 / 249 Bis(4-methyl-2-pentyl) phthalate BMPP 146-50-9 C20H30O4 334.46 335 167 / 251 Dihexyl phthalate DHXP 84-75-3 C20H30O4 334.46 335 149 / 233 Di-n-heptyl phthalate DHP 3648-21-3 C22H34O4 362.51 363 149 / 233 Bis(2-n-butoxyethyl) phthalate DBEP 117-83-9 C20H30O6 366.45 367 101 / 249 Bis(2-ethylhexyl) phthalate EU, EPA DEHP 117-81-7 C24H38O4 390.56 391 167 / 279 Di-n-octyl phthalate EU, EPA DNOP 117-84-0 C24H38O4 390.56 391 261 / 149 Diisononyl ortho-phthalate EU, EPA DINP 28553-12-0 C26H42O4 418.61 419 275 / 149 Diisodecyl ortho-phthalate EU, EPA DIDP 26761-40-0 C28H46O4 446.66 447 149 / 289 Bold EU EPA llegally used in food and beverages in Taiwan in 20114 Restricted use in toys and childcare articles in Europe2 Addressed in the phthalates action plan of the U.S. Environmental Protection Agency3 Table 2. Accuracy and linearity of six high priority phthalates Phthalate Accuracy (%) Regression DBP 97-103 0.9998 BBP 91-108 0.9999 DEHP 88-108 0.9989 DNOP 85-113 0.9982 DINP 92-111 0.9998 DIDP 94-109 0.9931 DPhP DPP DPrP DMEP DIPrP BBP DMP DEHP DBP/ DIBP DEEP DEP DAP DBEP DIPP DCHP BMPP DHXP DHP DNOP DINP www.spektrotek.com An example chromatogram of LC-MS/MS detection of 22 phthalates is shown in Figure 2. 90 Limits of detection (LOD), linearity and accuracy of quantitation were determined. Example chromatograms of six high priority phthalates (from 1 to 100 ng/mL) are shown in Figure 3a and 3b. For all targeted phthalates an LOD of at least 1 ng/mL was achieved. Please note that the final LOD greatly depends on background interferences which can greatly vary from laboratory to laboratory. DIDP Figure 2. Example LC-MS/MS chromatogram showing the separation and detection of 22 phthalates at a concentration of 10 ng/mL 1.5e5 6.2 4.9 1.4e5 Intensity, cps 4.0e4 3.5e4 3.0e4 1.1e5 8.0e4 1.0e5 7.0e4 6.0e4 3.8 4.1 5.0e4 2.5e4 1.0e4 0.0 2 4 6 Time, min Sample Name: "20ppb-sch" Sample ID: "" File: "1000620-1.wiff" Peak Name: "DBP 1" Mass(es): "279.000/149.000 Da" Comment: "" Annotation: "" 20 2.6e5 2.4e5 2 5.0 4 9.0e5 8.5e5 200 2 Time, min 6 6 Time, min Sample Name: "20ppb-sch" Sample ID: "" File: "1000620-1.wiff" Peak Name: "BBP 1" Mass(es): "313.000/149.000 Da" Comment: "" Annotation: "" 6.5e5 5.0e5 4.5e5 4.0e5 3.5e5 8.0e4 3.0e5 4 6 Time, min 6000.0 2000.0 4000.0 5.3 5.8 2000.0 0.0 8 2 4 1.6e5 2.5e4 8 BBP 1.8e5 3.0e4 6 Time, min 4.7 100 2.2e5 1.4e5 1.2e5 1.0e5 6.0e4 4.0e4 5000.0 3.7 4.2 4.3 0.0 8 8000.0 3000.0 8.0e4 5.0e4 2 1.0e4 4000.0 2.4e5 6.16.2 1.0e5 0.0 5000.0 4.7 1.0e4 1.5e5 2.0e4 20 1.6e4 1.4e4 1.2e4 1.5e4 2.0e5 4.0e4 6000.0 0.0 2 4 6 Time, min Sample Name: "100ppb-sch" Sample ID: "" File: "1000620-1.wiff" Peak Name: "BBP 1" Mass(es): "313.000/149.000 Da" Comment: "" Annotation: "" 8 2.0e4 2.5e5 3.8 4.4 6.0e4 7000.0 2.0e5 5.5e5 1.0e5 4 3.5e4 Intensity, cps Intensity, cps 6.0 6.1 1.2e5 2 4.0e4 6.0e5 1.4e5 8000.0 4.5e4 DIBP/DBP 7.0e5 1.6e5 1.8e4 1000.0 0 8 5.0e4 7.5e5 1.8e5 4 4.7 8.0e5 2.0e5 5.4 400 4.9 100 9.5e5 2.2e5 5.8 3.5 3.7 4.3 600 0.0 8 1200 800 1.0e4 6 Time, min Sample Name: "100ppb-sch" Sample ID: "" File: "1000620-1.wiff" Peak Name: "DBP 1" Mass(es): "279.000/149.000 Da" Comment: "" Annotation: "" 4.7 3.8 4.3 2.0e4 1.0e4 1400 4.7 10 2.2e4 1.1e4 1000 2.0e4 0.0 8 7.0e4 3.0e4 1.0e4 5000.0 8.0e4 2.6e4 2.4e4 9000.0 1600 9.0e4 5 Sample Name: "10ppb-sch" Sample ID: "" File: "1000620-1.wiff" Peak Name: "BBP 1" Mass(es): "313.000/149.000 Da" Comment: "" Annotation: "" 4.7 1.2e4 1800 4.0e4 2.0e4 1.3e4 2000 5.0e4 3.0e4 1.5e4 1.4e4 2200 6.2 5.8 6.0e4 4.0e4 2.0e4 2400 1.2e5 9.0e4 Intensity, cps 4.1 4.3 3.8 4.7 Sample Name: "5ppb-sch" Sample ID: "" File: "1000620-1.wiff" Peak Name: "BBP 1" Mass(es): "313.000/149.000 Da" Comment: "" Annotation: "" 4.7 1 2600 1.3e5 1.0e5 4.9 4.5e4 Sample Name: "1ppb-sch" Sample ID: "" File: "1000620-1.wiff" Peak Name: "BBP 1" Mass(es): "313.000/149.000 Da" Comment: "" Annotation: "" 5.0 10 1.6e5 1.1e5 5.0e4 Intensity, cps Sample Name: "10ppb-sch" Sample ID: "" File: "1000620-1.wiff" Peak Name: "DBP 1" Mass(es): "279.000/149.000 Da" Comment: "" Annotation: "" 4.7 Gıda ve Çevre Uygulamaları 1.2e5 4.6 5.5e4 Intensity, cps 5 1.3e5 Intensity, cps 6.0e4 Sample Name: "5ppb-sch" Sample ID: "" File: "1000620-1.wiff" Peak Name: "DBP 1" Mass(es): "279.000/149.000 Da" Comment: "" Annotation: "" 6.2 Intensity, cps 6.5e4 6.0 Intensity, cps 1 7.0e4 Intensity, cps Sample Name: "1ppb-sch" Sample ID: "" File: "1000620-1.wiff" Peak Name: "DBP 1" Mass(es): "279.000/149.000 Da" Comment: "" Annotation: "" 2 4 Time, min 6 2.0e4 0.0 8 2 4 Time, min 6 0.0 8 2 4 6 Time, min 8 Figure 3a. MRM chromatograms of the high priority phthalates DBP and BBP at 1, 5, 10, 20, and 100 ng/mL 3500 1.0e4 2500 8000.0 12.0 13.0 14.0 15.0 Time, min Sample Name: "20ppb-sch" Sample ID: "" File: "1000620-1.wiff" Peak Name: "DEHP 1" Mass(es): "391.000/167.000 Da" Comment: "" Annotation: "" 9.0 10.0 11.0 20 16.0 0.0 17.0 12.8 3.6e5 3.4e5 3.2e5 6.0e4 2.8e5 5.5e4 2.6e5 4.0e4 3.5e4 11.0 100 16.0 0.0 17.0 9.0 10.0 11.0 12.0 13.0 Time, min 14.0 15.0 16.0 13.0 14.0 15.0 Time, min Sample Name: "20ppb-sch" Sample ID: "" File: "1000620-1.wiff" Peak Name: "DNOP 1" Mass(es): "391.000/261.000 Da" Comment: "" Annotation: "" 12.8 1.0e4 11.6 5000.0 16.0 17.0 0.0 18.0 DEHP 2.5e4 2.0e4 14.4 5 Sample Name: "10ppb-sch" Sample ID: "" File: "1000620-1.wiff" Peak Name: "DINP 1" Mass(es): "419.200/127.000 Da" Comment: "" Annotation: "" 5.0e4 7000.00 4000.00 14.3 1.8e4 14.0 1.6e4 1.4e4 12.1 3500.00 3000.00 12.9 1.2e4 2000.00 1.0e4 1500.00 2000.0 0.00 0.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 Time, min Sample Name: "20ppb-sch" Sample ID: "" File: "1000620-1.wiff" Peak Name: "DINP 1" Mass(es): "419.200/127.000 Da" Comment: "" Annotation: "" 20 16.0 17.0 18.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 Time, min Sample Name: "100ppb-sch" Sample ID: "" File: "1000620-1.wiff" Peak Name: "DINP 1" Mass(es): "419.200/127.000 Da" Comment: "" Annotation: "" 13.0 4.0e5 3.8e5 3.6e5 8.0e4 100 16.0 17.0 18.0 7.0e4 2.8e5 6.0e4 2.6e5 5.0e4 4.5e4 4.0e4 10.0 11.0 12.0 13.0 14.0 Time, min 15.0 16.0 17.0 2.0e5 1.8e5 2.0e4 9.0 10.0 11.0 12.0 13.0 14.0 Time, min 15.0 16.0 17.0 18.0 0.0 2400 2200 2000 1600 1400 1200 15.7 13.4 1600 1400 1200 800 600 0 8 10 12 14 16 Time, min Sample Name: "100ppb-sch" Sample ID: "" File: "1000620-1.wiff" Peak Name: "DIDP 1" Mass(es): "447.000/149.000 Da" Comment: "" Annotation: "" 20 15.7 400 200 20 13.4 1000 0 18 14.7 1800 200 8 10 12 14 16 Time, min Sample Name: "20ppb-sch" Sample ID: "" File: "1000620-1.wiff" Peak Name: "DIDP 1" Mass(es): "447.000/149.000 Da" Comment: "" Annotation: "" 10 2600 400 100 2.2e4 18 20 8 10 12 14 Time, min 16 18 20 14.4 2.0e4 4000 DIDP 1.8e4 3500 1.6e4 1.4e4 2500 2000 1.2e4 1.0e4 8000.0 15.1 6.0e4 4.0e4 2800 0 1000 8.0e4 13.4 14.2 1.0e4 3000 6000.0 1.0e5 2.0e4 1.5e4 5000.0 3200 50 1500 1.2e5 2.5e4 18.0 Sample Name: "10ppb-sch" Sample ID: "" File: "1000620-1.wiff" Peak Name: "DIDP 1" Mass(es): "447.000/149.000 Da" Comment: "" Annotation: "" 800 13.3 1.4e5 3.0e4 17.0 18.0 5 1000 3000 2.4e5 2.2e5 1.6e5 3.5e4 18.0 Intensity, cps Intensity, cps 5.5e4 250 100 DINP 3.0e5 6.5e4 9.0 17.0 1800 15.7 4500 3.2e5 15.6 300 13.0 3.4e5 7.5e4 0.0 16.0 600 12.1 5000.0 16.0 12.8 2000 150 14.2 12.4 12.0 4000.0 500.00 15.0 1.0e5 2400 200 12.8 6000.0 1000.00 2.5e4 1.5e4 12.3 8000.0 3.0e4 2.0e4 12.5 1.0e4 11.8 2500.00 13.3 350 Intensity, cps Intensity, cps 4500.00 2.0e4 13.0 14.0 Time, min DNOP 2200 400 3.5e4 2.2e4 12.5 14.1 12.6 12.0 1.2e5 2600 15.4 14.3 4.0e4 2.4e4 12.7 6500.00 6000.00 11.0 1.4e5 0.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 Time, min Sample Name: "5ppb-sch" Sample ID: "" File: "1000620-1.wiff" Peak Name: "DIDP 1" Mass(es): "447.000/149.000 Da" Comment: "" Annotation: "" 18.0 450 2.6e4 5500.00 17.0 4.5e4 2.8e4 5000.00 1 550 16.0 9.0 10.0 11.0 12.0 13.0 14.0 Time, min 15.0 16.0 17.0 18.0 The accuracy was typically between 85 and 115% and quantitation was performed with linear regression and 1/x weighting. The coefficient of regression was above 0.999 for all analytes. Examples for accuracy and linearity are of six high priority phthalates are listed in Table 2. The unique scan function of MRM3 of the AB SCIEX QTRAP® 5500 system was investigated for its potential to differentiate isomeric species. An example of successfully differentiating between the isomers DIBP and DBP using the different fragmentation pattern in MRM3 mode is shown in Figure 4. Using traditional MRM mode both compounds had the exact same transitions and needed to be separated on the LC time scale. Thus, MRM3 allows speeding up the LC method if throughput requires. 4000.0 13.4 15.7 500 15.2 2000.0 0 8 10 12 14 Time, min 16 18 20 0.0 12.0 13.0 14.0 15.0 Time, min 16.0 17.0 18.0 XICo f+ MRM( 44 pairs):2 79.200/205.100 Da ID:D BP 1 from Sample1 5 (Std20...M 0% 2468 10 Time,m in XICo f+ MRM( 44 pairs):2 79.200/149.000 Da ID:D BP 2 from Sample1 5 (Std20...M MRM2 79/205 12 16 MRM2 79/149 2468 10 Time,m in XICo f+ MS3( 279.20),(223.10):E xp 2, 166.789t o1 67.289 Da from Sample3 (S...M DIBP 5.80 100% 14 ax.4 .5e5 cps. DBP 5.99 DIBP 100% 0% ax.2 .3e5 cps. DBP 5.99 DIBP 100% ... 7500.00 10 13.0 500 3.0e4 14.3 10.0 2.0e4 Intensity, cps 3.2e4 8500.00 8000.00 0.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 Time, min Sample Name: "1ppb-sch" Sample ID: "" File: "1000620-1.wiff" Peak Name: "DIDP 1" Mass(es): "447.000/149.000 Da" Comment: "" Annotation: "" 17.0 5.5e4 12.0 9.0 4.0e4 5000.0 13.0 0.0 18.0 13.2 6.0e4 1.0e4 16.0 17.0 8.0e4 12.8 Intensity, cps 3.4e4 12.0 1.6e5 3.0e4 ... 1 13.0 11.0 1.8e5 1.5e4 0.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 Time, min Sample Name: "5ppb-sch" Sample ID: "" File: "1000620-1.wiff" Peak Name: "DINP 1" Mass(es): "419.200/127.000 Da" Comment: "" Annotation: "" 17.0 10.0 100 2.2e5 3.5e4 4.0e4 16.0 9.0 2.4e5 2.0e4 0.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 Time, min Sample Name: "1ppb-sch" Sample ID: "" File: "1000620-1.wiff" Peak Name: "DINP 1" Mass(es): "419.200/127.000 Da" Comment: "" Annotation: "" 14.4 2000.0 13.0 14.0 15.0 16.0 Time, min Sample Name: "100ppb-sch" Sample ID: "" File: "1000620-1.wiff" Peak Name: "DNOP 1" Mass(es): "391.000/261.000 Da" Comment: "" Annotation: "" 13.2 12.8 4000.0 2.0e5 6.0e4 13.3 14.0 12.6 12.0 4.0e4 8.0e4 1.5e4 11.0 20 5.0e4 4.5e4 1.0e5 2.0e4 13.8 12.6 2000.0 10.0 1.2e4 6000.0 3000.0 9.0 1.4e4 8000.0 4000.0 0 17.0 1.6e4 1.0e4 14.5 12.8 5000.0 500 8.0 1.6e5 1.2e5 0.0 10.0 1.8e5 1.4e5 8000.0 1000.0 9.0 2.0e5 2.5e4 8.5e4 5000.0 8.0 2.2e5 3.0e4 12.5 12.0 1.8e4 9000.0 6000.0 13.7 13.2 10 2.0e4 1.0e4 7000.0 12.7 1000 13.3 13.9 Intensity, cps Intensity, cps Intensity, cps 4.5e4 9.0e4 12.6 2.2e4 1.1e4 12.0 2.4e5 5.0e4 2000 1500 1.0e4 1.4e4 1.2e4 2500 12.4 12.0 13.0 14.0 15.0 Time, min Sample Name: "100ppb-sch" Sample ID: "" File: "1000620-1.wiff" Peak Name: "DEHP 1" Mass(es): "391.000/167.000 Da" Comment: "" Annotation: "" 3.0e5 9.5e4 2.0e4 1.5e4 Intensity, cps 8.0 6.5e4 9000.00 2.5e4 2.4e4 1.3e4 13.2 3000 2000.0 500 1.00e4 11.7 13.9 4000.0 1000 9500.00 13.7 6000.0 1500 Intensity, cps 1.2e4 3000 2000 Intensity, cps 1.4e4 2.6e4 12 14 16 ax.3 .0e6 cps. MRM3 279/223/167 0% 24 68 10 Time,m in XICo f+ MS3( 279.20),(223.10):E xp 2, 148.710t o1 49.210 Da from Sample3 (S...M DIBP 5.82 100% 0% 24 68 12 14 16 ax.7 .9e6 cps. MRM3 279/223/149 Time,m in 10 12 14 16 Figure 4. Differentiation of DIBP and DBP using the different fragmentation pattern in MRM3 mode in comparison to MRM mode www.spektrotek.com 4000 2.8e4 1.5e4 Intensity, cps 4500 1.6e4 5 Sample Name: "10ppb-sch" Sample ID: "" File: "1000620-1.wiff" Peak Name: "DNOP 1" Mass(es): "391.000/261.000 Da" Comment: "" Annotation: "" 13.2 Intensity, cps 5000 1.6e4 3500 3.0e4 1.8e4 Intensity, cps Intensity, cps 2.0e4 1.7e4 4000 3.5e4 2.2e4 13.9 12.5 11.8 5500 Intensity, cps 6000 Sample Name: "5ppb-sch" Sample ID: "" File: "1000620-1.wiff" Peak Name: "DNOP 1" Mass(es): "391.000/261.000 Da" Comment: "" Annotation: "" 14.4 1 4500 4.0e4 Intensity, cps 13.5 6500 7.0e4 Sample Name: "1ppb-sch" Sample ID: "" File: "1000620-1.wiff" Peak Name: "DNOP 1" Mass(es): "391.000/261.000 Da" Comment: "" Annotation: "" 12.8 10 4.5e4 2.4e4 7000 7.5e4 Sample Name: "10ppb-sch" Sample ID: "" File: "1000620-1.wiff" Peak Name: "DEHP 1" Mass(es): "391.000/167.000 Da" Comment: "" Annotation: "" 12.8 Intensity, cps 2.6e4 7500 0 5 2.8e4 ... 8000 3.0e4 ... 8500 Sample Name: "5ppb-sch" Sample ID: "" File: "1000620-1.wiff" Peak Name: "DEHP 1" Mass(es): "391.000/167.000 Da" Comment: "" Annotation: "" 12.7 1 9000 Intensity, cps Sample Name: "1ppb-sch" Sample ID: "" File: "1000620-1.wiff" Peak Name: "DEHP 1" Mass(es): "391.000/167.000 Da" Comment: "" Annotation: "" 91 Gıda ve Çevre Uygulamaları Another possibility to enhance selectivity of detection is the use of Differential Mobility Spectrometry (DMS). The new AB SCIEX SelexION™ technology uses a planar DMS cell attached between the curtain plate and orifice plate of the mass spectrometer. Ions are separated based on difference in their high field and low field mobility.SV and CoV are optimized to correct the trajectory of a desired ion. In addition, a chemical modifier can be introduced to alter separation characteristics. BMPP DHXP CoV= 3.0 CoV= -2.0 Figure 5a. Separation of the isomers BMPP and DHXP, both phthalates can be separated in the LC and DMS space resulting in increased selectivity DMSo ff BMPP DMSo n( CoV= 3.0) DMSo n( CoV= -2.0) The example presented in Figure 5a and 5b highlights the unique selectivity achieved using DMS. The isomers BMPP and DHXP were separated using different CoV. Acetonitrile was introduced as chemical modifier to enhance separation. Summary A fast and sensitive LC-MS/MS method was developed for the detection of 22 phthalates in food and beverage samples. All possible precautions were taken to reduce chemical background. This included the avoidance of plastic material, careful handling of laboratory glassware, systematic evaluation of different LC solvents, a simple extraction procedure, and the use of a trap column inside the LC system. All 22 phthalates were detected with an LOD of 1 ng/mL or lower, good accuracy, and linearity using two MRM transitions per analyte. Characteristic EPI spectra can be used to further increase confidence of compound identification based on characteristic MS/MS spectra and library searching. In addition, the unique scan function MRM3 of the QTRAP® 5500 system and the new AB SCIEX SelexION™ technology were successfully used to separate isomeric species enhancing the selectivity of LC-MS/MS detection. Acknowledgement The authors wish to thank Ching-Hsin Tung (Food and Drug Administration, Taiwan), Dr. Sheng-Che Lin (Tainan city health bureau, Taiwan) and Dr. Dunming Xu (CIQ Xiamen, China) for their assistance and advice during method development. DHXP References BMPP DHXP 1.R.A. Rudel and L.A. Perovich: Atmospheric Environment 43 (2009) 170-181 2.DIRECTIVE 2005/84/EC on ‘phthalates in toys and childcare articles 3.EPA ‘Phthalates Action Plan Summary’ 2010 4.Taipei Times: ‘FOOD SCARE WIDENS: New chemical adds to food scare’ May 29, 2011 5.Zhuokun Li et al.: J. Chromatogr. Sci. 49 (2011) 338-343 www.spektrotek.com Figure 5b. Selective detection of BMPP and DHXP by compound specific CoV for each analyte, acetonitrile was introduced as chemical modifier 92 For Research Use Only. Not for use in diagnostic procedures. © 2011 AB SCIEX. The trademarks mentioned herein are the property of AB Sciex Pte. Ltd. or their respective owners. AB SCIEX™ is being used under license. Publication number: 3690411-01 Gıda ve Çevre Uygulamaları Quantitative Analysis and Identification of Migrants in Food Packaging Using LC-MS/MS Cécile Busset1 and Stephen J. Lock2 1 AB SCIEX, Paris (France); 2 AB SCIEX, Warrington, Cheshire (U.K.) Introduction Packaging improves the quality and safety assurance of food, especially from micro-organisms, biological and chemical contaminants. Packaging is therefore an essential component for the food industry and the manufacturing processes. However, over the last couple of years there has been a growth in the number of materials and substances used in food packaging so in order to improve food safety a migration study for compounds is becoming more important to prevent the use of compounds that can migrate into food. Currently, an upper limit for the overall migration of 60 mg/kg or 10 mg/dm2 has been set by the European Union (EU).1 In the USA, the regulations for food packaging material are more complex, because the types of raw and processed foods, and conditions of use are separated.2 In this study three compounds: ITX, Irgacure, and TRP are investigated (Figure 1). ITX is a mixture of 2-Isopropylthioxanthone and 4-Isopropylthioxanthone. Irgacure contains Irgacure 819 (Phenylbis (2,4,6-trimethylbenzoyl) phosphine oxide. Both are used as photo-initiators in UV cured inks. TRP (Tri(propylene glycol) diacrylate is an ingredient of cured inks. The data presented discusses linearity of response, robustness and the use of the Multiple Reaction Monitoring combined with Enhanced Product Ion scanning (MRM-EPI) using an AB SCIEX 3200 QTRAP® LC/MS/MS System as a way of gaining additional information for the presence of these migrants. Experimental Sample Extraction Standards were prepared in the solvent composition at the start of the LC run (water/acetonitrile + 0.1% formic acid 70/30). Three sorts of real samples were analyzed: a packaging cap with only decoration (inks), a packaging cap with only varnish and a packaging cap with decoration and varnish. 1 dm2 of each sample was extracted with acetonitrile. The extracted sample was evaporated and reconstituted in initial mobile phase before analysis. 2-ITX4 O CH3 CH3 S S H3C Irgacure CH3 TRP CH2 CH3 LC O H3C H3C O CH3 O H2C P O CH3 O CH3 O O O H3C O CH3 H3C Figure 1. Investigated migrants from food packaging www.spektrotek.com An Agilent 1200 system containing a binary pump flowing at 250 µL/min, autosampler, and a column oven set at 20°C were used with a Hypersil BDS C18 column (5 µm, 100 x 2 mm). 10 µL injections of standards and extracts were separated using a gradient (Table 1) of mobile phase A (0.1 % formic acid in water) and B (0.1 % formic acid in acetonitrile). 5 minutes column equilibration time was used between runs. -ITX O 93 Step Time (min) 0 5.0 (%) A 70 (%) B 30 1 2.0 5 95 2 7.0 5 95 3 7.1 70 30 4 12.0 70 30 Compound ITX Irgacure TRP MS/MS All experiments were performed on an AB SCIEX 3200 QTRAP® LC/MS/MS System with Turbo V™ source at 450°C using Electrospray Ionization (ESI) in positive polarity. The following source conditions were used: 25 psi 5000 V 40 psi 50 psi Medium 450 °C +EPI (255.13) Charge (+0) CE (20) FT (250): Exp2 ,5 .572 t...M 255.2 50 2002 50 3003 m/z, Da +EPI (255.13) Charge (+0) CE (35) FT (250): Exp2 ,5 .531 t...M 213.1 1.00e5 184.1 50 1001 50 50 213.1 50 3003 m/z, Da +EPI (255.13) Charge (+0) CE (35) CES( 15)F T( 250):E xp ...M 2002 213.1 184.2 1.0e5 www.spektrotek.com 50 94 1001 152.2 50 400 450 255.2 66 35 184.1 66 61 419.2 147.2 21 23 419.2 119.2 21 57 301.2 113.2 21 13 500 ax.1 .2e5 cps. 50 400 quant.rdb (ITX 1): "Linear" Regression ("1 / x" weighting): y = 5.88e+003 x + 3.14e+003 (r = 0.9960) 450 500 ax.4 .6e4 cps. CE =5 0V 184.1 1001 50 CE =3 5V 2002 152.2 50 213.1 255.1 Figure 3 shows calibration lines that were obtained from standards analyzed in MRM-EPI mode with each standard analyzed in duplicate. The ‘r’ values obtained from these calibration lines (0.5 – 500 ng/mL for ITX, 2 – 1000 ng/mL for Irgacure and 0.5 – 1000 ng/mL for TRP) were greater than 0.996 when a linear fit with 1/x weighting was applied. 255.2 50 3003 m/z, Da +EPI (255.13) Charge (+0) CE (50) FT (250): Exp2 ,5 .562 t...M 5.0e4 ax.2 .6e5 cps. CE =2 0V 213.1 1001 255.1 Standards at 10 ng/mL were used to build a mass spectral library. An example of reference spectra is shown in Figure 2. Standards were used over a range 0.1 to 1000 ng/mL to produce calibration lines. 50 400 400 2.0e6 1.0e6 0 50 100 150 200 250 300 350 400 Concentration, ng/mL quant.rdb (Irga 1): "Linear" Regression ("1 / x" weighting): y = 226 x + 109 (r = 0.9994) 500 ax.1 .8e5 cps. 50 ITX r = 0.9960 3.0e6 0.0 450 CE =3 5V with CES= 15V 239.2 215.6 2002 50 3003 m/z, Da Area, counts 50 DP (V) CE (V) Results and Discussion Analyses were based on two different Information Dependent Acquisition (IDA) experiments using Multiple Reaction Monitoring (MRM) in the survey scan and dependent Enhanced Product Ion (EPI) scanning. MRM transitions were previously optimized (see Table 2). A dwell time of 100 ms was used for each transition and the pause time was set to 5 ms. 2.0e5 Q3 Mass (amu) MS/MS spectra, in comparison to dedicated and fixed Collision Energies, and thus greatly enhancing the quality of library searching. The scan speed of the EPI scans were 4000 amu/s and Dynamic Fill Time (DFT) was used for all EPI scans. In both experiments peaks were identified in the MRM survey using Dynamic Background Subtraction (DBS). Identification of analytes in the real samples was based on searching against the mass spectral library created from MRM-EPI analyses of standards. 450 500 Figure 2. An example of the effect of collision energy on the EPI spectra of a migrant standard used for generating library data (10 ng/mL ITX standard) Area, counts Curtain Gas (CUR) IonSpray Voltage (IS) Gas1 Gas2 CAD Gas Temperature Q1 Mass (amu) Experiment 1 triggered three EPI scans at collision energies (CE) of 20; 35 and 50 V. Experiment 2 used a single dependent scan with a CE of 35 V and Collision Energy Spread (CES) of 15 V. CES was found to give more reproducible and richer 450 500 0 100 200 300 400 500 600 700 800 900 Concentration, ppb quant.rdb (TRP 1): "Linear" Regression ("1 / x" weighting): y = 3.27e+003 x + 274 (r = 0.9993) 1000 Irgacure r = 0.9994 2.4e5 2.0e5 1.0e5 0.0 Area, counts Gıda ve Çevre Uygulamaları Figure 1. Investigated migrants from food packaging Table 1. LC gradient TRP r = 0.9993 3.0e6 2.0e6 1.0e6 0.0 0 100 200 300 400 500 600 Concentration, ng/mL 700 800 900 1000 Figure 3. Calibration lines obtained from ITX, Irgacure and TRP with r values > 0.996 (no internal standard used) XICo f+ MRM( 6p airs): 301.2/113.2D a fromS ample7 (std2... 5.4e4 4.5e4 4.0e4 3.5e4 Intensity,c ps Compound Transition ITX 255.1/213.1 0.5 8.2 Irgacure 419.2/147.2 0.844 5.2 2.0e4 TRP 301.2/113.2 0.515 9.5 1.5e4 % CV (n=5) Max. 920.0c ps. XIC. .. 5.7 800 400 200 0 0.5n g/mL ITX S/N =1 8.4S 100 2n g/mL Irgacure 50 0 46 Time,m in XIC. .. 5.6 Irgacure ITX 5000. 0 0.0 1.02 .0 3.04 .0 Time,m in 5.06 .0 7.0 Figure 4. 10 µL injection of migrants standards in initial mobile phase 4.1 Table 4. Estimates for limits of detection (LOD), limits of quantitation LOQ), and linearity for food migrants /N =2 3.2 250 200 0.5n g/mL TRP 150 100 50 0 46 Time,m in 2.5e4 Max. 337.5c ps. 338 300 Intensity,c ps 600 Intensity,c ps Intensity, cps S/N =4 0.4 Max. 145.0c ps. 145 3.0e4 1.0e4 Figure 4 shows a typical trace obtained from the analysis of migrant standard prepared in the initial mobile phase, all migrants were detected below 1 ng/mL as shown in Table 4 with Figure 5 giving the sensitivity of migrants at a concentration of 0.5 ng/mL (ITX and TRP) and 2 ng/mL (Irgacure). XIC. .. TRP 5.0e4 Table 3. Reproducibility data from 5 replicate injections Concentration (ng/mL) Max. 5.4e4c ps. 4.3 Gıda ve Çevre Uygulamaları Repeatability and %CV were assayed by 5 repeat injections of a standard close to the limits of quantitation of each analyte and results are summarized in Table 3 with all coefficients of variation <10% (no internal standard was used). 46 Time,m in Figure 5. Signal to noise (S/N) of low level migrant standards (S/N calculated using peak-to-peak algorithm) Compound S/N (at ng/mL) LOD (ng/mL) LOQ (ng/mL) Linearity (ng/mL) ITX 40.4 (0.5) 0.04 0.12 0.12 - 500 Irgacure 18.4 (2.0) 0.33 0.5 0.5 - 1000 TRP 23.2 (0.5) 0.2 0.6 0.6 - 1000 This MRM data was then used to quantify migrants in cap extracts, examples of various extracts are given in Figures 6 and concentrations of migrants were summarized in Table 5. 2.5e5 Max. 2.6e5 cps. Deco* 5.5 XIC of +MRM (6 pairs) ... 1.4e5 Irgacure Intensity, cps Intensity, cps 1.5e5 1.0e5 0.0 1.0 2.0 3.0 4.0 5.0 Time, min XIC of +MRM (6 pairs) ... 1.5e5 6.0 7.0 Max. 1.6e5 cps. 6.0 7.0 8.0 3.0 4.0 5.0 Time, min 6.0 5.5 Max. 7.1e4 cps. Irgacure 2.0e4 1.2e5 Irgacure 7.0 5.5 Varnish 5.2 ITX TRP 1.0 2.0 3.0 4.0 5.0 Time, min XIC of +MRM (6 pairs) ... 2.5e5 6.0 7.0 Intensity, cps Intensity, cps 2.0e5 1.0e5 5.0e4 ITX TRP 5.5 Deco + varnish Irgacure 1.0 2.0 3.0 4.0 5.0 Time, min 6.0 7.0 8.0e4 6.0e4 4.0e4 2.0e4 0.0 ITX TRP 1.0 2.0 8.0 Max. 1.3e5 cps. 1.0e5 1.5e5 0.0 2.0 Figure 6. A comparison of food packaging samples extracted with acetonitrile and where the acetonitrile extract of the same sample had been evaporated to dryness and reconstituted in mobile phase* (cap with decoration (top), cap sealed with varnish (middle), and cap with decoration and sealed with varnish (bottom)) 4.0e4 0.0 Max. 3.1e5 cps. Deco + varnish* 1.0 ITX 6.0e4 Intensity, cps Intensity, cps 3.0 4.0 5.0 Time, min XIC of +MRM (6 pairs) ... 3.0e5 TRP ITX TRP 2.0 4.0e4 7.1e4 5.0e4 1.0 6.0e4 XIC of +MRM (6 pairs) ... Irgacure 1.0e5 0.0 8.0e4 0.0 5.5 Varnish* 1.0e5 2.0e4 ITX TRP Irgacure 1.2e5 2.0e5 5.0e4 Max. 1.4e5 cps. 5.5 Deco 3.0 4.0 5.0 Time, min 6.0 7.0 www.spektrotek.com XIC of +MRM (6 pairs) ... 95 Gıda ve Çevre Uygulamaları Table 5. Quantitation results from real samples (* sample was evaporated to dryness and reconstituted in the same volume of mobile phase A to improve HPLC peak shape) ITX (ng/dm²) Irgacure (ng/ dm²) TRP (ng/dm²) Deco 4.43 6320 5.39 Deco* 4.96 4347 5.77 Varnish 0.08 3940 0.67 Varnish* 0.54 2100 0.69 Deco + varnish 4.65 6750 3.97 Deco + varnish* 4.26 3687 3.99 Extract To further identify the migrant the automatically acquired EPI spectra was searched against a mass spectral library previously created with spectra obtained from 10 ng/mL standards. DBS enabled the acquisition of high quality MS/MS spectra even for co-eluting compounds. The Purity Fit shown in Table 6 indicated if the spectrum, in the extract, was a good match for the library spectrum, generally a fit above 70% indicated a positive identification of the migrant in the extract. Summary The LC-MS/MS method developed can be used for quantitation of migrants in food packaging material. The sensitivity levels of the 3200 QTRAP® system were high enough to detect migrants at 0.01 mg/kg in extracts. A mass spectral library containing of EPI spectra at different standardized Collision Energy and Collision Energy Spread values can then be used to identify the compound at the required matrix detection levels, enabling direct injection analysis on extracts. Acknowledgements We acknowledge Mr Philippe Tourelle and Gilles Jarry of the society Impress Metal Packaging (France) for supplying extracts and samples. References 1 European Commission – Health & Consumer Protection Directorate general - SANCO D3/AS D(2005) 2 FDA 21 CFR 170.100 - Submission of a premarket notification for a food contact substance (FCN) to the Food and Drug Administration (FDA). Code of Federal Regulations (December 2005) Table 6. The Purity Fit (%) results taken from the spectra obtained from contaminants in real samples when compared with those in a library of spectra of standards (* sample was evaporated to dryness and reconstituted in the same volume of mobile phase A to improve HPLC peak shape) www.spektrotek.com Extract 96 ITX % Irgacure % TRP % Deco 78 88 81 Deco* 87 28 31 Varnish 63 60 98 Varnish* 34 81 44 Deco + varnish 97 44 65 Deco + varnish* 91 57 95 For Research Use Only. Not for use in diagnostic procedures. © 2010 AB SCIEX. The trademarks mentioned herein are the property of AB Sciex Pte. Ltd. or their respective owners. AB SCIEX™ is being used under license. Publication number: 1830210-01 Lily Sanchez 1, Lee Yoo 1, Mike Wehner 1, and Matthew R. Noestheden 2 1 Orange County Water District, Fountain Valley, California (USA); 2AB SCIEX Concord, Ontario (Canada) Overview Gıda ve Çevre Uygulamaları Analysis of Perfluoroalkyl Acids Specified Under the UCMR3 Using the QTRAP® 6500 LC/MS/MS System This application note highlights the sensitivity and precision of the QTRAP® 6500 LC/MS/MS system for the analysis of perfluoroalkyl acids (PFAAs) in drinking water. The PFAAs analyzed are a subset of EPA Method 537 (Determination of Selected Perfluorinated Alkyl Acids in Drinking Water by Solid Phase Extraction and Liquid Chromatography/Tandem Mass Spectrometry [LC/MS/MS])1, comprising the PFAAs outlined in the Unregulated Contaminant Monitoring Rule 3 Assessment Monitoring list (UCMR3).2 Statistically validated method detection limits range from 1.4 – 35.9 ng/L. Introduction PFAAs are ubiquitous chemicals that are used in a variety of industrial and consumer products including carpets, cookware, paints, shampoos, food packaging, etc.3 PFAAs have high thermal and chemical stability and are highly resistant to degradation in aquatic environments. Typical concentrations of PFAAs found in various water sources range from pg/L to µg/L levels. Within the scope of EPA 537 there are 14 PFAAs (Table 1). Of these 14, six are specified in the UCMR3 Assessment Monitoring list: PFBS, PFHpA, PFHxS, PFOA, PFOS and PFNA. This paper describes the performance of the QTRAP® 6500 system for the evaluation of the PFAAs in the UCMR3 using the guidelines laid out in EPA 537. Table 1. PFAAs in EPA Method 537. Those compounds in bold type face are included in the UCMR3 Assessment Monitoring list. Abbreviation CASRN UCMR3 MRL(ng/L) PFHxA 307-24-4 - Perfluoroheptanoic acid PFHpA 375-85-9 10 Perfluorooctanoic acid PFOA 335-67-1 20 Perfluorononanoic acid PFNA 375-95-1 20 Perfluorodecanoic acid PFDA 335-76-2 - Perfluoroundecanoic acid PFUnA 2058-94-8 - Perfluorododecanoic acid PFDoA 307-55-1 - Perfluorotridecanoic acid PFTrDA 72629-94-8 - Perfluorotetradecanoic acid PFTA 376-06-7 - Perfluorobutanesulfonic acid PFBS 375-73-5 90 Perfluorohexanesulfonic acid PFHxS 355-46-4 30 Perfluorooctanesulfonic acid PFOS 1763-23-1 40 N-methyl perfluorooctane-sulfonamidoacetic acid NMeFOSAA - - N-ethyl perfluorooctane-sulfonamidoacetic acid NEtFOSAA - - www.spektrotek.com Compound Perfluorohexanoic acid 97 Gıda ve Çevre Uygulamaları Experimental Sample preparation and data processing were carried out according to EPA Method 537 without deviation (EPA 537 sections 10, 11 and section 12), unless specifically noted. All required quality control parameters (EPA 537 section 9.3) were met or exceeded for each batch of calibrators and/or samples analyzed. Quantitation was performed using MultiQuant™ 3.0 software. All calibration curves had a 1/x concentration weighting and were forced through the intercept as specified in EPA 537 section 10.2.6. For carboxylic acids 13C2-PFOA was used as the internal standard (ISTD), while all sulfonic acids used 13C4-PFOS as the ISTD. The surrogates used were 13C2-PFHxA and 13C2-PFDA, both of which were fortified into samples at 40 ng/L. Table 3. ESI source parameters Analyses were carried out using the SCIEX QTRAP® 6500 system coupled with an Agilent 1260 HPLC (degasser, binary pump and column oven) with an Eksigent ULC 100 HTC-xt autosampler. The mobile phase consisted of 20mM ammonium acetate with methanol. Gradient parameters are provided in Table 2. All samples were analyzed with a 5 µL injection (vs. 10 µL in EPA 537) onto an Atlantis T3 analytical column (150 x 2.1 mm, 5 µm) heated to 35˚C. An Atlantis T3 column (50 x 2.1mm, 5 µm) was also used as a delay column. Table 4. MRM transitions, retention time (RT), Declustering Potential (DP), and Collision Energy (CE) for target PFAAs, ISTDs (*) and surrogates (^) Table 2. LC gradient conditions Time (min) Flow Rate (µL/min) A (%) B (%) www.spektrotek.com Value Polarity negative Curtain Gas 30 psi Collision Gas 12 psi IonSpray Voltage -4500 V Temperature 400˚C GS1 30 psi GS2 30 psi Compound Q1 Q3 RT DP (V) CE (V) PFBS 1 298.8 79.8 6.8 -60 -68 PFBS 2 298.8 98.9 6.8 -60 -36 PFHpA 1 362.8 318.8 10.7 -5 -12 PFHpA 2 362.8 168.8 10.7 -5 -22 PFHxS 1 398.9 79.7 10.7 -70 -86 PFHxS 2 398.9 98.7 10.7 -70 -74 PFOA 1 412.8 368.9 12.1 -5 -14 PFOA 2 412.8 168.7 12.1 -5 -24 PFOS 1 498.9 79.8 13.2 -60 -122 PFOS 2 498.8 98.9 13.2 -60 -98 PFNA 1 462.9 418.9 13.3 -30 -14 462.9 218.9 13.3 -30 -24 0.0 450 60 40 PFNA 2 1.0 450 60 40 13C2-PFOA* 414.9 369.8 12.1 -20 -14 6.0 450 35 65 13C4-PFOS* 502.9 79.8 13.3 -10 -102 6.1 350 35 65 13C2-PFHxA^ 314.8 269.8 8.9 -15 -12 14.0 350 10 90 13C2-PFDA^ 514.9 469.9 14.3 -25 -16 15.0 350 10 90 15.1 350 60 40 16.0 450 60 40 18.0 450 60 40 The QTRAP® 6500 system was operated in negative polarity Electrospray Ionization (ESI) using Multiple Reaction Monitoring (MRM) and the Scheduled MRM™ algorithm. ESI source and MRM parameters are outlined in Tables 3 and 4. 98 Parameter Results and Discussion EPA 537 permits deviation from the LC conditions provided in the method. To that end, the method presented here used an Atlantis T3 column (5 µm) and a gradient that was designed to increase method throughput, while still providing sufficient chromatographic resolution (Figure 1). Figure 1. Final chromatography using a 20mM ammonium acetate / methanol mobile phase. Targets are shown on top with branched isomers of PFHxS and PFOS indicated. ISTDs (13C2-PFOA and 13C4-PFOS) and surrogates are shown on the bottom (SUR1 = 13C2-PFHxA and SUR2 = 13C2-PFDA) Gıda ve Çevre Uygulamaları The correlation (r) value for all calibration curves were > 0.99 (Figure 3). Figure 3. Calibration lines and regression equations for all six PFAAs For PFHxS and PFOS the presence of additional small peaks points to the presence of branched isomers, which are known contaminants in the technical PFAAs suggested for purchase in EPA 537. When present, these isomers were summed into a combined value for the branched and linear isomers. This adheres to section 12.4 of EPA 537. Initial Calibration The Initial Calibration (EPA 537 section 10.2) was carried out using the UCRM3 Assessment Monitoring list as a guide, with the lowest calibration level for each target compound corresponding to ½ of the UCMR3 reporting limit (Table 1). Owing to the high sensitivity of the QTRAP® 6500 system these low ng/L levels were easily obtained for all compounds, with Signal-to-noise values (S/N) of 50 to 1700 after 1-point Gaussian smoothing using a peak-to-peak algorithm (Figure 2). All calibration acceptance criteria specified in EPA 537 section 10.2 were met. Initial Demonstration of Capability To demonstrate method suitability for EPA 537 it is necessary to perform an Initial Demonstration of Capability (IDC) following the Initial Calibration. In addition to the ongoing QC criteria specified in EPA 537 section 9.3, adhering to the IDC necessitates the following: 1.Extraction of four Laboratory Fortified Blanks (LFB) to assess Accuracy (±30%) and Precision (RSD <20%). Fortification should correspond to a mid-level calibrator. 2.PFBS and 13C2-PFHxA (surrogate) must have peaks Asymmetry Factors between 0.8 to 1.5. 3.Extraction of seven LFBs that must meet a Prediction Interval of Results (PIR) of 50 to 150% to define the Method Reporting Limits (MRL). 4.Determination of Method Detection Limits (MDL). This is an optional part of the IDC that requires seven replicates prepared over three days. In this study the MRL replicates were used. 5.All targets compounds in a Laboratory Reagent Blank (LRB) and Field Reagent Blank (FRB) after the Initial Calibration must quantify to <1/3 of MRL. 6.Evaluate method accuracy (±30%) using a Quality Control Sample (QCS) that is sourced from a vendor other than the one that provided the calibration samples. Each of these criteria are discussed below. www.spektrotek.com Figure 2. Signal-to-noise values (S/N) for the low calibrators. Low calibration levels for each compound are ½ of the UCMR3 reporting limits 99 Gıda ve Çevre Uygulamaları Accuracy and Precision Method Reporting Limits Fortification for evaluation of Accuracy and Precision was done at 200 ng/L. This corresponded to calibration level four of six. For the four replicates extractions analyzed the relative standard deviations (RSD) ranged from 3.1 to 9.8%, while the recoveries ranged from 89 to 96% (Table 5). All of these values were within the EPA 537 specified ranges of < 20% RSD and ±30% recoveries. As the current method was designed to meet the UCMR3 reporting limits, the levels used to fortify the seven extractions required for the calculation of the Method Reporting Limit (MRL) correspond to the UCMR3 reporting limits. To be a valid MRL the results of the seven replicate extractions must meet a set of statistical criteria, which are outlined in detail in section 9.2.5 of EPA 537. Briefly, the calculations are: Table 5. Method performance Compound Precision (%) Accuracy (%) QCS (%) Batch 1 Batch 2 RPD (%) PFBS 3.5 91 71.2 87.6 5.65 PFHpA 6.1 89 86.0 109.0 0.20 PFHxS 3.3 93 95.3 116.0 4.81 PFOA 4.7 96 96.8 101.4 3.84 PFOS 3.1 92 91.9 111.5 5.11 PFNA 9.8 91 72.8 103.6 9.21 Asymmetry Factor To ensure acceptable chromatography of the two earliest eluting peaks in the method, the user is required to calculate the Asymmetry Factor (AS) for every batch of samples analyzed. In the present method this corresponded to PFBS and 13C2PFHxA. The AS was calculated from a mid-level calibrator of 200 ng/L. Figure 4 demonstrates that the AS for PFBS (1.31) and 13C2-PFHxA (1.37) meet the EPA 537 acceptance criteria of: AS must fall in the range of 0.8 to 1.5. The AS values were calculated automatically using MultiQuant™ software version 3.0. The PIR must be within 50 and 150% to be a validated MRL. Using the above equations on samples that had been fortified at the UCMR3 reporting limits yielded acceptable PIR values (Table 6). Based on these calculations and the UCMR3 reporting limits that were used as sample fortification guidelines, all compounds in the current method were validated. Table 6. MRL and MDL determination and statistical verification Fortification Level (ng/L) Lower PIR (%) Upper PIR (%) MDL (ng/L) PFBS 90 81 86 56 PFHpA 10 99 99 75 PFHxS 30 8.3 1.6 144 PFOA 20 75 77 98 PFOS 40 114 109 35.9 PFNA 20 1.4 3.1 7.0 Compound Method Detection Limits www.spektrotek.com The Method Detection Limit (MDL) was calculated using the following equation: 100 Figure 4. Asymmetry Factor for PFBS (left) and 13C2PFHxA (right). The example on the left demonstrates how MultiQuant™ software 3.0 calculates AS. Using the MRL extracts, the calculated MDLs ranged from 1.4 to 35.9 ng/L. It is conceivable that the QTRAP® 6500 could detect lower concentrations based on the S/N for the low calibrators (Figure 2). In the present method, all target compounds were observed well under 1/3 of their respective MRLs. Quality Control Sample and Ongoing QC Results The Quality Control Sample (QCS) was evaluated at 200 ng/L for all compounds to verify the validity of the Initial Calibration. All compounds met the ±30% accuracy criterium for the QCS samples (Table 5). Three components of the ongoing QC requirements specified in EPA 537, the LRB, Asymmetry Factor and QCS, have already been discussed as they are also specified components of the IDC. In addition, the following ongoing QC criteria were required: 1.Laboratory fortified blank (LFB) should be analyzed with each batch. Acceptance criteria will depend on the fortified concentration, which should change from batch-to-batch. 2.Internal standard (ISTD) responses should not deviate more than 50% from the average ISTD response in the initial calibration and the ISTD in all samples should be 70-140%of the response in the latest continuing calibration check (CCC). 3.Surrogate recovery should be ±30% of the expected value. 4.Laboratory fortified sample matrix (LFSM) and a duplicate (LFSMD) should yield accuracies within ±30% of expected values and the relative percent difference (RPD) between the LFSM and LFSMD must be < 50%. 5.A field reagent blank (FRB) should not contain residue levels > 1/3 of the calculated MRLs. Figure 5. LRB (top) and FRB (bottom) results. Both LRB and FRB results showed background levels that were all < 1/3 of the calculated MRLs. The FRB matrix was finished tap water. Table 6. LRB and FRB background levels in comparison to the MRL (ng/L) 1/3 MRL PFBS PFHpA PFHxS PFOA PFOS PFNA 30 3.3 10 6.7 13.3 6.7 LRB - - 0.06 - 0.2 0.2 FRB 0.3 0.3 0.4 0.8 0.3 0.2 Conclusion The QTRAP® 6500 LC/MS/MS system is a sensitive and robust platform for the analysis of PFAAs in drinking water. The demonstrated MRLs easily meet the UCMR3 reporting limits. Gıda ve Çevre Uygulamaları A Laboratory Reagent Blank (LRB) is a system blank that has been taken through the entire extraction procedure to assess for background contamination. Following the Initial Calibration a LRB was assessed. Once MRLs were established, the LRB was evaluated with regards to the background levels relative to the calculated MRLs (Figure 5). The first four of these criteria were all met or exceeded in all samples discussed herein. The RPD results ranged from 0.2 to 9.2, well within the ±30% RPD permitted in EPA 537 (Table 5). The FRB matrix in this study was finished tap water. Figure 5 demonstrates that all compounds were < 1/3 of the calculated MRLs, which meets EPA 537 criteria and further validates the RPD results since there was negligible background PFAA contamination in the sample matrix. There is also criteria for CCCs (low CCC accuracy 50-150%; mid/high CCC accuracy 70-130%; surrogate accuracy 70130%) that were met for all samples analyzed. References 1.EPA Method 537 ‘Determination of Selected Perfluorinated Alkyl Acids in Drinking Water by Solid Phase Extraction and Liquid Chromatography / Tandem Mass Spectrometry LC/MS/MS)’ version 1.1 (2009) http://www.epa.gov/microbes/documents/Method%20 537_FI NAL_rev1.1.pdf 2.Unregulated Contaminant Monitoring Rule 3 (UCMR3) http://water.epa.gov/lawsregs/rulesregs/sdwa/ucmr/ ucmr3/ 3.M.F. Rahman et al.: ‘Behavior and Fate of Perfluoroalkyl substances (PFAs) in Drinking Water Treatment: A Review.’ Water Research 50 (2014) 318-340 © 2015 AB Sciex. For Research Use Only. Not for use in diagnostic procedures. The trademarks mentioned herein are the property of AB Sciex Pte. Ltd. or their respective owners. AB SCIEX™ is being used under license. Publication number: 11110215-01 Abbreviations As – asymmetry factor CASRN – chemical abstracts registration number CCC – continuing calibration check CE – collision energy DP – declustering potential EPA – environmental protection agency ESI – electrospray ionization FRB – field reagent blank HRPIR – half range prediction interval of results IDC – initial demonstration of capability ISTD – internal standard LFB – laboratory fortified blank LFSM – laboratory fortified sample matrix LFSMD – laboratory fortified sample matrix duplicate LRB – laboratory reagent blank MDL – method detection limit MRL – method reporting limit MRM – multiple reaction monitoring PFAAs – perfluoroalkyl acids PIR – prediction interval of results QCS – quality control sample RPD – relative percent difference RSD – relative standard deviation RT – retention time S/N – signal-to-noise UCMR3 – unregulated contaminant monitoring rule 3 assessment monitoring list www.spektrotek.com Laboratory Reagent Blank 101 Gıda ve Çevre Uygulamaları LC-(DMS)-MS/MS Analysis of Emerging Food Contaminants Quantitation and Identification of Maleic Acid in Starch-Rich Foods Fanny Fu1 and André Schreiber2 AB SCIEX Taipei (Taiwan), 2AB SCIEX Concord, Ontario (Canada) 1 Experimental Sample Preparation Simple liquid extraction of food samples was performed using the following procedure developed by the Taiwan FDA4 Introduction Recent findings (in May 2013) of maleic acid in foods, such as tapioca starch, tapioca balls, rice noodles, and hotpot ingredients, caused the recall of many starch-based food products in Asia.1-3 Maleic acid is usually not used in manufacturing of food products, and it is an unapproved food additive. • Weigh 1 g of homogenized samples into polypropylene centrifuge tubes (50 mL). • Add 25 mL of 50% methanol. • Shake vigorously for 30 min using a shaker. • Add 20 mL of 0.5 N KOH. • Vortex and let stand for two hours. • Add 3 mL of 5 N HCl and bring to a final volume of 50 mL with deionized water. • Vortex and centrifuge. • Transfer an aliquot of 100 μL of the extract into an autosampler vial and dilute with 900 μL of water resulting in a total dilution factor of 500. Further dilution of the extract might be necessary if the sample is heavily contaminated. LC Maleic acid and fumaric acid were analyzed using an Agilent 1260 system with a gradient on a Poroshell EC C18 column Occasional consumption of maleic acid at low levels does not pose any significant health risk; however, long term consumption of high levels of the compound can cause kidney damage. The substance has been traced to a modified starch containing maleic anhydride, a chemical used in the production of food packing materials. Reliable analytical methods are needed to detect maleic acid in foods to identify potential trace contamination in food production, processing, and packaging and to ensure consumer health. www.spektrotek.com Maleic acid is cis-butenedioic acid (Figure 1) and is closely related to fumaric acid (trans-butenedioic acid). The LC-MS/ MS-based method presented here can be used to confidently identify and accurately quantify maleic acid even in presence of fumaric acid. 102 OH O O OH O maleic acid OH HO O fumarica cid Figure 1. Chemical structures of maleic acid (left) and fumaric acid (right) maleic acid 3.0e6 Intensity, cps 2.5e6 2.0e6 1.5e6 fumaric acid 5.24 1.0e6 5.0e5 0.0 0.00 .5 1.01 .5 2.02 .5 3.03 .5 Figure 1. LC-MS/MS analysis of maleic acid and fumaric acid 4.04 Time,m in .5 5.05 .5 6.06 .5 7.07 .5 8.0 LC-MS/MS data were processed using the MultiQuant™ software version 2.1. Gıda ve Çevre Uygulamaları 4.59 3.5e6 (150 x 3.0 mm, 2.7 μm) and a mobile phase of water containing 0.1% formic acid (A) and methanol containing 0.1% formic acid (B). The flow rate was set to 0.3 mL/min. Gradient details are listed in Table 1. A sample volume of 10 μL was injected. Time (min) Flow (mL/min) 0.0 98 1.0 5.0 7.0 7.5 16.0 A (%) B (%) 2 Compound Q1 (amu) Maleic acid 1 Maleic acid 2 Fumaric acid 1 115 Fumaric acid 2 0.3 5 95 98 2 MS/MS The AB SCIEX QTRAP® 5500 was used with the Turbo V™ source and an Electrospray Ionization (ESI) probe. The mass spectrometer was operated in Multiple Reaction Monitoring (MRM) mode using negative polarity. Two selective MRM transitions were monitored using the ratio of quantifier and qualifier ion for identification (Table 2). In addition, SelexION™ differential mobility separation was investigated to increase selectivity, improve Signal-to-Noise (S/N), and increase confidence in identification. Q3 (amu) CE (V) 71 -11 32 -28 71 -11 32 -28 Results and Discussion An example chromatogram of the detection of maleic acid and fumaric acid is shown in Figure 1. First, the limit of quantitation (LOQ), linearity, and repeatability were evaluated using injections of maleic and fumaric acid standards ranging from 0.5 to 200 ng/mL and spiked matrix samples. Both compounds had LOQ values in the sub ng/mL range, allowing a sample extract dilution to minimize possible matrix effects. Linearity was excellent with a regression coefficient of 0.999 for quantifier and qualifier transitions. The accuracy values ranged from 89.6 to 107.6% across the linear dynamic range (Figure 2). www.spektrotek.com Table 1. LC gradient used for the separation of maleic acid and fumaric acid Table 2. MRM transitions and retention times of maleic acid and fumaric acid 103 Gıda ve Çevre Uygulamaları blank (115/71) 0.5 1.0 2.0 blank (115/32) 0.5 1.0 2.0 Figure 2. Chromatograms of the quantifier and qualifier transition of maleic acid of the blank sample and at concentration of 0.5, 1.0, and 2.0 ng/mL (top) and calibration lines from 0.5 to 200 ng/mL (bottom) Repeatability was evaluated using 7 injections at 5 ng/mL. The coefficient of variation (%CV) was 2.9% for the quantifier transition (115/71) and 1.8% for the qualifier transition (115/32). A number of food samples were analyzed for maleic and fumaric acids, including noodles, tapioca starch, and processed foods. The analysis of a 20 ppb spiked blank extract gave 91.9% recovery. Table 3. Maleic acid findings in different food samples www.spektrotek.com Compound 104 Q1 (amu) Q3 (amu) Noodles 0.18 0.052 Tapioca starch 4790 0.057 Processed food 36.7 0.055 20 ppb spike in blank extract 18.4 (91.9% recovery) 0.057 CE (V) 0.049 Figure 3. Results for maleic acid in different food samples, the ‘Multicomponent’ query in MultiQuant™ software was used to identify target analytes based on their MRM ratio In a last experiment we investigated the use of SelexION™ differential mobility separation (DMS) to increase selectivity and confidence in identification. SelexION™ uses a planar differential mobility device that attaches between the curtain plate and orifice plate of the QTRAP® 5500 system (Figure 4). An asymmetric waveform, called Separation Voltage (SV), combined with a Compensation Voltage (CoV) is used to separate ions based on difference in their mobility.5-6 Chemical modifiers, like isopropanol, methanol, or acetonitrile, can be introduced into the transport gas via the curtain gas to alter the separation characteristics of analytes. SV and CoV were optimized for maleic and fumaric acids to separate these two isomers with identical MRM transitions. Best separation and highest selectivity was achieved using an SV of 3600 V and CoV of -8.0 V and -10.5 V, respectively (Figure 5). The added selectivity resulted in reduced background interferences. The presence of an MRM signal in combination with an optimized CoV value can also be utilized as an additional ‘identification point’ to increase confidence in data quality. Figure 4. SelexION™ differential mobility separation (DMS) Summary The method and data presented here showcase the fast, easy, and accurate solutions for the analysis of maleic acid and fumaric acid in starch-rich foods by LC-MS/MS and LCDMS-MS/MS. The AB SCIEX QTRAP® 5500 systems provide excellent sensitivity and repeatability for this analysis, with minimal sample preparation allowing maximized throughput for the analysis of many samples in a short time period. Maleic acid was quantified in different food samples. MRM ratio calculations in MultiQuant™ software used for compound identification. SelexION™ differential mobility separation was also used successfully to further increase selectivity and to clearly differentiate between isomeric species adding another ‘identification point’ and increased confidence to the results. Gıda ve Çevre Uygulamaları Table 3 and Figure 3 show quantitative and qualitative results. MRM ratios were calculated using the ‘Multicomponent’ query in MultiQuant™ software. References maleic acid fumarica cid Figure 5. Compensation voltage (CoV) ramps for maleic and fumaric acid, best separation and highest selectivity was achieved using CoV of -8.0 V and -10.5V, respectiviely XIC of -MRM (2 pairs): 115.000/71.000 Da ID: Maleic acid 1 from Sample 6 (2mix-10ppb) of 20130705 MA.wiff (Turbo Spray), Smoothed Intensity, cps DMS off maleic acid 1.5e5 1.0e5 5.0e4 0.0 0.0 fumaric acid 3.36 1.0 2.0 3.0 6.15 4.0 5.0 6.0 10.44 8.0 9.0 10.0 Time, min XIC of -MRM (30 pairs): 115.000/71.000 Da ID: CoV -7.5 from Sample 1 (2mix) of 20130705-DMS.wiff (Turbo Spray), Smoothed 7.0 11.19 11.0 11.86 12.58 12.0 13.00 13.0 13.97 14.20 14.79 14.0 15.0 Max. 2.8e4 cps. For Research Use Only. Not for use in diagnostic procedures. © 2013 AB SCIEX. The trademarks mentioned herein are the property of AB Sciex Pte. Ltd. or their respective owners. AB SCIEX™ is being used under license. Publication number: 7830213-01 4.90 2.8e4 2.5e4 Intensity, cps Max. 2.0e5 cps. 5.01 2.0e5 1.http://www.fda.gov.tw/EN/newsContent. aspx?ID=9918&chk =454d1df8-1f26-43a3-9a855540dc07caae 2.http://www.ava.gov.sg/NR/rdonlyres/9253E7B2-E57D4992-982C-1304E73748D6/26074/Pressrelease_ Recallofstarchba sedproductsfromTaiwan.pdf 3.http://www.fda.gov.ph/advisories/food/76474-fdaadvisory-on-maleic-acid 4.http://www.fda.gov.tw/TC/siteList.aspx?sid=3503 5.B.B. Schneider, T. R. Covey, S.L. Coy, E.V. Krylov, E.G. Nazarov: Int. J. Mass Spectrom. 298 (2010) 45-54 6.B.B. Schneider, T. R. Covey, S.L. Coy, E.V. Krylov, E.G. Nazarov: Anal.Chem. 82 (2010) 1867-1880 maleic acid 2.0e4 DMS on (CoV = – 8.0 V) 1.5e4 1.0e4 5000.0 0.0 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 Time, min XIC of -MRM (30 pairs): 115.000/71.000 Da ID: CoV -10.5 from Sample 1 (2mix) of 20130705-DMS.wiff (Turbo Spray), Smoothed 12.0 13.0 14.0 15.0 Max. 5175.0 cps. DMS off fumaric acid 4000 (CoV = – 10.5 V) 3000 2000 1000 0 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 Time, min 9.0 10.0 11.0 12.0 13.0 14.0 15.0 Figure 6. Selective detection of maleic acid and fumaric acid using LC-DMS-MS/MS, the added selectivity resulted in lower background noise and interferences and increased confidence in identification www.spektrotek.com 6.04 5000 Intensity, cps 15.69 11.0 105 Gıda ve Çevre Uygulamaları Analysis of Endocrine Disruptors, Pharmaceuticals, and Personal Care Products in River Water Christopher Borton1, Loren Olson2 1 AB SCIEX, Golden, CO; 2 AB SCIEX, Foster City, CA Overview Endocrine disrupting compounds (EDC) encompass a wide range of pollutants, including pharmaceuticals and personal care products (PPCP), pesticides, and steroids to name a few. EDC are thought to disrupt the endocrine function of mammals and fish, and as a result their biological effects are a growing concern. In order to properly assess the effects of these compounds on our environment, it is necessary to accurately monitor their presence. A method is presented for analyzing up to 100 EDC and PPCP compounds using LC-MS/MS. This method is a straight forward approach for the quantitation and identification of these compounds with excellent sensitivity and ruggedness. Introduction A wide range of endocrine disrupting compounds were determined in river water sampled near a water treatment plant. Compound levels upstream and downstream from the plant were quantified and compared. A combination of Solid Phase Extraction (SPE) and LC-MS/MS analysis in Multiple Reaction Monitoring (MRM) mode achieved low parts per trillion detection limits across multiple compound classes with a linear range of 3-4 orders of magnitude for all compounds. Both positive and negative ionization modes were utilized. APCI and ESI ionization techniques were investigated using the DuoSpray™ ionization source. Electrospray ionization with polarity switching on the Turbo V™ source yielded the broadest coverage across compound classes. Two MRM transitions were monitored for each compound to achieve sensitive and specific quantitation as well as ion ratio identification. A total of 160 MRM transitions were monitored on a chromatographic time scale. Two sets of river water samples were collected from a rural river (River 1) and an urban city river (River 2) both upstream and downstream of a sewage treatment plant in North America. The upstream and downstream samples for these two areas were then compared to determine environmental impact www.spektrotek.com Experimental 106 An AB SCIEX API 4000™ LC/MS/MS System equipped with a Shimadzu Prominence autosampler and binary LC pump was used. Ionization was achieved by Electrospray Ionization (ESI) and Atmospheric Pressure Chemical Ionization (APCI) using the DuoSpray™ and Turbo V™ ionization sources. All compounds were monitored using two Multiple Reaction Monitoring (MRM) transitions per compound. Each MRM transition had a dwell time of 5ms/sec. The most sensitive, first MRM transition was used for quantitation while the second MRM transition was used for qualitative identification using ion ratio determination. See Figure 3 and 4 for examples. The total cycle time for the method with polarity switching was approximately 3 seconds. Instrument conditions were as follows: CUR 20, CAD 7, GS1 75, GS2 65, IS 5000, and TEM 600. Chromatography was performed on a Phenomenex Ultracarb (20) C18 250 X 4.5 mm 5 μm reverse phase column at 30°C. The total flow rate was 600 μL/min and used a gradient starting at 95% A and held for 1 minute before ramping to 50% over 24 minutes. At a run time of 25 minutes the gradient was then ramped to 4% A over 10 minutes and held for an additional 10 minutes. Re-equilibration time was 10 minutes for a total run time of 55 minutes. Eluent A was 0.01% formic acid in water and eluent B was 0.01% formic acid in acetonitrile. Laboratory control samples and matrix spike samples were prepared to monitor extraction efficiency. After conditioning with 20 mL of methanol followed by 40 mL of water, 1.0 L of sample was loaded onto the cartridge at a flow rate of 25.0 mL/min. After loading, nitrogen was then pulled through the cartridge for 15 minutes to allow for sample drying. Then 5.0 mL of acetonitrile was added to the SPE bed and allowed to stand for 15 minutes. The SPE cartridges were then eluted at gravity flow into a 12 mL amber vial. Finally, water was added to the extract to a final volume of 10.0 mL. Samples were kept at 4°C ± 1°C until analysis. Figure 1 shows a schematic of the sample preparation procedure. Quantifier Compound Type Qualifier Quantifier Q1 Q3 Q1 Acetaminophen Analgesic 152 110 152 65 Q3 Estradiol Compound Estrogen Type 255 Q1 159 Q3 Ketoprofen Analgesic 255 105 255 77 Ethinylestradiol Estrogen 271 133 Estrogen 331 97 Qualifier Q1 Q3 Codeine Analgesic 300 215 300 17α-Hy165 droxy-progesterone Hydrocodone Analgesic 300 199 300 171 Progesterone Estrogen 315 109 315 97. Androstenedione Androgen 287 97 287 97 Equilin Estrogen replacement 269 211 269 157 Testosterone Androgen 289.5 97 289 109 Diethylstilbestrol Estrogen replacement 269 135 269 107 Dilantin Anti-convulsant 253 182 TCEP Flame retardant 285 223 285 239 Meprobamate Anti-anxiety 219 158 219 115 Simazine Herbicide 202 132 202 124 Sulfadiazine Antibiotic 251 92 251 65 Herbicide 207 72 Sulfamethoxazole Antibiotic 254 92 254 108 Chlorotoluron Herbicide 213 72 213 140 Sulfathiazole Antibiotic 256 156 256 92 Herbicide 216 174 216 68 Sulfamerazine Antibiotic 265 92 265 108 Chloridazon Herbicide 222 104 222 92 Sulfamethizole Antibiotic 271 156 271 92 Herbicide 230 146 230 188 Sulfamethazine Antibiotic 279 92 279 124 Diuron Herbicide 233 72 233 46 Sulfachlorop-yridazine Antibiotic 285 92 285 65 Herbicide 253 171 253 85 Trimethoprim Antibiotic 291 230 291 123 Bromacil Herbicide 261 205 261 188 Sulfadimethoxine Antibiotic 311 156 311 92 Metazachlor Herbicide 278 134 278 210 Ciprofloxacin Antibiotic 332 288 Metolachlor Herbicide 278 134 284 175 Penicillin G Antibiotic 335 176 335 217 DEET Insect repellant 284 252 Amoxicillin Antibiotic 366 114 366 208 Bezafibrate Lipid regulator 192 119 Lincomycin Antibiotic 407 126 407 359 Diazepam Muscle-relaxant 362 139 362 121 Doxycycline Antibiotic 445 428 445 339 Norethisterone Ovulation Inhibitor 285 154 285 193 Tetracycline Antibiotic 445 410 445 154 Theophylline Stimulant 299 109 299 91 Oxytetracycline Antibiotic 461 426 461 443 Theobromine Stimulant 181 124 181 96 Chlortetracycline Antibiotic 479 462 479 154 Caffeine Stimulant 181 138 181 110 Isoproturon Atrazine Propazine Hexazinone Gıda ve Çevre Uygulamaları Table 1. Compound list including MRM transitions (positive polarity) Table 1 (continued). Compound list including MRM transitions (negative polarity) Type Q1 Q3 Q1 Q3 Compound Oxybenzone Type Q1 Q3 Q1 Q3 Virginiamycin Antibiotic 526 109 526 67 Sunscreen 229 151 229 105 Monensin Antibiotic 694 461 694 479 Sildenafil Virility regulator 475 100 475 283 Erythromycin Antibiotic 735 158 735 576 Vardenafil Virility regulator 490 72 490 114 Roxithromycin Antibiotic 838 679 838 158 Salicylic Acid Skin care, acne 139 61 139 79 Tylosin Antibiotic 917 174 917 772 Cotinine 177 80 177 98 Meclocycline Sulfosalinicyclate Antibiotic 477 460 204 56 Sulfadimethoxine Nicotine metabolite 4-AminoantiAminopyrine pyrine Antibiotic 311 156 Ketorolac metabolite 256 105 256 77 Sulfachloro-Pyridazine Antibiotic 285 156 Fenoprop Anti-inflammatory 269 181 269 85 Norifloxacin Antibiotic 320 276 MeclofenamHerbicide ic acid 296 278 296 243 Enroflofacin Antibiotic 360 316 Piroxicam 332 95 332 121 Fluoxetine Antidepressant 310 148 Nifedipine 347 315 Carbamazepine Anti-seizure 194 358 139 358 75 Pentoxifylline Blood viscosity 279 reducing agent 615 361 237 181 237 279 Dihydropyridine calcium channel blocker 193 Indomethacin Anti-inflammatory 138 Diatrizoate Radiocontrasting agent www.spektrotek.com Compound 107 Gıda ve Çevre Uygulamaları Quantifier Compound Type Qualifier Q1 Q3 Q1 Acetylsalicylic acid Analgesic 179 137 179 93 Q3 Compound Ibuprofen Analgesic 205 161 205 Naproxen Analgesic 229 183 229 Warfarin Anti-coagulant 307 161 Diclofenac Anti-arthritic 294 250 Carbadox Antibiotic 261 122 2,4-D Triclosan (Irgasan) Antibiotic 287 35 Clofibric acid Chloramphenicol Antibiotic 321 257 Gemfibrozil Anti-cholesterol 249 121 Quantifier Qualifier Q1 Q3 Q1 Q3 Type Estrogen 269 159 Estradiol Estrogen 271 155 Estriol Estrogen 287 307 250 Ethinylestradiol Estrogen 295 294 214 Tetrabromo-bisphenol A Flame retardant 443 103 443 239 Herbicide 219 161 219 125 Metabolite of lipid regulator 213 127 213 85 X-ray contrast agent 790 127 189 101 189 145 321 Estrone 152 Iopromide 2,4-Dichloro- benzoic acid Results and Discussion Quantitative optimization in Analyst® Software was utilized to streamline method development for this large list of compounds. The final method contains the analytes and MRM transitions listed in Table 1. XICo f+ MRM (137 pairs): Exp 1, 138.901/60.800 Da from Sample8 (100 ppb STD)o fD ata... Filter SPE new Max. 8417.7 cps. ESI positive 5.0e6 Intensity, cps 1L Riverw ater 6.6e6 6.0e6 Condition 4.0e6 3.0e6 2.0e6 1.0e6 1L filtered water SPE ready 10 mL extract 0.0 51 01 52 02 53 03 54 Time, min XICo f -MRM( 24 pairs): Exp2 , 178.814/136.900 Da from Sample8 (100 ppb STD) ofD ataE...M 2.2e6 5 ax. 6.7e4 cps. ESI negative 2.0e6 1.5e6 Intensity, cps 50 Li njection 04 1.0e6 5.0e5 0.0 www.spektrotek.com 108 52 XIC of -MRM (24 pairs): Exp 2, 17... 02 53 Time,m in Max. 6.8e4 cps. 03 54 04 5 XIC of -MRM (24 pairs): Exp 2, 30... 4.0e4 2.0e4 Acetylsalicylic acid 0.0 22 24 Time, min XIC of -MRM (24 pairs): Exp 2, 32... 2.0e4 1.5e4 20 In tensity, cps 6.0e4 26 28 Max. 2.2e4 cps. 24.6 1.0e4 24 26 Time, min XIC of -MRM (24 pairs): Exp 2, 21... 1.5e6 1.0e6 22 Clofibric acid 28 Max. 1.9e6 cps. 33.2 30 Warfarin 5.0e5 1.0e6 Diclofenac 38 Max. 1.4e6 cps. 36.0 5.0e5 0.0 32 34 36 Time, min XIC of -MRM (24 pairs): Exp 2, 20... 1.26e5 1.00e5 Ibuprofen 38 40 Max. 1.3e5 cps. 36.7 5.00e4 5.0e5 0.0 Max. 2.3e6 cps. 34.4 1.0e6 Intensity, cps 1.9e6 20 1.5e6 1.4e6 Chloramphenicol 5000.0 0.0 2.0e6 0.0 30 32 34 36 Time, min XIC of -MRM (24 pairs): Exp 2, 29... Intensity, cps In tensity, cps 23.1 Intensity, cps A calibration curve was prepared in water/acetonitrile (1/1) at the following concentrations, 0.2, 0.4, 1.6, 3.1, 6.3, 25, and 100 ng/mL. Linearity was achieved for all monitored compounds. Examples of linearity are shown in Figure 4. Samples were collected and extracted using the procedure described above. To monitor the extraction efficiency of the sample preparation a laboratory control sample (LCS) was prepared. This sample consisted of tap water being free of all target compounds. This water was then spiked with all of the target analytes. The final concentration of all analytes in the LCS was 20 ng/L. Recoveries in the LCS ranged from 30 to 115% across all compounds. Based on these results, it was determined that the sample preparation procedure used is adequate for a full screen of the compounds reported. For future work, once the final sample list is determined, surrogate compounds will be selected for each compound class to closely monitor the sample preparation procedure. If possible, a deuterated surrogate will be chosen for each compound class and will only be used to monitor sample preparation efficiency and not instrument variability. It has been shown in previous work that an internal standard, used to monitor instrument variability, may introduce more error in the quantitation results of this large list of compounds. 01 Figure 2. Polarity switching is utilized to encompass a large list of analytes – 100 ng/mL standard injection Intensity, cps Figure 1. Sample preparation procedure for solid phase extraction 51 32 34 Time, min 36 38 0.00 32 34 36 38 Time, min 40 Figure 3. Overlay of two MRM transitions used for six selected analytes. The most sensitive transition in blue for each analyte is used for quantitation. The area ratio of the second MRM in red is used for identification Analyte LLOQ (ng/L) ppt Analyte LLOQ (ng/L) ppt DEET 11.6 Propazine 0.46 Ketoprofen 3.3 Progesterone 3.9 Sulfadiazine 13.0 Trimethoprim 6.4 Fluoxetine 280 Androstenedione 4.7 2,4-D 2.3 Erythromycin 14.0 Ketorolac 0.0 5.0e5 MRM ratio = 0.576 Max. 3.6e4 cps. MRM ratio 22.2= 0.525 1.0e6 5.0e5 5.0e5 0.0 22 Ketorolac MRM ratio = 0.576 Mepobramate MRM ratio = 0.077 32.8 30 32 34 Time, min XIC 0.0 of +MRM (137 pairs): Exp 1, 2... Max. 1.3e6 cps. 18 20 22 24 26 Time, min 22.7 1.3e6 5.0e5 0.0 28 Mepobramate MRM ratio = 0.077 18 20 22 24 Time, min 2.0e4 3.0e5 1.0e4 2.0e5 0.0 1.0e5 26 Ketorolac MRM ratio = 0.525 Mepobramate 30.2 MRM ratio = 0.071 30 Time, min 0.0 XIC of +MRM (137 pairs): Exp 1, 2... 18 20 22 24 Time, min 22.7 4.0e5 Intensity, cps Intensity, cps 1.0e6 26 Inten sity, cps Intensity, cps Inten sity, cps cps Intensity, 30.2 24 26 28 30 32 20 22 24 26 28 30 32 Time, min Time, min 32.8 XIC 0.0 of +MRM (137 pairs): Exp 1, 2... Max. 1.4e6 cps. XIC of +MRM (137 pairs): Exp 1, 2... Max. 3.6e4 cps. 0.0 26 28 30 32 34 26 28 30 32 34 Time, min Time,30.2 min 27.6Exp 1, 2... 1.4e6 XIC of +MRM (137 pairs): Exp 1, 2... Max. 1.3e6 cps. XIC 3.8e4 of +MRM (137 pairs): Max. 4.0e5 cps. 3.0e4 22.7 22.7 1.0e6 1.3e6 4.0e5 20 3.0e5 2.0e5 26 28 34 0.01.0e7 0 20 40 60 80 Concentration, n g/mL 8.0e6 EDC an d PPCP calibration .rdb (Carbamazepine 2... 6.0e6 2.8e64.0e6 Carbamazepine 2 40 60 Concentration, n g/mL 80 Area, cou nts Sulfathiazole 1 0 20 40 60 Concentration, n g/mL 80 Sulfathiazole 1 2.00e6 1.00e7 100 4.00e6 8.7e6 8.0e6 2.00e6 7.0e6 6.0e60.00 0 20 40 60 80 Concen tration, ng/mL EDC and PPCP calibration .rdb (Sulfathiazole 2)… 4.0e6 100 5.0e6 Sulfathiazole 2 0.0 6.0e6 0 5.0e6 20 40 60 Concen tration, n g/mL 80 20 40 60 80 Concentration, n g/mL 2.0e7 EDC an d PPCP calibration.rdb (2,4-D 1): "Li… 1.5e7 3.5e7 1.0e7 3.0e7 5.0e6 100 4.0e6 3.0e6 100 2,4-D 1 2.5e7 0.0 0 20 40 60 Concentration, ng/mL 2.0e7 EDC an d PPCP calibration.rdb (2,4-D 2): "Li... 1.5e7 Sulfathiazole 2 3.0e6 8.7e6 2.0e6 8.0e6 1.0e6 7.0e6 100 2,4-D 1 EDC an d PPCP calibration.rdb (Su lfathiazole 1)…) 6.00e6 4.00e6 1.20e7 80 0.0 100 2.5e7 0 Area, counts 8.00e6 20 40 60 Concentration, n g/mL EDC an d PPCP calibration.rdb (2,4-D 1): "Li… 1.0e6 3.5e7 5.0e5 3.0e7 5.0e5 1.20e7 0.0 2.0e6 0.0 0 1.5e6 100 100 Carbamazepine 2 2.5e6 5.0e5 EDC an d PPCP calibration.rdb (Su lfathiazole 1)…) 1.00e7 1.0e62.8e6 Area, cou nts 20 0.0 0 20 40 60 80 Concentration, n g/mL EDC an d PPCP calibration .rdb (Carbamazepine 2... 1.5e6 Area, counts Area, cou nts 100 2.0e6 Theophylline 2 0 1.0e6 100 2.5e62.0e6 0 20 40 60 80 Concentration, n g/mL 1.0e6 EDC and PPCP calibration .rdb (Th eophyllin.e 2)… 80 3.9e6 1.0e7 3.5e6 5.0e6 3.0e6 2.5e6 0.0 100 2,4-D 2 0 20 40 60 Concentration, ng/mL 2.0e6 EDC an d PPCP calibration.rdb (2,4-D 2): "Li... 1.5e6 3.9e6 1.0e6 3.5e6 5.0e5 3.0e6 0.0 0 20 40 60 80 2.5e6 Concentration, ng/mL 2.0e6 80 100 2,4-D 2 100 1.5e6 1.0e6 2.0e6 Figure 5. Example calibrations for selected analytes 1.0e6 5.0e5 0.0 32 Area, counts Theophylline 2 0.0 Carbamazepine 1 6.0e61.6e7 Area, counts Area, counts Area, counts 100 1.5e6 0.0 Max. 1.4e5 cps. 30 32 28 Erythromycin 27.6 MRM ratio = 0.917 3.0e4 Ketorolac 5.0e4 2.0e4 0.0 1.0e4 5.0e6 0 20 40 60 80 4.0e6 Concentration, n g/mL 3.0e6 EDC and PPCP calibration .rdb (Th eophyllin.e 2)… 2.0e6 1.8e6 1.0e6 1.8e6 5.0e5 1.5e6 1.0e7 EDC and PPCP calibration .rdb (Carbamazepine 1… 8.0e6 4.0e61.4e7 2.0e61.2e7 20 40 60 80 Concen tration, ng/mL EDC6.00e6 and PPCP calibration .rdb (Sulfathiazole 2)… MRM ratio = 0.917 1.0e5 3.8e4 MRM ratio = 0.965 Theophylline 1 7.0e6 1.0e6 6.0e6 0.0 0.00 8.00e6 0 Erythromycin 22.2 XIC of +MRM (137 pairs): Exp 1, 7... 0.0 20 22 24 26 Time,24.8 min 1.4e5 XIC of +MRM (137 pairs): Exp 1, 2... 3.0e6 8.0e6 2.0e6 Carbamazepine 1 1.2e7 0 20 40 60 Concen tration, n g/mL 80 100 0.0 0 20 40 60 Concentration, ng/mL 80 100 Max. 4.0e5 cps. 26 Mepobramate MRM ratio = 0.071 1.0e5 0.0 18 20 22 24 Time, min 26 Figure 4. Measured ion ratios of three select analytes (Erythromycin, Ketorolac, and Meprobamate) in the standard and the upstream and downstream sample of river 2, respectively. Despite low level detection like that seen for Ketorolac in the River 2 sample, the ion ratios of the two MRM transitions still confirm with the standard. MRM ratio calculation was done automatically using the Analyst® Reporter software www.spektrotek.com Max. 1.4e6 cps. 5.0e4 Intensity, cps Inten sity, cps Intensity, cpssity, cps Inten Erythromycin Max. 2.0e5 cps. 28 30 32 1.4e7 Area, cou nts 5.0e4 XIC 0.0 of +MRM (137 pairs): Exp 1, 7... 20 22 24 26 24.7min Time, 2.0e5 XIC of +MRM (137 pairs): Exp 1, 2... 1.5e5 30.2 1.4e6 1.0e5 1.0e6 5.0e4 1.0e5 1.6e7 Area, cou nts MRM ratio = 0.965 Theophylline 1 5.0e6 EDC and PPCP calibration .rdb (Th eophyllin.e 1)… 4.0e6 Area, cou nts Erythromycin 24.8 EDC and PPCP calibration .rdb (Carbamazepine 1… 6.0e6 Area, coun ts 1.0e5 1.4e5 Intensity, cps Intensity, cps 1.5e5 24.7 7.0e6 Area, coun ts 2.0e5 8.0e6 Area, cou nts Detection of each analyte was identified using the area ratio of two MRM’s collected. For River 2, Erythromycin, Ketorolac, and Meprobamate along with 20 other compounds were detected in either the upstream and downstream samples. Ion ratios on the samples were compared to the ion ratios measure on the standards for compound identification. See Figure 5. Final results of River 1 and River 2 are shown in XIC of +MRM Max. 2.0e5 cps. XIC of +MRM (137 pairs): Exp 1, 7... Max. 1.4e5 cps. Table 3.(137 pairs): Exp 1, 7... EDC and PPCP calibration .rdb (Th eophyllin.e 1)… Area, cou nts Result of both River 1 and River 2 showed detection of several compound classed. As expected, a significantly larger number of compound classes were detected in the urban river (River 2). Lower limit of quantitation (LLOQ) was determined to be the level at which a peak is detected with a signal to noise of at least 10:1. This level was theoretically determined using the standards and assuming linearity down to zero concentration. Table 2 shows a selected list of compounds and their LLOQ. All compounds had LLOQ in the sub part per billion (ppb) range. Gıda ve Çevre Uygulamaları Table 2. Lower Limits of Quantitation (LLOQ) of selected analytes 109 Gıda ve Çevre Uygulamaları Table 3. Eight EDC and PPCP compounds were detected in the samples of river 1. Despite the rural nature of this location, low level of these widely used herbicides and pharmaceuticals are still detected. As expected a larger list of compounds were detected in the river 2 samples because of it urban origin. In total 23 EDC and PPCP compounds were founds at low to mid part per trillion (ppt) levels. These results show that it is possible to scan for a functionally diverse set of compounds in one analysis and achieve high sensitivity and accurate quantitation Analytes in River 1 Concentration (ng/L) upstream Concentration (ng/L) downstream Concentration (ng/L) downstream Erythromycin 3.08 53.5 Oxybenzone ND 6.25 65.5 152 Bromacil ND 7.40 2,4-D ND 9.35 Diazepam ND 0.388 DEET 1.49 7.67 Warfarin ND 0.930 Sulfamethoxazole 13.2 13.3 Triclosan (Irgasan) 5.90 31.4 Caffeine 41.0 23.5 Codeine 17.1 77.5 Ciprofloxacin 3.81 ND Diuron 1.38 4.35 Cotinine 2.05 ND Trimethoprim 58.5 123 Lincomycin 1.53 3.02 Carbamazepine 870 1305 DEET 24.0 29.9 Ketorolac 2.49 3.06 Meprobramate 85.5 97.5 Atrazine 1.08 0.88 Sulfamethoxazole 95.5 74.5 Pentoxifylline 6.60 3.39 ND not detected Caffeine 57.0 13.5 Cotinine 14.4 ND Increases by more than 2x Simazine 1.01 ND Norethisterone 1.15 ND Erythromycin 135 ND Tylosone Tartrate 4.28 ND 2,4-D 3.24 ND Decreases by more than 2x Summary LC-MS/MS analysis has been shown to be a highly feasible approach for the monitoring of a large set of endocrine disrupting compounds spanning multiple categories and chemical classes. MRM mode allows for the determination of these compounds in river water matrix with low detection limits and high selectivity. Additional compound identification was achieved by the simultaneous monitoring of a second MRM transition and calculation of the corresponding ion ratio, which was done automatically by Analyst Reporter™ software. Electrospray ionization with polarity switching was found to be the most suitable approach. www.spektrotek.com Concentration (ng/L) upstream Carbamazepine Within ± 2x 110 Analytes in River 2 References 1.Brett J. Vanderford, Rebecca A. Pearson, David J. Rexing, Shane A. Snyder: ‘Analysis of Endocrine Disruptors, Pharmaceuticals, and Personal Care Products in Water Using Liquid Chromatography/Tandem Mass Spectrometry’ Anal. Chem. 75 (2003) 6265-6274 2.Paul E. Stackelberg, Edward T. Furlong, Michael T. Meyer, Steven D. Zaugg, Alden K Henderson, Dori B Reissman: ‘Persistence of pharmaceutical compounds and other organic wastewater contaminants in a conventional drinking-water-treatment plant’ Science of the Total Environment 329 (2004) 99-113 3.Susan D. Richardson and Thomas Ternes: ‘Water Analysis: Emerging Contaminants and Current Issues’ Anal. Chem. 77 (2005) 3807-3838. 4.Axel. Besa, D. Loeffler, M. Ramil, T. Ternes, M. Suter, R. Schonenberger, H.-R. Aerni, S. Koenig: ‘Detection of Estrogens in Aqueous and Solid Environmental Matrices with the API 5000™ LC/MS/MS System’ Application Note AB SCIEX (2006) For Research Use Only. Not for use in diagnostic procedures. © 2010 AB SCIEX. The trademarks mentioned herein are the property of AB Sciex Pte. Ltd. or their respective owners. AB SCIEX™ is being used under license. Publication number: 1120610-01 Jens Dahlmann1 and Bernd Luckas2 1 AB SCIEX Darmstadt (Germany) and 2University of Jena, Department of Food Chemistry, Jena (Germany) Overview This application note describes a direct injection method using Liquid Chromatography (LC) coupled to tandem Mass Spectrometry (MS/MS) to analyze several microcystins, including MC-LR, in drinking and surface water. Time consuming and laborious extraction steps, i.e. SPE, are not required due to the high sensitivity and selectivity of the MS/MS detection using the AB SCIEX API 4000™ LC/MS/MS system. A limit of quantitation (LOQ) of 0.1 µg/L was achieved which is 10 times below the guideline value proposed by the World Health Organization (WHO). Gıda ve Çevre Uygulamaları Analysis of Selected Microcystins in Drinking and Surface Water Using a Highly Sensitive Direct Injection Technique Figure 1. Bloom (left) and microscopic image (right) of Planktothrix rubescense Introduction Microcystins (MC) are naturally occurring toxins produced by certain genera of cyanobacteria (Figure 1). Reports suggest that microcystins are hepatotoxic and they might also be tumor initiators.1 Experimental Standard Microcystin standards are available from Enzo Life Science International (http://www.enzolifescience.com). Traditionally MC were analyzed by HPLC with UV detection2-3 but nowadays analytical methods are shifting more towards mass spectrometric detection.4-5 The Microcystin MC-LR (Figure 2) is typically tested as a marker for cyanobacteria occurrence and is regulated by the WHO in the guidelines for drinking-water quality at a value of 1 µg/L.7 O OH CH3 D-Glu Adda O HN H3C CH3 O O CH3 CH3 H N O O NH2 HN NH Y Mdha NH CH3 CH2 O NH CH3 O N OO D-Ala HN H N H X O H3C CH3 D-Me-Asp Figure 2. Structure of MC-LR where X is leucine and Y is arginine www.spektrotek.com MC are cyclic peptides and the general structure is cyclo [-D-Ala-X-D-MeAsp-Y-Adda-D-Glu-Mdha-], where X and Y are variable L-amino acids, e.g. leucine (L), arginine (R), tyrosine (Y), tryptophan (W), and phenylalanine (F) as X, as well as arginine (R), alanine (A), and methionine (M) as Y (Figure 2). Due to the two variable amino acids and methylation/ demethylation of the other amino acids, there is a large variety of microcystin compounds. More than 100 microcystins have been identified to date. In contrast to microcystins, nodularin (NOD) is a cyclic pentapeptide produced by Nodularia spumigena with the structure cyclo [-D-MeAsp-L-Arg-AddaD-Glu-Mdhb-], where Mdhb stands for 2-(methylamino)2-dehydrobutyric acid. 111 Gıda ve Çevre Uygulamaları LC An Agilent 1100 LC system was used with a Phenomenex LUNA C18 3u (150x3 mm) column and a mobile phase of water and acetonitrile + 5 mM ammonium acetate + 0.1% formic acid (Table 1). The injection volume was set to 25 and 100 μL, respectively. Table 1. LC gradient Time (min) Flow (µL/min) A (%) B (%) 70 30 MRM 1 65 35 MRM 1 15 85 70 30 0 10 250 20 re-equilibration Transition Q1 (amu) 995.7 Q3 (amu) 135.2 213.0 CE (V) 115 Figure 4. MRM transitions and Collision Energy (CE) to detect MC-LR MS/MS MRM transitions are shown in Figure 4. An AB SCIEX API 4000™ LC/MS/MS system equipped with Turbo V™ source and Electrospray Ionization (ESI) probe was used for compound detection in positive polarity. Multiple Reaction Monitoring (MRM) was used for its superior selectivity and sensitivity. Two MRM transitions for simultaneous quantitation and identification based on ion ratio calculation and compound dependent parameters were automatically optimized by direct infusion experiments and the ‘Compound Optimization’ tool in Analyst® software. The full scan MS/MS spectrum is shown in Figure 3. Two product ions at m/z 135.0 amu (characteristic ADDA fragment for and MC) m/z 213.0 amu (Glu-Mdha) were measured. +MS2 (995.67) CE (54): 26 MCA scans from Sample 1 (TuneSampleName) of MC_LR_InitProduct_Pos.wiff (Turbo Spray) Due to the thermal stability of MC-LR the nitrogen gas temperature to dry the eluent in the ion source was set to 650°C which evaporated the mobile phase completely yielding in enhanced sensitivity of the measurement. Results and Discussion The Turbo V™ ion source was designed and optimized (geometry, ceramic materials, orthogonal sprayers etc.) for highest sensitivity, reproducibility, robustness, and lowest carry-over. The Signal-to-Noise values (S/N) of MC-LR, MC-RR, and MC-YR at a concentration of 0.1 µg/L were >10 (3 x standard deviation) resulting in a Limit of Detection (LOD) of 0.04 µg/L for MC-LR for example (Figure 4). Max. 1.4e6 cps. x 5.0 995.4 1.4e6 1.2e6 Intensity, cps 1.0e6 135.0 8.0e5 6.0e5 4.0e5 127.0 70.0 111.8 2.0e5 50 100 212.8 154.8 200.0 226.0 92.8 150 200 250 268.2 300 375.0 350 400 967.6 450 500 550 m/z, amu 600 650 700 750 800 850 900 950 1000 www.spektrotek.com Figure 3. MS/MS spectrum of MC-LR with highlighted product ions used for quantitation 112 Figure 4. MRM chromatogram of MC-LR spiked drinking water at a concentration of 0.1 μg/L (injection volume of 25 µL) The reproducibility of the developed method was tested by injecting spiked drinking water. The coefficients of variation were less than 4% (n=15) at all calibration levels. Gıda ve Çevre Uygulamaları Linearity was proven for MC-LR, MC-RR, and MC-YR standard solutions ranging from 0.1 µg/L to 100 µg/L. Figure 5. Chromatograms of various microcystins and nodularin (NOD), at a concentration of 1 µg/L, except desmethyl-MC-RR and MC-WR at 10 µg/L (injection volume of 25 µL) In addition, the API 4000™ system is equipped with a Linear Accelerator (LINAC®) collision cell. The axial field gradient of the LINAC® collision cell accelerates product ions after fragmentation allowing fast MS/MS experiments without cross-talk and without loss in sensitivity, such as fast MRM using short dwell times for each transition. This allows multi-target quantitation. The developed method can easily be extended to quantify other microcystins of interest. An example chromatogram for the quantitation of 9 microcystins, including MC-LR, MC-LF, MC-LA, MC-RR, MCYR, MC-LW, MC-WR, desmethyl-MC-RR, and Nodularin is shown in Figure 5. Summary The AB SCIEX API 4000™ LC/MS/MS system offers sufficient sensitivity for the direct analysis of microcystins, including MC-LR, in drinking water with an LOQ of 0.1 µg/L. Time consuming and extensive sample clean-up and concentration is not required resulting in better reproducibility and accuracy. The methodology is designed to also allow for the inclusion of other water soluble cyanobacterial toxins such as anatoxins and cylindrospermopsins. 1.W. W. Carmichael, W. W.: ‘The toxins of cyanobacteria’ Sci. Amer. 270 (1994) 64-72 2.L. Lawton, C. Edwards, and G. A. Codd: ‘Extraction and High Performance Liquid Chromatographic Method for the Determination of Microcystins in Raw and Treated Waters’ Analyst 119 (1994) 1525-1530 3.J. Dahlmann, W. R. Budakowski, and B. Luckas: ‘Liquid chromatography–electrospray ionisation-mass spectrometry based method for the simultaneous determination of algal and cyanobacterial toxins in phytoplankton from marine waters and lakes followed by tentative structural elucidation of microcystins’ J. Chromatogr, A 994 (2003) 45-57 4.L. Cong, B. Huang, Q. Chen, B. Lu, J. Zhang, and Y. Ren: ‘Determination of trace amount of microcystins in water samples using liquid chromatography coupled with triple quadrupole mass spectrometry’ Analytica Chimica Acta 569 (2006) 157168 5.‘Determination of trace amount of microcystins in water samples using liquid chromatography coupled with triple quadrupole mass spectrometry’ Analytica Chimica Acta 569 (2006) 157-168 detection of cyanobacterial toxins in precursor ion mode by liquid chromatography tandem mass spectrometry’ J. Mass Spectrom. 42 (2007) 1238–1250 6.K. A. Loftin, M. T. Meyer, F. Rubio, L. Kemp, E. Humpries, and E. Whereat: ‘Comparison of Two Cell Lysis Procedures for Recovery of Microcystins in Water Samples from Silver Lake in Dover, Delaware, with Microcystin Producing Cyanobacterial Accumulations’ Open-File Report 1341 (2008) USGS (http://pubs.usgs.gov/of/2008/1341/) 7.http://www.who.int/water_sanitation_health/dwq/fulltext.pdf www.spektrotek.com References 113 Gıda ve Çevre Uygulamaları Quantitative Analysis of Explosives in Surface Water Comparing Off-Line Solid Phase Extraction and Direct Injection LC-MS/MS J.D. Berset1, N.Schiesser1, Th. Schnyder1, A. Affolter1, St. König2, A. Schreiber3 1 Water and Soil Protection Laboratory (GBL) Bern (Switzerland); 2 AB SCIEX Rotkreuz, (Switzerland); 3 ABSCIEX Concord, Ontario (Canada) Overview Presented is an efficient method for measuring selected explosives in lake water at the sub-ng/L level applying either off-line Solid Phase Extraction (SPE) with LC-MS/MS detection and comparing it to direct injection LC-MS/MS. Introduction Between 1918 and 1967 some 8200 tons of ammunition, Trinitrotoluene (TNT) being the main explosive, was dumped to the lakes of Thun, Brienz and Lucerne in Switzerland.1 The amount of ecologically harmful compounds was considered to be negligible. In order for explosives to leak to the environment the casing must have rusted.2-3 This corrosion process very much depends on environmental water conditions such as: temperature, oxygen content and pH value. Meanwhile a sediment layer of 20-30 cm covers the ammunition at the lakes’ bottom and represents a natural barrier preventing the compounds to enter the aqueous phase. Nevertheless water quality of the lakes should be monitored as lake water is frequently used as a source for drinking water. Due to the very low concentrations of explosive residues expected in the lakes a powerful analytical set-up is important for a reliable detection and quantitation. LC-MS/MS analysis with Electrospray Ionization (ESI) is the method of choice to analyze polar and thermally labile compounds, such as explosives and their degradation products. Experimental The following explosives and degradation products were investigated: 2,4,6-Trinitrotoluene (TNT) • 2,4-Diamino-6-nitrotoluene (2,4-DA-6-NT) • 2,6-Diamino-4-nitrotoluene (2,6-DA-4-NT) • 2-Amino-4,6-dinitrotoluene (2-A-4,6-DNT • 4-Amino-2,6-dinitrotoluene (4-A-2,6-DNT • Hexogen (RDX) • Nitroglycerin (NG) • Octogen (HMX) • Pentaerythritol tetranitrate (PETN) • Tetryl OH O O OH O maleic acid OH HO O fumaric acid Figure 1. Chemical structures of maleic acid (left) and fumaric acid (right) www.spektrotek.com Sample Preparation 114 50 mL of water samples were extracted on Phenomenex StrataX SPE cartridges. These extracts were analyzed by LCMS/MS and compared to direct injections of filtered water samples. Liquid Chromatography • HPLC column: Xbridge Phenyl (2.1x150 mm), 3.5 μm • Eluent A: water + 2.5 mM ammonium acetate • Eluent B: methanol + 2.5 mM ammonium acetate • Gradient (A/B): 55/45 to 30/70 within 13 min and reequilibration • Flow: 200 μL/min • Injection volume: 100 μL • Oven temperature: 40°C Mass Spectrometry • API 5000™ LC/MS/MS System • Turbo V™ source with ESI probe • Gas and source parameters: CUR: 20 psi, GS1: 40 psi, GS2: 40 psi, TEM: 350°C, CAD: 7, IonSpray voltage (IS): 5500 V (positive) and -4500 V (negative) • Two periods with detection in positive and negative polarity using Multiple Reaction Monitoring (MRM) were programmed: 0 to 4.5 min (positive) and 4.5 to 15 min (negative). MRM transitions of detected explosives and MRM ratios are listed in Table 1. Calibration Standards were prepared in MilliQ water and blank matrix water (matrix matched standards) over a range of 1-100 ng/L for off-line SPE and 0-1 ng/L for direct injection LCMS/MS. Serial dilutions were obtained starting with a 10 ng/mL standard. All standards were prepared in water and kept at 4°C in the dark. Under these conditions standards were stable for at least three months – with the exception of TNT and Tetryl, which degrade rapidly and thus must be prepared freshly. Method validation data • Recoveries (SPE): between 89% and 110% for all analytes • Blank analysis: field blanks, travel blanks and laboratory blanks did not contain any traces of explosives (< 10% of lowest calibration standard) • Linearity: 7 point equidistant calibration, statistical tests (Mandel, sensitivity plots and residual analysis) proved linearity of regression lines, residual analysis with normal distribution of the calibration points around the zero line • Limit of Quantification (LOQ) with S/N=10 and Limit of Detection (LOD) S/N=3 • LOQ: 1 ng/L for DANT, NG and TNT, 0.03 ng/L for HMX, RDX, PETN and ADNT Gıda ve Çevre Uygulamaları Samples from different depths were analyzed within 48 hours after sampling. If water had to be stored for a longer period of time it was stabilized by acidifying to pH 3.5 with acetic acid and adding 2% of acetonitrile. Table 1. Retention times, MRM transitions of explosives with detected MRM ratio and tolerance intervals regarding the guideline 2002/657/EC5 MW 2,4-DA-6-NT 3.7 167 168 [M+H]+ 2,6-DA-4-NT 4.1 167 168 [M+H] 168/121 168/77 0.37 HMX 5.0 296 355 [M+CH3COO]- 355/46 355/147 0.4 RDX 6.5 222 281 [M+CH3COO]- 281/46 281/93 0.04 50 0.02-0.06 NG 9.6 227 286 [M+CH3COO]- 286/62 286/46 0.83 20 0.67-1.00 4-A-2,6-DNT 9.9 197 196 [M-H]- 196/46 196/136 0.06 50 0.03-0.09 2-A-4,6-DNT 10.2 197 196 [M-H]- 196/46 196/136 0.26 25 0.20-0.33 Tetryl 11.9 287 286 [M-H]- 286/240 286/206 0.83 20 0.67/1.00 TNT 12.0 227 226 [M-H]- 226/46 226/196 0.49 PETN 13.1 316 375 [M+CH3COO]- 375/62 375/46 0.44 + MRM Transition MRM Ratio 168/121 168/77 0.43 Tolerance Interval tR (min) 0.32-0.54 25 0.28-0.46 0.30-0.50 25 0.37-0.61 0.33-0.56 www.spektrotek.com Precursor Ion Tolerance (%) Compound 115 Gıda ve Çevre Uygulamaları Results and Discussion Clearly, Electrospray Ionization turned out to be the method of choice for detecting traces of explosives in water samples.4 Tests using either APCI or APPI were generally less sensitive (results not shown). As shown in Table 1 precursor ions of explosives were either detected as [M+H]+ or [M-H]- for the DANT, ADNT, Tetryl and TNT, as [M+CH3COO]- for HMX, RDX, NG and PETN. Selective detection was performed in MRM mode using two characteristic transitions for each compound. The ratio of both transitions was used to identify the presence of explosives in lake water regarding the guideline 2002/657/EC.5 Optimization of the compound dependent parameters was obtained by automatic Quantitative Optimization in Analyst® Software. The ion source temperature was a crucial parameter during source optimization. TNT, Nitroglycerine and above all Tetryl, known as being very labile, could only be detected using a rather low temperature of 350°C. As Nitroglycerine and Tetryl are not expected to persist for a longer time in the environment they were not included in the final target method. The separation of the different isomers of the diaminonitrotoluenes and aminodinitrotoluenes became difficult on traditional C18 stationary phases. Figure 1 presents a total ion chromatogram (TIC) with baseline separated analytes on the selected phenyl type phase. Concentrations of explosive residues in lake water were assumed to be very low if present at all. Therefore, in a first attempt an off-line SPE enrichment procedure of the water samples was performed using an enrichment factor of 100. Using this procedure a typical TIC as shown in Figure 2 was obtained. Quantitation of the compounds revealed concentrations between 0.1-0.4 ng/L. Concentrations at different depths were very similar assuming a homogeneous distribution of the explosives in the water body. www.spektrotek.com In a second step, direct injection of 100 μL of water samples was performed. A representative chromatogram of HMX is shown in Figure 3. The calibration curve (working range 0-1 ng/L) is presented in Figure 4. Quantitation of the sample resulted in a concentration of 0.21 ng/L. The calculated MRM ratio of 0.42 was well within the limits of the ratio obtained from the calibration line (0.40). Note the excellent agreement between the intensity (cps) of HMX in the concentrated sample (2.0 x 104 cps; enrichment factor 100) and the directly injected sample (200 cps). 116 Figure 1. Total ion chromatogram of a 100 ng/L standard: 0 to 4.5 min in positive polarity 4.5 to 15 min in negative polarity Figure 2. TIC of a lake water sample taken at a depth of 212 m showing the presence of HMX, RDX and PETN using off-line SPE Figure 3. Direct injection of a lake water sample taken at a depth of 212 m showing the two transitions of HMX: 355/46 (upper trace), 355/147 (lower trace) Figure 4. Calibration curve of HMX with a working range of 0-1 ng/L (r = 0.9996) used for direct injection analysis A comparison of the concentrations of direct injection and SPE enriched samples from different depths of the lake for HMX, RDX and PETN is shown in Figure 5. Concentrations of direct injection do not significantly deviate from the SPE samples. The lower concentrations detected after SPE can be explained by a recovery less than 100% and/or stronger ion suppression due to increased matrix concentration after extraction. However, uncertainty of measurement can drastically be reduced using direct injection LC-MS/MS. 0.5 A highly sensitive LC-MS/MS method for the analysis of sub-ng/L levels of selected explosives such as TNT and the corresponding monoamino and diamino metabolites, HMX, RDX, and PETN has been presented. Specificity was obtained using Multiple Reaction Monitoring with identification based on ion ratio calculation using two transitions for each analyte. Sensitivity turned out to be optimal using Electrospray Ionization (ESI) with positive or negative polarity on an API 5000™ LC/MS/MS System equipped with a Turbo V™ source. Using direct injection analysis of water samples comparable results were obtained as from SPE enriched samples for the three main explosives HMX, RDX and PETN. In addition reproducibility was found to be much better using direct injection LC-MS/MS analysis. Gıda ve Çevre Uygulamaları Summary Acknowledgements The authors would like to thank Dr. M. Zeh for his help with lake water sampling from different depths. References 1.Van Stuijvenberg et al: Gefahrdungsabschatzung zu militarischen Munitionsversenkungen in Schweizer Seen, Generalsekretariat VBS, September 2005 2.J. Sjostrom et al: Environmental Risk Assessment of Dumped Ammunition in Natural Waters of Sweden, User Report, September 2004 3.H. Stucki: Chimia 58, 409-413, 2004 4.X. Xu et al: J Forensic Sci, 49, 6, 1-10, 2004 5.J.D. Berset et al: Chimia 61, 532, 2007 6.Chr. Borton et al: Application Note AB SCIEX #1282110-01 measurementu ncertainty 0.4 ng/L 0.3 0.2 0.1 0 11 HMXS PE RDXS PE 02 01 depth( m) PETNSPE HMXD I 00 RDXD I 212 PETNDI For Research Use Only. Not for use in diagnostic procedures. © 2010 AB SCIEX. The trademarks mentioned herein are the property of AB Sciex Pte. Ltd. or their respective owners. AB SCIEX™ is being used under license. Publication number: 1281710-01 www.spektrotek.com Figure 5. Comparison of concentrations between direct injection and off-line SPE for HMX, RDX and PETN with error bars for uncertainty of measurement 117 Gıda ve Çevre Uygulamaları Screening and Identification of Unknown Contaminants in Untreated Tap Water Using a Hybrid Triple Quadrupole Linear Ion Trap LC-MS/MS System M.T. Baynham1, St. Lock1, D. Evans2, and P. Cummings2 1 AB SCIEX Warrington Cheshire (UK), 2 ALcontrol Laboratories Rotherdam Yorkshire (UK) Introduction Protection of our drinking water resources from contaminants is a major responsibility for both government and water producing bodies. The response taken to a potential drinking water emergency will depend upon both the composition and the nature of the identified contaminant(s). Furthermore it is essential that there is a high degree of confidence in the correct and rapid identification of the problem before remedial action is taken. To date it has been a necessity to employ a combination of multiple analytical techniques to meet this end. Screening Using Accurate Mass Measurements and MS/MS One method of detecting contaminants is the use of accurate mass as a way to predict the formula and identity of a contaminant. In this approach the mass spectrometer has to be accurately calibrated because the greater the error the more potential contaminants would be a match for the detected peak, as <2ppm mass error is ideal. In this example two structural related but different pesticides (Prometryn and Terbutryn) produce the same molecular ion because they have identical molecular formulae. In the environment there are hundreds of compound with the same mass (Figure 2). Thus, a complete identification of unknown contaminants by accurate mass alone may not yield to a complete answer as this does not provide any structural information. In the example above separation of these two pesticides by HPLC was not clear-cut as they eluted with very similar retention times (Figure 3). However, Prometryn and Terbutryn have different MS/MS fragmentation patterns (Figure 2). Therefore product ion spectra are essential for confident identification of unknown contaminants. frequency ofo ccurrence 2000 more than 1500 compoundsh avea similar molecularw eighto f ~250amu 1500 1000 500 www.spektrotek.com 2004 118 00 600 800 1000 molecularw eight Figure 1. Abundance of compounds over molecular weight range of 100-1000 amu Multi Target Screening Compound Class Polarity MRM Intensity at 1 µg/mL ~LOD (µg/mL) Q3 Mass Intensity at 10 µg/mL ~LOD (µg/mL) Brodifacoum Rat poison Negative 521.0/79.0 5.80E+04 0.05 521.0 7.70E+05 5.00 Chlorophacinone Rat poison Negative 373.0/201.1 1.23E+04 0.20 373.0 3.40E+05 15.0 Difenacoum Rat poison Negative 443.1/135.0 1.40E+04 0.25 443.1 1.80E+06 1.25 Difethialone Rat poison Negative 537.0/79.0 6.00E+04 0.07 537.0 1.40E+06 5.00 Flocoumafen Rat poison Negative 541.1/161.0 1.30E+04 0.12 541.1 1.40E+06 2.00 Warfarin Rat poison Negative 307.0/161.1 1.80E+04 0.20 307.0 1.80E+05 40.0 Endothal Rat poison Negative 185.0/141.0 6.00E+03 2.0 185.0 - 100 DNOC Cresol Negative 197.0/137.1 5.00E+04 0.10 197.0 2.00E+06 1.25 Azinphos-ethyl Organo-phosphorus Positive 346.0/160.1 5.13E+03 1.00 346.0 6.50E+04 200 Demeton-S-methyl Organo-phosphorus Positive 231.0/89.0 1.00E+04 0.50 231.0 2.30E+05 20.0 Dichlorvos Organo-phosphorus Positive 221.0/127.0 9.33E+02 10.0 221.0 4.00E+04 200 Disulfoton Organo-phosphorus Positive 275.1/89.0 2.00E+03 5.00 275.1 2.00E+04 2000 Propetamphos Organo-phosphorus Positive 282.1/156.0 2.20E+03 2.50 282.1 5.20E+04 200 Tebupirimfos Organo-phosphorus Positive 319.0/153.1 1.90E+04 0.50 319.0 2.90E+05 20.0 Parathion-ethyl Organo-phosphorus Positive 292.1/236.0 4.73E+03 2.00 292.1 1.00E+04 500 Parathion-methyl Organo-phosphorus Positive 281.1/264.3 5.00E+02 10.0 264.1 2.00E+04 400 General Unknown Screening and Multi Target Screening There are two possible approaches of screening methods. The first would to screen for a complete unknown. This General Unknown Screening (GUS) would use a single ‘universal’ survey scan over a defined mass range and could either be a Time-of-Flight (TOF), quadrupole or ion trap scan. This survey scan can be used to trigger automatically the acquisition of a product ion spectrum if a signal of a detected compound is above a defined threshold. Finally, this spectrum can be searched against a mass spectral library for identification. Comparison of Total Ion Chromatograms (TIC) of unknown samples to that of the control reveal compounds that are either unique to the sample or those that are present at significantly higher concentrations than in the control. The other approach is often called Multi Target Screening (MTS). In this approach a predefined list of compounds is looked for in a Single Ion Monitoring (SIM) or Multiple Reaction Monitoring (MRM) experiment. MRM mode is generally preferred because of higher selectivity and sensitivity. Once a compound is detected above a defined threshold a product ion scan is collected and compared against a library. Dynamic exclusion of compounds where MS/MS spectra are already acquired allows the data collection of co-eluting compounds (Figure 4). MS/MS A 4000 QTRAP® LC/MS/MS system was used for both MTS and GUS experiments which triggered dependant Enhanced Product Ion scanning (mass range of 50 to 750 amu at 4000 amu/s) with a Collision Energy (CE) of 35 V and Collision Energy Spread (CES) of 20 V. The MTS survey scan used MRM transitions which have been optimized for each targeted analyte while the GUS screen used a Q3 scan with a mass range of 90 to 750 amu and a Declustering Potential (DP) of 60 V. The source and gas settings for both MTS and GUS experiments were the same (Table 2) Table 2. Ion source and gas parameters Parameter Value Curtain gas 25 psi Gas 1 50 psi Gas 2 60 psi CAD 10 Temperature 650°C IonSpray™ source voltage -4500 V +5500 V www.spektrotek.com Compound Name General Unknown Screening Gıda ve Çevre Uygulamaları Table 1. Comparison of sensitivities between the General Unknown Screening (GUS) and Multi Target Screening (MTS) approaches 119 Gıda ve Çevre Uygulamaları 0.7 1.8e8 1.6e8 1.5e8 1.4e8 1.3e8 Tapw ater MRM2 30/146 1.6e8 1.5e8 1.4e8 1.3e8 1.2e8 1.2e8 1.1e8 1.1e8 1.0e8 1.0e8 9.0e7 9.0e7 8.0e7 8.0e7 7.0e7 7.0e7 6.0e7 6.0e7 5.0e7 5.0e7 4.0e7 4.0e7 3.0e7 3.0e7 2.0e7 2.0e7 1.0e7 1.0e7 0.0 0.10 .2 0.30 .4 0.50 Time,m in 1.16e7 174.0 1.10e7 MS/MSo f Terbuthylazine 1.00e7 9.00e6 .6 0.70 .8 0.0 0.9 230.0 0.10 .2 0.30 .4 0.50 Time,m in .6 0.70 .8 0.9 230.0 1.19e7 MS/MSo f Terbuthylazine 1.10e7 174.0 1.00e7 9.00e6 8.00e6 8.00e6 7.00e6 7.00e6 6.00e6 6.00e6 5.00e6 5.00e6 4.00e6 4.00e6 103.8 3.00e6 3.00e6 146.0 2.00e6 1.00e6 Summary 0.7 1.7e8 Mineralw ater MRM2 30/146 1.7e8 78.9 80 100 1.00e6 138.1 109.8 1201 103.8 2.00e6 132.0 95.9 40 160 180 200 m/z, amu 220 240 2602 80 300 78.9 95.9 80 146.0 132.0 109.91 100 38.1 1201 40 160 180 200 m/z, amu 220 2402 60 280 300 Figure 5. 100 ng/mL Terbuthylazine spiked into mineral and tap water analyzed in positive polarity MRM and EPI 0.6 3.8e7 3.4e7 3.2e7 3.0e7 2.8e7 0.6 3.4e7 3.2e7 Mineralw ater MRM2 13/141 3.6e7 Tapw ater MRM2 13/141 3.0e7 2.8e7 2.6e7 The 4000 QTRAP® LC/MS/MS system allows Multi Target Screening (MTS) and General Unknown Screening (GUS) of water samples to identify emerging contaminants. The MTS approach is the most rapid and sensitive method to screen for and detect the presence of targeted organic contaminants in water. More than 2000 targeted compounds can be screened in less than 20 minutes at low and sub μg/L level using the described procedure and multiple sample injections. The GUS method is an alternative to identify unknown compounds as it does not rely on any knowledge of the analytes. Here, a sample control comparison will detect unknown contaminants. In both approaches automatically generated Enhanced Product Ion spectra can be searched against a comprehensive mass spectral library and the fragmentation information can be used for identification and identification. However, the GUS approach is lower in sensitive and requires significantly longer run times. 2.4e7 2.6e7 2.2e7 2.0e7 1.8e7 n 1.8e7 1.6e7 1.6e7 1.4e7 t 6.0e7 1.4e7 1.2e7 e TIC: from Sample 1 (SAMPLE B) of Q3 5.wiff (Turbo Spray), Smoothed 2.0e7 I 2.4e7 4.0e7 2.2e7 1.2e7 8.0e7 1.0e7 . 1.0e7 8.0e6 6.0e6 . 6.0e6 . 8.0e6 4.0e6 4.0e6 0.0 0.0 0.10 .2 0.30 .4 0.50 Time, min .6 0.70 .8 0.9 0.10 .2 .4 0.50 Time,m in .6 .8 0.9 8.00e6 6.0e5 4.0e5 . 7.50e6 7.00e6 2.5e6 5.00e6 2.0e6 e 1.5e6 4.00e6 . 3.00e6 100 1.50e6 140 104.7 5.00e5 120.9 160 180 200 260 2803 00 320 340 360 380 400 80 100 120 140 160 180 200 260 280 300 320 340 360 380 8.0e7 400 The GUS approach shows the comparison of a blank control sample to a sample that has been spiked with 0.1 μg/L of a compound to be identified (Figure 7). The presence of the compound with m/z=350 amu is detected in the sample by comparing the two Q3 scan chromatograms. Acquisition of an Enhanced Product Ion scan spectrum followed by library searching allows to identification of Chlorpyrifos. . Mineral water typically contains high levels of sodium, which may affect sensitivity due to adduct formation. However, Figure 5 and 6 indicate that there is nearly no effect on S/N to detect Terbuthylazine and MCPP in these water samples. 4.0e7 . Figure 5 and 6 present data obtained for an injection of 100 ng/mL Terbuthylazine and MCPP in both mineral and tap water, using the MRM to EPI MTS approach. The LINAC® collision cell of the 4000 QTRAP® system allows the simultaneous monitoring of up to hundreds of MRM transitions (contaminants) in a single sample injection. These MRM transitions triggered Enhanced Product Ion scan spectra in a cycle time of approximately 2.5 s without loss in sensitivity and full spectral quality. 6.0e7 . Results and Discussion www.spektrotek.com 80 e 2202 40 m/z, amu Figure 6. 100 ng/mL MCPP spiked into mineral and tap water analyzed in negative polarity MRM and EPI 120 114.9 5.0e5 t 220 240 m/z, amu 8 Time, min 322.0 9 12.0 10 11 12 13 14 15 16 Max. 8.7e5 cps. 350.0 Survey Q3 spectrum at 12min 354.0 100 133.8 150.7 120 140 179.8 160 213.8 180 4 20 440 460 4 80 500 520 540 Max. 2.7e6 cps. EPI spectrum at 12min 200 220 TIC: from Sample 1 (BLK) of Q3 2.wiff (Turbo Spray), Smoothed 1.00e6 120 7 197.8 n 80 6 13.7 14.0 14.9 260 280 349.7 321.7 293.7 275.7 240 m/z, amu 300 320 340 360 380 400 Max. 8.7e7 cps. I 104.7 213.0 . 1.00e6 5 198.0 . 2.50e6 2.00e6 213.0 2.00e6 4 153.0 1.0e6 3.50e6 3.00e6 3 13.3 2.0e5 5.50e6 4.50e6 4.00e6 2 11.5 9.8 12 0 140 160 18 0 200 220 2 40 260 280 3 00 320 340 3 60 380 400 m/z, amu +EPI (350.01) Charge (+0) CE (35) CES (20) FT (10): Exp 2, 12.058 min from Sample 1 (SAMPLE B) of Q3 5.wiff (Turbo Spra y) t 6.00e6 n 5.00e6 6.50e6 I 6.00e6 9.4 10.7 . 8.50e6 7.00e6 1 8.0e5 . 9.00e6 8.00e6 0.70 MS/MSo f MCPP 9.50e6 e 1.00e7 MS/MSo f MCPP 9.00e6 0.30 140.9 1.04e7 1.00e7 0.0 +Q3: Exp 1, 12.046 min from Sample 1 (SAMPLE B) of Q3 5.wiff (Turbo Spray) t 140.8 1.10e7 8.5 0.9 2.0e7 n 2.0e6 10.2 I 2.0e6 0.3 Max. 8.7e7 cps. Water sample 0.3 10.7 Control sample 11.4 9.8 10.2 8.4 8.5 13.3 13.7 14.0 14.6 12.6 2.0e7 0.0 1 2 3 4 5 6 7 8 Time, min 9 10 11 12 13 14 15 16 Figure 7. Comparison of a water sample to a blank control water with resulting Q3 scan and EPI spectrum of Chlorpyrifos detected and identified by library searching In order to compare the relative sensitivities of both approaches, GUS and MTS, over 70 compounds were tested including compounds such asorganophosphorus pesticides and rat poisons. Limits of Detection (LOD) were determined to be the triggering threshold of both approaches. In the GUS method the LOD was set at 500,000 cps of the parent ion in Q3 scan (background noise was generally lower than 500,000 cps). For the MTS approach LOD was 5000 cps in MRM which was determined as 2-3 times the background level of the most intense MRM trace. The chromatographic conditions of MTS were applied for this comparison work. Examples of results for 16 different compounds are given in Table 1 highlighting the higher sensitivity of the MTS approach. An average of 2 orders of magnitude comparing LOD of both approaches was found. For Research Use Only. Not for use in diagnostic procedures. © 2010 AB SCIEX. The trademarks mentioned herein are the property of AB Sciex Pte. Ltd. or their respective owners. AB SCIEX™ is being used under license. Publication number: 1280310-01 Yun Yun Zou and André Schreiber AB SCIEX Concord, Ontario (Canada) Overview Organotin compounds are chemicals composed of tin linked to hydrocarbons, used in industrial materials and various biocides and fungicides. As a result, organotin compounds can enter the environment through a number of channels, and can often be found in seawater, seafood, fruits and vegetables, and consumer goods. Due to the toxicity of these compounds, there is a need for analytical methods allowing accurate quantitation and identification. Here we present an LC-MS/ MS method to measure tributyltin, fentin, cyhexatin, and fenbutatin oxide in different matrices. Triphenyl phosphate was used as the internal standard. Introduction Organotin (organostannic) compounds are chemical compounds comprised of tin with hydrocarbon substituents. Organotin compounds are widely used as additives in plastic material, wood preservatives, marine biocides, and agricultural pesticides. Tri-substituted organotin compounds were previously widely used as antifouling agents in paints on ships. However, such paints were found to release organotin compounds into the aquatic environment, where they can accumulate in sediments and organisms or degrade to less substituted toxic compounds. Studies have shown that trace amounts of organotin compounds can have significant detrimental effects on aquatic organisms. For instance, tributyltin (TBT), present in sea water at ng/L levels, has been identified as an endocrine disruptor promoting harmful effects on aquatic organisms. Therefore, the use of organotin compounds in antifouling paints is prohibited or restricted in many countries.1-3 The use of organotin compounds in consumer products, such as textiles, footwear, wall and floor coverings, etc., has been found to pose a risk to human health, particularly for children. Therefore, the use of tri-substituted and di-substituted organotin compounds, including TBT, tributyltin (TPhT), dibutyltin (DBT), and dioctyltin (DOT) in consumer products is restricted.4-5 Finally, organotin compounds enter the human diet through contaminated seafood and the use as agricultural pesticides. International maximum residue limits (MRL) have been established by Codex Alimentarius and the EU for many food commodities, with some MRL as low 50 μg/kg. Traditionally gas chromatography coupled to mass spectrometry (GC-MS) was used for analysis of organotin compounds. However, the analysis by GC requires time consuming derivatization, because of poor compound volatility, and long chromatographic run times. Liquid chromatography with tandem mass spectrometry (LC-MS/ MS) allows simplifying sample preparation and shortening run times due to increased selectivity and sensitivity and, thus, is evolving as a preferred technique for the analysis of organotin compounds. www.spektrotek.com Spiked apple, potato, synthetic seawater, and textile samples were prepared using a quick and easy acetonitrile extraction. Organotin compounds were detected using an AB SCIEX 4000 QTRAP® system with Electrospray Ionization (ESI) using Multiple Reaction Monitoring (MRM). Detection limits were determined to be well below regulated levels, enabling extra dilution of the sample extract to minimize possible matrix effects. Gıda ve Çevre Uygulamaları Quantitation and Identification of Organotin Compounds in Food, Water, and Textiles Using LC-MS/MS 121 Gıda ve Çevre Uygulamaları Method Details Sample Preparation TBT chloride, fentin acetate, cyhexatin and fenbutatin oxide were purchased from Sigma-Aldrich and spiked into four matrices (apple, potato, synthetic seawater (drinking water with 35 g salt per liter), and textile material). Triphenyl phosphate (TPP) was used as the internal standard. CH3 Hom ogenize and weigh 10 g of apple and potato. Shred and weigh 1 g of textile m aterial. Add internal standard (50 L of 10 g/m L TPP). Add internal standard (50 L of 10 g/m L TPP). Transfer 1 m L of water sam ple into autosam pler vial. Add 10 m L acetonitrile and shake vigorously for 1 m inute. Add 20 m L acetonitrile and sonicate for 5 m inutes. Add internal standard (10 L of 10 ng/m L TPP). Centrifuge at 5 rpm for 5 m in. Centrifuge at 5 rpm for 5 m in. (Dilute water sam ple to reduce possible m atrix effects.) Transfer 100 L of the extract into autosam pler vial and add 900 L water. Transfer 100 L of the extract into autosam pler vial and add 900 L water. Inject directly. O Sn Cl Sn OC Sn H3 OH H3C Figure 2. Sample preparation protocols for the analysis of organotin compounds in fruit and vegetable, textiles, and water CH3 H3C CH3 H3C Sn O Sn O CH3 O P O O MS/MS Detection 33 Figure 1. Target organotin compounds: TBT chloride, fentin acetate, cyhexatin, fenbutatin oxide, and internal standard triphenyl phosphate (top left to bottom right) Spiked samples were extracted using acetonitrile and diluted 10x with LC grade water prior to LC-MS/MS analysis. The spiked synthetic seawater was directly injected for detection of organotin compounds. Note that additional dilution is possible depending on required limits of detection to reduce possible matrix effects (Figure 2). UHPLC Separation www.spektrotek.com A Shimadzu UFLCXR system was used with a Phenomenex Kinetex 2.6u C18 50x3mm column at 40ºC. A gradient of water with 2% formic acid + 5 mM ammonium formate and methanol with 2% formic acid + 5 mM ammonium formate at a flow rate of 800 μL/min resulted in a total run time of 12 minutes. The injection volume was set to 20 μL for apple and potato extracts and 50 μL for textile extracts and synthetic seawater. 122 The AB SCIEX 4000 QTRAP® LC/MS/MS system with Turbo V™ source and ESI probe was used. All the analytes and internal standard were detected in positive polarity using MRM for best selectivity and sensitivity. Two MRM transitions were monitored for each compound to allow quantitation and identification using the characteristic MRM ratio. The Scheduled MRM™ algorithm was activated for best data quality (Table 1). The data was processed in MultiQuant™ software version 2.1. Table 1. MRM transitions and retention times (RT) of targeted organotin compounds Q1 (amu) Q3 (amu) RT (min) TBT 1 291.0 123.0 3.8 TBT 2 291.0 235.1 3.8 Fentin 1 351.0 120.0 3.0 Fentin 2 351.0 197.0 3.0 Cyhexatin 1 369.0 205.0 5.3 Cyhexatin 2 369.0 287.1 5.3 Results and Discussion Fenbutatin oxide 1 519.1 351.0 6.2 Fenbutatin oxide 2 517.1 349.0 6.2 Chromatography conditions were important for successful determination of organotin compounds by LC-MS/MS. Organotin compounds are known for strong interaction with reversed phase material resulting in peak broadening. A strong acidic mobile phase was used to reduce this effect and to optimize peak shape.8 TPP (internal standard) 326.9 152.1 4.4 Two chromatographic interferences were observed for TBT in all matrices. Thus, stable retention times and good separation was important. A core-shell column (Phenomenex Kinetex) was used for improved UHPLC performance while operating at reduced column pressure (Figure 3). Organotin compound p2 Table 2. Signal-to-noise (S/N) in different matrices Organotin compound Apple (2 μg/kg) Potato (2 μg/kg) Textile (0.1 mg/kg) Seawater (50 ng/L) TBT 1 105 71 93 53 Fentin 1 355 315 209 186 Cyhexatin 1 240 197 51 133 Fenbutatin oxide 1 339 377 66 176 2200 2000 1800 1600 1500 1000 3.96 3.96 2.93 1200 1000 1000 800 400 200 2.53 .0 3.54 .0 4.55 6.57 .0 7.58 2000 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 Time, min 0 2.5291.000/235.100 3.0amu Expected3.5 4.0 chloride 2 from 4.5 Sample 10 (potato 5.0 5.5of 21010117-apple 6.0 &... XIC of +MRM (12 pairs): RT: 3.8 ID: tributylin 2ngml 1/10) Time, min XIC of +MRM (12 pairs): 291.000/235.100 amu Expected RT: 3.8 ID: tributylin chloride 2 from Sample 10 (potato 2ngml 1/10) of 21010117-apple &... 3.84 5.27 1800 6.14 3.84 5.27 1800 1600 3.73 6.14 3.97 1600 3.73 1400 3.97 .0 ax.1 .6e5 cps. Internals tandard( TPP) 1.4e5 1.2e5 Fentin 2.95 Fentin 1400 1200 Intensity, cps cps Intensity, 1.0e5 8.0e4 6.0e4 4.0e4 1200 1000 6.5 7.0 7.5 6.5 7.0 7.5Max. 1826.2 cps. 8.0 8.0 Max. 1826.2 cps. Fenbutatin oxide Fenbutatin oxide Potato extract Potato extract Cyhexatin Cyhexatin TBT TBT 4.41 1.6e5 Intensity, cps 1400 1200 600 400 .0 5.56 .0 Time,m in XICo f+ MRM( 12 pairs):3 26.900/77.000a mu Expected RT:4 .4 ID: triphenyl phosphate1 from Sample4( SW)o f2 0120118-saltyw ater test.wiff( Tu...M 2.95 1000 800 800 600 600 400 400 200 2.0e4 0.0 6.13 Fentin 2.93 Fentin 1600 1400 Max. 2499.1 cps. Apple extract Apple extract 800 600 500 0 3.83 2000 1800 Intensity, cps cps Intensity, 3.97 3.72 2400 2200 Twoc hromatographic interferences forT BT ares eparated well from the target analyte 2500 Cyhexatin 5.27 Cyhexatin 5.27 Fenbutatin oxide 6.13 Fenbutatin oxide TBT 3.83 TBT 2400 Blanks ynthetic seawater 3000 2000 Max. 2499.1 cps. XIC of +MRM (12 pairs): 291.000/235.100 amu Expected RT: 3.8 ID: tributylin chloride 2 from Sample 4 (apple 2ngml 1/10) of 21010117-apple & p... 3.72 3500 Intensity, cps XIC of +MRM (12 pairs): 291.000/235.100 amu Expected RT: 3.8 ID: tributylin chloride 2 from Sample 4 (apple 2ngml 1/10) of 21010117-apple & p... ax.4 000.4c ps. 3.73 4000 2.53 .0 3.54 .0 4.55 .0 Time,m in 5.56 .0 6.57 .0 7.58 200 0 .0 0 Figure 3. Blank synthetic seawater, two chromatographic interferences for TBT are separated well from the target analyte (top) and internal standard (bottom) 2.5 3.0 3.5 4.0 4.5 2.5 3.0 3.5 4.0 4.5 5.0 Time, min 5.0 Time, min 5.5 6.0 6.5 7.0 7.5 8.0 5.5 6.0 6.5 7.0 7.5 8.0 Figure 4. Apple (top) and potato (bottom) sample spiked at 2 μg/kg and diluted 10x after extraction XIC of +MRM (12 pairs): 291.000/235.100 amu Expected RT: 3.8 ID: tributylin chloride 2 from Sample 3 (textile 0.1mg/kg 1/10) of 20120118-textile... Max. 7547.7 cps. XIC of +MRM (12 pairs): 291.000/235.100 amu Expected RT: 3.8 ID: tributylin chloride 2 from Sample 3 (textile 0.1mg/kg 1/10) of 20120118-textile... 3.84 7548 3.84 7000 7548 7000 6000 5000 4000 Max. 7547.7 cps. TBT TBT Fentin 2.93 Fentin 6000 5000 Intensity, cps cps Intensity, Apple, potato, textile, and synthetic seawater samples were spiked at different concentrations, extracted, and analyzed using the fast LC-MS/MS method. Example chromatograms are shown in Figures 4 and 5. Gıda ve Çevre Uygulamaları XICo f+ MRM( 12 pairs):2 91.000/235.100 amu Expected RT:3 .8 ID:t ributylin chloride 2f romS ample4 (SW) of 20120118-salty water test.wiff( Tu...M Textile extract Textile extract Cyhexatin 5.27 Cyhexatin 5.27 Fenbutatin oxide 6.13 Fenbutatin oxide 2.93 4000 3000 3000 2000 3.74 6.13 3.98 3.74 3.98 1000 0 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 Time, min 0 2.5291.000/235.100 3.0amu Expected3.5 4.0 chloride 2 from 4.5 Sample 7 (SW 5.050ppt) of 20120118-salty 5.5 XIC of2.0 +MRM (12 pairs): RT: 3.8 ID: tributylin water6.0 test.... Time, min XIC of +MRM (12 pairs): 291.000/235.100 amu Expected RT: 3.8 ID: tributylin chloride 2 from Sample 7 (SW 50ppt) of 20120118-salty water test.... 3.73 1903 1800 3.73 1903 1800 1600 2000 1000 6.5 7.0 7.5 6.5 7.0 7.5Max. 1903.4 cps. 8.0 1400 1200 3.97 Synthetic seawater Synthetic seawater Cyhexatin Cyhexatin Fenbutatin oxide 5.27 6.14 Fenbutatin oxide 5.27 1200 1000 1000 800 Fentin 2.95 Fentin 800 600 600 400 8.0 Max. 1903.4 cps. TBT TBT 3.97 1600 1400 Intensity, cps cps Intensity, The achieved Signal-to-noise (S/N) ratios are listed in Table 1. S/N values were measured in MultiQuant™ software after applying a 2x Gaussian smooth. S/N values were used to estimate limits of quantitation (LOQ) for all analytes in each matrix. 6.14 2.95 400 200 Fentin �� �� �� ��� �� �� �� ��� 2.5 3.0 3.5 4.0 4.5 2.5 3.0 3.5 4.0 4.5 6.0 6.5 7.0 7.5 8.0 6.0 6.5 7.0 7.5 8.0 Table 3. Estimated limits of quantitation (LOQ) in different matrices based on S/N of 10 Organotin compound Apple (μg/kg) Potato (μg/kg) Textile (μg/kg) Seawater (ng/L) 0.2 0.3 10 10 < 0.1 < 0.1 < 10 < 10 Cyhexatin 0.1 0.1 20 < 10 Fenbutatin oxide < 0.1 < 0.1 15 < 10 TBT Fentin TBT Fentin �� � � �� ��� � �� �� � ��� 5.5 5.5 enbutatin oxide Figure 6. Calibration lines of organotin compounds in apple matrix (2 to 100 μg/kg) enbutatin oxide �� �� �� ��� CyhexatinF �� � � �� ��� 5.0 Time, min 5.0 Time, min Figure 5. Textile material spiked with 0.1 mg/kg and diluted 10x after extraction (top) and synthetic seawater spiked at 50 ng/L and analyzed by direct injection (50 μL) �� �� �� ��� CyhexatinF 2000 2.0 0 2.0 Figure 7. Calibration lines of organotin compounds in synthetic seawater (50 to 2000 ng/L) The linear dynamic range was evaluated from 2 to 100 μg/ kg for apple and potato, from 0.1 to 1 mg/kg for textiles, and from 50 to 2000 ng/L for seawater. Example calibration lines of all four organotin compounds in apple and synthetic seawater are shown in Figures 6 and 7. Repeatability was found to be less than 15% coefficient of variation (%CV) and accuracy between 85 and 115% for all compounds at all concentrations (Table 4). www.spektrotek.com �� � � �� ��� TBT 123 Gıda ve Çevre Uygulamaları Table 4. Repeatability (%CV) and accuracy of organotin compounds at the lowest point of the calibration line Apple (2 μg/kg) Organotin compound %CV Potato (2 μg/kg) Textile (0.1 mg/kg) Seawater (50 ng/L) Accuracy (%) %CV Accuracy (%) %CV Accuracy (%) %CV Accuracy (%) TBT 10.0 97.0 13.9 86.4 7.3 95.6 6.3 113.1 Fentin 1 9.9 101.4 12.4 96.8 4.7 95.8 7.9 112.6 Cyhexatin 5.9 108.5 2.4 88.4 3.6 93.3 4.2 115.0 Fenbutatin oxide 11.4 104.4 11.8 99.5 13.2 97.3 3.6 107.4 Compound identification was achieved using the ‘Multicomponent’ query in MultiQuant™ software. This query automatically calculates and compares MRM ratios for identification and highlights concentrations above a user specified residue level. Examples of the result table and peak review after running the query file are shown in Figures 8 and 9. Summary A quick, easy, and robust LC-MS/MS method for the determination of different organotin compounds in food, seawater, and textile materials was developed. The method allows accurate and reproducible quantitation using the selectivity and sensitivity provided by the AB SCIEX 4000 QTRAP® system operated in MRM mode. Detection limits well below regulated levels allow sample extract dilution to minimize possible matrix effects. Confident compound identification was achieved through the automatic calculation of MRM ratios using the ‘Multicomponent’ query in MultiQuant™ software. References Figure 8. Automatic compound identification using the ‘Multicomponent’ query (example cyhexatin in potato) www.spektrotek.com Figure 9. Automatic compound identification using the ‘Multicomponent’ query (example fentin in textile) 124 1.K. Fent: ‘Ecotoxicology of organotin compounds’ Crit. Rev. Toxicol. 26 (1996) 1-117 2.E. Gonzalez-Toledo et al.: ‘Detection techniques in speciation analysis of organotin compounds by liquid chromatography’ Trends Anal. Chem. 22 (2003) 26-33 3.Regulation (EC) ‘on the prohibition of organotin compounds on ships’ No 782/2003 4.Commission Decision ‘restrictions on the marketing and use of organostannic compounds’ 2009/425/EC 5.International Association for Research and Testing in the Field of Textile Ecology: OEKO-TEX Standard 100, Edition 4 (2012) 6.http://www.codexalimentarius.org/standards/pesticidemrls/en/ 7.Council Directive ‘maximum levels for pesticide residues’ 96/32/EC 8.EU Reference Laboratory for Single Residue Methods: ‘Analysis of Organotin Compounds via QuEChERS and LCMS/MS – Brief Description’ www.crl-pesticides.eu For Research Use Only. Not for use in diagnostic procedures. © 2012 AB SCIEX. The trademarks mentioned herein are the property of AB Sciex Pte. Ltd. or their respective owners. AB SCIEX™ is being used under license. Publication number: 6690212-01 Nitrogen Generators Zero Air Generators Hydrogen Generators HPLC Preperative HPLC BioLC/Protein Purification Osmometer Chromatography Columns UV- VIS Spectrophotometer Gel Documentation System DNA /Protein Analyzer Atomic Absorbption Spectrophotometer ICP OES ICP TOF MS XRD UV-VIS Spectrophotometer Compact Mass Spectrometers Stirrers Heaters Shakers Hot Plates Vaccum Pumps Vaccum Filtration Sets Homogenizers Incubators Vial/Cap/Septa Syringe Filters Membrane Filters Quartz Cuvettes Quechers Sample Prep Kits SPE Cartridges Laboratory Equipments Laboratory Intruments HPLC& LCMSMS Diagnostic Kits Thermo Cyclers Thermo Mixers Centrifuges Liquid Handling (Pippets etc) Mixers and Shakers Tube Rollers and Rotators www.spektrotek.com Online SPE Systems HPLC Autosamplers Gıda ve Çevre Temsilcilikler Uygulamaları Triple Quad LCMSMS QTRAP QTOF MALDI TOF/TOF HPLC MicroLC NanoLC 125 126 www.spektrotek.com Gıda ve Çevre Uygulamaları Notlar 127 www.spektrotek.com Notlar Spektrotek A.Ş. www.spektrotek.com [email protected] t: 0 216 688 57 78 f: 0 216 688 57 69
Benzer belgeler
spécimen - Nonpareille
comes from Rey’s own collection; the
biggest ones are designed by Perrin himself.
His ‘Augustaux’ are considered as one of
the first revivals in the history of typography.
The new style of types he...