Ders Dosyası
Transkript
Ders Dosyası
Genel Matematik (MATH 103) Ders Detayları Ders Adı Ders Kodu Dönemi Ders Uygulama Laboratuar Kredi AKTS Saati Saati Saati Genel Matematik MATH 103 Güz 3 2 0 4 Ön Koşul Ders(ler)i - Dersin Dili İngilizce Dersin Türü Diğer Bölümlere Verilen Servis Dersleri Dersin Seviyesi Lisans Ders Verilme Şekli Yüz Yüze Dersin Öğrenme ve Anlatım, Tartışma, Soru-Yanıt, Sorun/Problem Öğretme Teknikleri Çözme Dersin Koordinatörü 6 Dersin Öğretmen(ler)i Dersin Asistanı Dersin Amacı Bu dersin amacı kümeler, sayılar ve özellikleri, denklemler, eşitsizlikler, düzlemde doğru ve ikinci dereceden eğriler gibi matematiğin temel kavramlarını ve aralarındaki ilişkileri tanıtmak, fonksiyonlar, trigonometri, karmaşık sayılar, matris ve determinantların kullanımını öğretmek, ayrıca öğrencilerin problem çözme ve analitik düşünme yeteneğini geliştirmek ve gerçek hayat uygulamalarına yönelik becerilerini artırmaktır. Dersin Eğitim Çıktıları Bu dersi başarıyla tamamlayabilen öğrenciler; Dersin İçeriği Kümeler, sayılar ve özellikleri, özdeşlikler, denklem ve eşitsizlikler, polinomlar, düzlemde koordinat sistemi, düzlemde doğru ve ikinci dereceden eğrilerin grafikleri, fonksiyonlar, trigonometri, kutupsal koordinatlar, karmaşık sayılar, doğrusal denklem sistemleri, matrisler ve determinantlar. • Matematiğin temel kavramlarını anlar, • Birinci ve ikinci dereceden denklem ve eşitsizlikleri çözer, • Düzlemde doğru ve koniklerin denklemlerini tanır ve grafiklerini çizer, • Doğrusal denklem sistemlerinin çözüm yöntemlerini öğrenir, • Fonksiyonlar, trigonometri, karmaşık sayılar ve kutupsal koordinatların kullanımını öğrenir • Matris ve determinant kavramlarını anlar. Haftalık Konular ve İlgili Ön Hazırlık Çalışmaları Hafta Konular Ön Hazırlık 1 Kümeler, Sayılar, Nümerik ifadeler, Gerçel Sayıların özellikleri s.2-17 2 Cebirsel Altyapı: Eşitsizlikleri sayı s. 17-49 doğrusunda belirleme, Gerçel Sayı doğrusunda uzaklık, Cebirsel İfadeler, Bir değişkenli ifadelerin tanım kümesi, Üst Kuralları, Karekökler, Bilimsel Notasyon Geometrik Altyapı: Pisagor Teoremi ve tersi, Geometri Formülleri, Eşleşik Üçgenler ve Benzer Üçgenler Polinomlar: Polinomlar, Polinomların toplamı ve farkı, Polinom çarpması, Özel çarpımlar için Formüller 3 Polinomların Çarpanlara Ayrılması, s. 49-80 Polinom bölmesi, Rasyonel ifadeler, n. Kökler, Rasyonel üstler,Taban aritmetiği 4 Doğrusal Denklemler: Doğrusal Denklem Çözmek, Doğrusal bir denkleme yol açan denklemleri Çözmek, Doğrusal Denklemler ile Modellenebilen Problemleri Çözmek Quadratik Denklemler: Çarpanlara Ayırarak Quadratik Denklemi Çözmek, Tam kareye tamamlayarak Quadratik Denklemi Çözmek, Quadratik Formülü kullanarak Quadratik Denklemi Çözmek, Quadratik Denklemler ile Modellenebilen Problemleri Çözmek 5 Karmaşık Sayılar, Karmaşık sayı s. 104-129 sisteminde quadratic denklemler, Köklü denklemler, Quadratik forma dönüştürülen denklemler, Çarpanlara ayrılan denklemler, Eşitsizlik çözümleri s. 81-104 6 Mutlak değeri içeren denklemler ve eşitsizlikler, Uzaklık ve Orta Nokta Formülleri, İki Değişkenli Denklemlerin Grafikleri, Kesim Noktaları; Simetri s. 130-167 7 Arasınav 8 Doğrular, Çemberler, Fonksiyonlar s. 167-188, 200-213 9 Bir fonksiyonun grafiği, Fonksiyonların özellikleri, Fonksiyon örnekleri s.214-239 10 Parçalı Fonksiyonlar, Grafik Teknikleri: Dönüşümler, Açılar ve onların ölçümleri s. 239-257, 504-517 11 Dik Üçgen trigonometrisi, Dar Açıların Trigonometrik Fonksiyonlarda Değerlerinin Hesaplanması, Herhangi bir Açının Trigonometrik Fonksiyonları, Birim Çember Yaklaşımı s. 517-556 12 Trigonometrik Fonksiyonların Özellikleri, Trigonometrik Denklemler, Trigonometrik Özdeşlikler, Toplam ve Fark Formülleri, İki kat ve Yarım Açı Formülleri s.556-560, 622-662 13 Dik üçgenleri içeren uygulamalar, s. 673-701, 718-741 Sinüs ve Kosinüs Kuralı, Bir üçgenin alanı, Kutupsal Koordinatlar, Kutupsal Denklemler ve Grafikleri 14 Kompleks Düzlem; De Moivre’s Teoremi, Doğrusal Denklem Sistemleri: Yerine Koyma ve Yok etme metodları, Doğrusal Denklem Sistemleri: Matrisler s.742-749, 843-872 15 Doğrusal Denklem Sistemleri: Determinantlar, Matris Cebiri s. 873-899 16 Genel Sınav Kaynaklar Ders Kitabı: 1. M. Sullivan, Algebra and Trigonometry, 9.ed., Pearson, 2012 Diğer Kaynaklar: 1. J. Stewart , L. Redlin, S. Watson, Precalculus Mathematics for Calculus, Brooks Cole 6. edition, 2011 2. Matematik I, Atılım Üniversitesi Matematik Bölümü Uzaktan Eğitim Ders Notu Değerlendirme Sistemi Çalışmalar Sayı Katkı Payı Devam/Katılım - - Laboratuar - - Uygulama - - Alan Çalışması - - Derse Özgü Staj - - Küçük Sınavlar/Stüdyo Kritiği - - Ödevler - - Sunum - - Projeler - - Seminer - - Ara Sınavlar/Ara Juri 2 60 Genel Sınav/Final Juri 1 40 Toplam 3 100 Yarıyıl İçi Çalışmalarının Başarı Notu Katkısı 60 Yarıyıl Sonu Çalışmalarının Başarı Notuna Katkısı 40 Toplam 100 Ders Kategorisi Temel Meslek Dersleri Uzmanlık/Alan Dersleri Destek Dersleri İletişim ve Yönetim Becerileri Dersleri Aktarılabilir Beceri Dersleri Dersin Öğrenim Çıktılarının Program Yeterlilikleri ile İlişkisi # Program Yeterlilikleri / Çıktıları Katkı Düzeyi 1 2 3 4 5 1 Matematik lisans programından edindiği ileri düzeydeki kuramsal ve uygulamalı bilgileri kullanarak matematik temelli lisansüstü programlarda, kamu veya özel sektörde bilimsel çalışma ve araştırma yapmak için yeterli bilgiye sahip olur. 2 Alanında edindiği kuramsal ve uygulamalı bilgileri uygun araç-gereçleri kullanarak ortaöğretime uyarlar ve aktarır. 3 Alanında edindiği bilgi ve becerileri kullanarak, matematik veya uygulandığı alanlardaki güncel problemleri modelleme ve çözüm için gerekli olan matematiksel yöntemleri seçme, kullanma, geliştirme ve çözme becerisine sahip olur. 4 Analitik düşünme yeteneğine sahip olur ve sonuç çıkarma sürecinde zamanı etkin kullanır. 5 Bilgisayar bilimleriyle ilgili alanlarda çalışabilecek düzeyde temel yazılım bilgisine ve bilişim teknolojilerini etkin bir şekilde kullanma becerisine sahip olur. 6 Karar süreçlerinin ihtiyaç duyacağı verileri toplama, analiz etme, yorumlama ve istatistiksel yöntemleri kullanabilme becerisine sahip olur. 7 Matematiğin doğrudan veya dolaylı olarak kullanıldığı alanlarda çalışma yapabilecek düzeyde bilgiye sahip olur ve yaşam boyu öğrenmenin bilinci ile mesleki bilgi ve becerilerini yeniler. 8 Matematiğin kullanıldığı alanlarda bireysel olarak veya takımlarda ekip üyesi olarak sorumluluk alır ve etkin biçimde çalışma becerisine sahip olur. 9 Matematik veya uygulama alanlarındaki bilgileri izleyecek ve meslektaşları ile iletişim kuracak düzeyde İngilizce bilir. 10 Görüş ve düşüncesini nicel ve nitel verilerle destekleyerek açık ve anlaşılabilir biçimde yazılı ve sözlü ifade eder, paydaşlarıyla iletişim kurar. 11 Matematik veya uygulama alanları ile ilgili verilerin toplanması, yorumlanması, uygulanması ve sonuçların duyurulması aşamalarında evrensel ve toplumsal boyutlardaki etkilerini dikkate alan mesleki etik ve sorumluluk bilincine sahip olur. ECTS/İş Yükü Tablosu Aktiviteler Ders saati (Sınav haftası dahildir: 16 x toplam ders saati) Sayı Süresi (Saat) Toplam İş Yükü 16 3 48 14 2 28 14 4 56 Ara Sınavlara/Ara Juriye Hazırlanma Süresi 2 13 26 Genel Sınava/Genel Juriye Hazırlanma Süresi 1 22 22 Laboratuar Uygulama Derse Özgü Staj Alan Çalışması Sınıf Dışı Ders Çalışma Süresi Sunum/Seminer Hazırlama Projeler Ödevler Küçük Sınavlar/Stüdyo Kritiği Toplam İş Yükü 180
Benzer belgeler
Ders Dosyası
4. Bir Mimarlığa Doğru, Le Corbusier, Yapı Kredi Yayınları,
2013, Çeviren: Serpil Merzi Özaloğlu
Akilli Pedestal Sistemleri
büyük projeye imza atarak ülkemiz ekonomisine ciddi katkılar sağlamıştır.
Kuruluşumuz, uluslararası tecrübeye sahip çalışanları ile birlikte; araştırma,
geliştirme, projelendirme, uretim, bakım ve ...