tour Zams
Transkript
dø)7<,/',=/$5,1(95ø0ø
DERS NOTLARI
(Çeviri)
Orijinal Kitap
STRUCTURE AND EVOLUTION OF SINGLE AND BINARY STARS
Ed: C.W.H. de Loore and C. Doom
Kluwer, 1992
Çeviren
3URI'UgPHU/WIL'H÷LUPHQFL
2005
1
dLIW<ÕOGÕ]ODUÕQ(YULPL
BÖLÜM 15
dø)7<,/',=/$5,1(95ø0ø
*(1(/%$.,ù
*LULú
<ÕOGÕ] HYULPLQL EHOLUOH\HQ SDUDPHWUHOHU RODQ NWOH YH NLP\DVDO ELOHúLP GÕúÕQGD \DNÕQ oLIWOHULQ HYULPLQL
EHOLUOH\HQoSDUDPHWUHGDKDYDUGÕUVLVWHPLQWRSODPNWOHVLM (=M1+M2NWOHRUDQÕq (=M2 /M1 ) ve yörünge
dönemi P<DNÕQoLIWOHULoLQHYULPKHVDSODPDODUÕ=$06¶GDNLLNLELOHúHQOHEDúODWÕODELOLUEXGXUXPGDVLVWHP
EX o SDUDPHWUH LOH WDQÕPODQÕU .WOH YH DoÕVDO PRPHQWXP DNWDUÕPÕQÕQ ROGX÷X VLVWHPOHULQ ELOHúHQOHUL
DUDVÕQGDNL HWNLOHúLPOHULQ VRQXFXQGD EX o SDUDPHWUH HYULP VÕUDVÕQGD VUHNOL GH÷LúLU (YULPOHúPHPLú
VLVWHPOHUELOHúHQOHUDUDVÕQGDNLRODVÕHWNLOHúLPGHQ|QFH
ile HYULPOHúPLúVLVWHPOHUDUDVÕQGDD\UÕP\DSDELOLUL]
nmak istHQGL÷LQGH RQODUÕQ
kütlelerinin (M), NWOH RUDQODUÕQÕQ q) ve dönemlerinin (P GD÷ÕOÕPÕ KDNNÕQGD ILNLU VDKLEL ROPDN JHUHNLU
(WNLOHúHQ oLIWOHULQ ELOLQHQ VÕQÕIODUÕ HYULPVHO WDULKoHOHUL DoÕVÕQGDQ \RUXPOD
%LOPHPL]JHUHNHQúH\EDúODQJÕoGD÷ÕOÕPIRQNVL\RQX
F ( M , q, P) d (ln M ) d (ln q ) d (ln P)
dir.
%X SDUDPHWUH X]D\Õ M-q-P X]D\Õ \DNÕQ oLIW \ÕOGÕ]ODUÕ ED]Õ GR÷DO NDWHJRULOHUH D\ÕUÕU NoN YH RUWD NWOHOL
oLIWOHUNWOHOL VLVWHPOHUKÕ]OÕ HYULP J|VWHUHQ \D GDJ|VWHUPH\HQVLVWHPOHU LOHDQDNROHWNLOHúLPOHUL \D GDLOHUL
HYUHOHUGHNL HWNLOHúLPOHUL J|VWHUHQ VLVWHPOHU (WNLOHúPH\HQ YH HWNLOHúHQ VLVWHPOHU
in gözlemleri, parametre
X]D\ÕQÕQGH÷LúLNNÕVÕPODUÕQDD]\DGDoRNHWNLHGHU
iyle F’nin belirlenmesi zordur. Bununla
onunun,
%HOOL WUGHQ oLIWOHULQ EHOLUOHQPHVLQL ]RUODúWÕUDQ VHoLP HWNLOHUL QHGHQ
ELUOLNWH|EHN,WUoLIWOHUHLOLúNLQLQFHOHPHOHUGD÷ÕOÕPIRQNVL\
F ( M , q, P) d (ln M ) d (ln q ) d (ln P) = F ( M )d (ln M ).V (q )d (ln q).W ( P)d (ln P)
úHNOLQGH
M-, q- ve P-GD÷ÕOÕP IRQNVL\RQODUÕQÕQoDUSÕPÕRODUDN \D]ÕODELOHFH÷LQL RUWD\D NR\PXúWXU EXUDGD M,
E\NNWOHOLELOHúHQLQNWOHVLGLU
%Dú \ÕOGÕ]ODUÕQ NWOHOHULQH LOLúNLQ GD÷ÕOÕP WHN \ÕOGÕ]ODUÕQNLQH EHQ]HPHNWHGL
RODQODULoLQEXGD÷ÕOÕP6DOSHWHUIRQNVL\RQX
r ve 0.9 M’den büyük kütleli
F ( M )d (ln M ) = M −2.35 d (ln M )
ile temsil edilebilir, burada ME\NNWOHOLELOHúHQLQNWOHVLGLU
.WOHRUDQÕGD÷ÕOÕPÕ
V(q), q
FLYDUÕQGDPDNVLPXPDVDKLSWLU
V(q)’nun, küçük q (=M2/M1) GH÷HUOHULQHGR÷UX
KÕ]OD D]DOGÕ÷Õ \|QQGHNL WDKPLQOHU IDUNOÕGÕU *HQHO RODUDN NDEXO HGLOHQ NWOH RUDQÕ GD÷ÕOÕPÕQÕQ VHoLP
HWNLOHULQGHQHWNLOHQPLúROPDVÕYHGD÷ÕOÕPÕQoRNGDKDG]ROPDVÕRODVÕGÕU
'|QHPGD÷ÕOÕPÕ]HULQH\DSÕODQGH÷LúLNoDOÕúPDODUORJDULWPLNG|QHPDUDOÕ÷ÕEDúÕQDoLIWOHULQVD\ÕVÕQÕQKHPHQ
KHPHQ VDELW ROGX÷X NRQXVXQGD X\XúPD KDOLQGHGLUOHU ùHNLO ¶GD NWOHQLQ ELU IRQNVL\RQX RODUDN X\JXQ
minimuma NDUúÕOÕNJHOHQG|QHPOHULoLQNDEXOHGLOHELOLUELUGD÷ÕOÕP
W ( P )d (ln P ) = 0.006d (ln P )
úHNOLQGHDOÕQDELOLU
ùHNLOHYULPOHúPHPLúVLVWHPOHULoLQ9DQ6LQDYH'H*UHYHWDUDIÕQGDQHOGHHGLOGL÷L]HUHVLVWHP
EDúÕQD WRSODP NWOHQLQ J|]OHQHQ GD÷ÕOÕPÕQÕ J|VWHUPHNWHGLU ¶GDQ 0
¶H
NDGDU RODQ DUDOÕNWD
J|]OHQPHOHUL]RUROGX÷XQGDQGúNÕúÕWPDJHULWD\IWU\DOQÕ]FDELUNDoVLVWHPJ|UOPHNWHGLU
- 4 M
DUDOÕ÷ÕQGDELUPDNVLPXPYDUGÕU'DKDE\NNWOHOHULoLQKHUELUDUDOÕNEDúÕQDORJDULWPLNRODUDNELULP
2
dLIW<ÕOGÕ]ODUÕQ(YULPL
RODQ VLVWHPOHULQ VD\ÕVÕ DUDOÕN EDúÕQD oDUSDQÕ NDGDU D]DOPDNWDGÕU %X
diyagramdan, beklenen Salpeter
GD÷ÕOÕPÕQDVDSPDQÕQQHGHQLVHoLPHWNLOHULGLU
(YULPOHúPHPLú \ÕOGÕ]ODUÕQ ¶ÕQGDQ ID]ODVÕ ¶GHQ GDKD E\N NWOH RUDQODUÕQD VDKLSWLU VLVWHPOHULQ
\DNODúÕN¶LLVHELUoLYDUÕQGDELUNWOHRUDQÕQDVDKLSWLUg]HOOLNOH¶GHQNoNNWOHRUDQOÕKLoELUVLVWHP
EXOXQDPDPÕúWÕU(YULPOHúPHPLúVLVWHPOHULQNWOHRUDQODUÕQÕQGD÷ÕOÕPÕùHNLO¶GHJ|VWHULOPLúWLU
Abt ve Levy (1976), F3 – G2V ve B2 – % WD\I DUDOÕ÷ÕQGDNLWD\IVDOoLIWOHUHLOLúNLQ ELU LQFHOHPHOHULQGHQELU
G|QHP GD÷ÕOÕPÕ HOGH HWPLúOHUGLU ùHNLO +LVWRJUDP DGHW ELOLQHQ \D GD WDKPLQ HGLOHQ G|QHP LOH
ROXúWXUXOPXúWXU
ùHNLO(YULPOHúPHPLú\DNÕQoLIWVLVWHPOHULQWRSODPNWOHOHULQLQGD÷ÕOÕPÕ9DQ6LQDYH'H*UHYH
ùHNLO (YULPOHúPHPLú oLIW VLVWHPOHULQ NWOH RUDQODUÕQÕQ GD÷ÕOÕPÕ 3RSRY KLVWRJUDP
–
DUDOÕNODUÕQGDNLGD÷ÕOÕPÕQÕJ|VWHUPHNWHGLU DUDVÕQGDGDKDLQFHELUGD÷ÕOÕPGDYHULOPLúWLU
.
q’nun 0.2 birim
3
dLIW<ÕOGÕ]ODUÕQ(YULPL
ùHNLO dLIWOHULQ \|UQJH G|QHPOHULQLQ IUHNDQVÕ $oÕN JUL U
enkli bölge, bilinen görsel yörünge
|÷HOL
sistemleri
J|VWHUPHNWH YH G] oL]JLOHU LOH EHOLUOHQPLú RODQ WD\IVDO oLIWOHU E|OJHVL 6% LOH J|VWHULOHQ LOH oDNÕúPDNWDGÕU 7DUDOÕ
bölgedeki (CPM ile gösterilen) çiftlerin, ortak öz hareketlerinden belirlenen dönemleri oldukça belirsizdir.
'D÷ÕOÕPJ|UHOLRODUDN G]GU YHWHN PDNVLPXPOXGXU'D÷ÕOÕP \ÕOFLYDUÕQGDELUPHG\DQDVKLSWLUYH¶GHQ
106JQHNDGDURODQDUDOÕNWDGDKDKRPRMHQGLU$EWYH/HY\¶\HJ|UHWD\IVDOoLIWOHULOHJ|UVHOoLIWOHUDUDVÕQGDNL
oDNÕúPD, i NL PRGOX ELU GD÷ÕOÕPÕQ ROXúPDmasÕ DoÕVÕQGDQ yeterlidir. (÷HU E|\OH ROVD\GÕ G|QPH\OH JHQLúOHPLú
oL]JLOHULQ X]XQ G|QHPOL ELU oRN WD\IVDO oLIWLQ EHOLUOHQPHVLQL HQJHOOHGL÷L YH \ÕOGÕ]ODUÕQ oR÷X LoLQ E\N
ek gerekir
ve bu dXUXPGD LNL PRGOX ELU GD÷ÕOÕP EHNOHQLUGL '|QHPGHNL DUDOÕN 8 oDUSDQÕ NDGDUGÕU YH EX GD oLIW
ROXúXPXQGDQWHN ELU ROXúXPVUHFLQLQ VRUXPOX ROGX÷XQXLQDQÕOPD] \DSPDNWDGÕU+XDQJEN]$EWYH /HY y,
1976).
X]DNOÕNODUÕQNÕVD G|QHPOL ELU oRN J|UVHOoLIWLQ EHOLUOHQPHVLQH HQJHO ROGX÷X|Q WU oLIWOHUL LQFHOHP
,
olan çiftlerdir *HQHO RODUDN JQHú FLYDUÕQGD J|]OHQHQ
$QDNRO \ÕOGÕ]ODUÕQÕQ \DNODúÕN ¶X oLIWWLU |Q WU \ÕOGÕ]ODUÕQ \DNODúÕN ¶Õ NWOH RUDQODUÕ \DQL \ROGDúÕQ
NWOHVLQLQ EDú \ÕOGÕ]ÕQNLQH RUDQÕ ¶GHQ E\N
\ÕOGÕ]ODUÕQ \DNODúÕN ¶VLQLQ oLIW \D GD oRNOX VLVWHP ROGX÷X V|\OHQHELOLU dR÷X GXUXPGD LNL ELOHúHQ
\HWHULQFH D\UÕNWÕU YH ELOHúHQOHU ELU ELUOHULQGHQ HWNLOHQPHGHQ HYULPOHúLUOHU )DNDW GL÷HU GXUXPODUGD
sistemin
EDúODQJÕo SDUDPHWUHOHULQH ED÷OÕ RODUDN ELU ELOHúHQLQ \DNÕQOÕ÷Õ ELU \ÕOGÕ]ÕQ E\\HELOHFH÷L JHOLúHELOHFH÷L
PHVDIH\L VÕQÕUOD\DELOLU YH HYULP VÕUDVÕQGD \ÕOGÕ]ODU DUDVÕQGD HWNLOHúLP RODELOLU dLIW HYULPL LoLQ HQ |QHPOL
GXUXPODUNWOHDNWDUÕPHYUHOHULLOHVLVWHPGHNLELOHúHQOHUGHQELULQLQVSHUQRYDRODUDNSDWODPDVÕQÕQ\DODoWÕ÷Õ
eWNLOHUGLU%X GXUXPGDVLVWHP \D GD÷ÕOÕU \DGDELU ELOHúHQHVDKLS RODQoLIWOHUGHELOHúHQOHUGHQ ELULQLQNWOHVL
NWOHDNWDUDQ\ROGDúÕQGDQ\Õ÷ÕúDQNWOH\OHE\\HELOLUE|\OHFHELOHúHQLQHYULPLGH÷LúLU+LGURMHQLQLoHGR÷UX
DNÕúÕ GDKD VRQUDNL HYUHOHUGH KHO\XPXQ NDUERQ RNVLMHQLQ YG QHGHQL\OH \ÕOGÕ] JHQoOHúLU YH HYULPL E\N
RUDQGDGH÷LúLU\DúDPVUHVLGH÷LúLUHYULPVUHFLGH÷LúHELOLUYHHYULPLQLQVRQVDIKDVÕEDúODQJÕoNWOHVLQGHQ
EHNOHQHQGHQWDPDPHQIDUNOÕRODELOLU
<ÕOGÕ]ODUDLOLúNLQHQ|QHPOL IL]LNVHOSDUDPHWUHRODQ NWOH\DOQÕ]FD ELU oLIWVLVWHPLQELOHúHQOHULLoLQ GR÷UXELU
úHNLOGH EHOLUOHQHELOHFH÷LQGHQ oLIW VLVWHPOHU oRN |QHPOLGLU %HOLUOL NRúXOODUGD |UWHQ oLIWOHU ELOHúHQOHULQ
JHRPHWULN D\UÕQWÕODUÕQÕQ EHOLUOHQHELOPHVLQH RODQDN YHULUOHU øNLQFL ELU \ÕOGÕ]ÕQ YDUOÕ÷Õ oRN JoO ELU HWNL\H
VDKLSWLU ELOHúHQ Lo \DSÕVÕQD ED÷OÕ RODUDN ELU GHIRUPDV\RQD X÷UD\DELOLU gUWHQ oLIWOHU GH ELOH EX WU ELU
ER]XOPD\ÕJ|]OHPHNNROD\GH÷LOGLU%XQXQODELUOLNWHEXROD\ÕQ\DQ
etkileri gözlemlenebilir: bozulma, çekim
LYPHVLQL YH \|UQJH\L GH÷LúWLUHELOLU <ÕOGÕ] \DSÕVÕQÕQ ER]XOPDVÕQD LOLúNLQ ELU oRN EHOLUWL YH ELU ELOHúHQLQ
YDUOÕ÷ÕQÕQ \ÕOGÕ]DWPRVIHULQH HWNLOHULKHPHQKHPHQELU \]\ÕOGDQEHULELOLQPHNWHGLU%XWUEHOLUWLOHUH|UQHN
RODUDNHNVHQG|QPHVL\DQVÕPDHWNLOHULYHoLIWVLVWHPOHUGHNLJD]DNÕPODUÕQÕQYDUOÕ÷ÕJ|VWHULOHELOLU%XROJXODU
\ÕOGÕ]PRGHOOHULQLQ\DSÕVÕQÕQWHVWHGLOPHVLQHRODQDNVD÷ODUODU
<DNÕQ ELU ELOHúHQLQ ELU \ÕOGÕ]ÕQ HYULP VUHFLQL WHPHOOL RODUDN GH÷LúWLUHELOHFH÷L JHUoH÷L \ÕOÕQGD 2WWR
SWUXYH WDUDIÕQGDQ β /\UDH¶QLQ WXWXOPDODU VÕUDVÕQGDNL NDUDNWHULVWLN WD\IVDO GDYUDQÕúODUÕQÕQ ELU DoÕNODPDVÕ
RODUDNELOHúHQOHUDUDVÕQGDNLJD]DNÕúÕQÕ|QHUPHVLYHEHQ]HUROD\ODUÕQGL÷HU|UWHQoLIWOHUGHJ|]OHQPHVL\OHDoÕN
ELUúHNLOGHDQODúÕODELOPLúWLU
Tek izROH ELU \ÕOGÕ]ÕQ EDúWDQ VRQD kadar olan
HYULPL JHUoHNWH o|NHQ ELU EXOXWWDQ VRQ DúDPD\D
yani
o|NPú
,
ELU FLVLP Q|WURQ \ÕOGÕ]Õ EH\D] FFH \D GD ELU NDUDGHOLN HYUHVLQH NDGDU VUHNOL ELU E]OPHGLU <ÕOGÕ] KHU
ELULQGHVÕUDVÕ\ODKLGURMHQKHO\XPYHNDUERQXQWNHWLOGL÷LDUGÕúÕNQNOHHU\DQPDHYUHOHULQLGHYUH\HVRNDUDN
4
dLIW<ÕOGÕ]ODUÕQ(YULPL
bu yok edici sonGDQ NDoÕQPD\D \D GD HQ D]ÕQGDQ ELU VUH HUWHOHPH\H oDOÕúÕU +LGURMHQ \DQPDVÕQGDQ HOGH
HGLOHQ UHDNVL\RQ UQOHUL VRQUDNL \DQPD HYUHOHULQGH \DNÕW RODUDN NXOODQÕOÕU EX \DNÕWODU nükleer
UHDNVL\RQODUÕQ PH\GDQD JHOPHVL LoLQ VÕFDNOÕN YH \R÷XQOX÷XQ \HWHULQFH \NVHN ROGX÷X \ÕOGÕ] PHUNH]LQGH \D
GD PHUNH]H \DNÕQ \HUOHUGH \DNÕOÕU WNHWLOLU <ÕOGÕ]ÕQ PHUNH]L NÕVPÕQGD DUG DUGÕQD \DNÕWODU WNHWLOGLNoH
oHNLUGH÷L EHVOH\HQ QNOHHU UHDNVL\R
suretiyle
nlar,
\ÕOGÕ]ÕQ GÕú NÕVÕPODUÕQGDQ RODQ HQHUML ND\ÕSODUÕQÕ NDUúÕODPDN
\RN ROXU %X GXUXPGD oHNLUGHN RQX oHYUHOH\HQ NDWPDQODUÕQ D÷ÕUOÕ÷Õ\OD VÕNÕúÕU YH E|\OHFH
\R÷XQOX÷X DUWDU 1NOHHU \DQPD \HUL oHNLUGHN HWUDIÕQGDNL ELU NDEX÷D ND\DU $\UÕFD
, çekirdekteki madde
VÕNÕúPÕúWÕU UHWLOHQ HQHUML ÕúÕQÕP PHNDQL]PDODUÕ\OD \ÕOGÕ]ÕQ ]DUIÕQD WDúÕQÕU dHNLUGH÷LQ |] HQWURSLVL GúHU
dHNLUGH÷LQVÕFDNOÕ÷Õ P
addenin durumuna yani elektron
\R]ODúPDVÕQD QHNDGDU \DNÕQROGX÷XQDED÷OÕRODUDN
GúHELOLU\DGDDUWDELOLU(÷HUoHNLUGH÷LQVÕFDNOÕ÷ÕYH\R÷XQOX÷X\HWHULQFH\NVHNELUGXUXPDJHOLUVHVRQUDNL
QNOHHU \DNÕW \DQPD\D EDúODU YHE|\OHFH \HQLELU QNOHHUUHDNVL\RQoHYULPLEDúODPÕúROXU<ÕOGÕ]ÕQEX \HQL
GXUXPDX\XPXVDNLQÕOÕPOÕELUúHNLOGHROXUJHoLúKHPHQKHPHQGHQJHKDOLQGHROXúXU(÷HUE|\OH ROPD]VD
oHNLUGH÷LQ |] HQWURSLVL HOHNWURQXQ \R]ODúPDVÕQÕ VD÷OD\DFDN NDGDU NoN ROXU %X GD \R]ODúPÕú oHNLUGH÷LQ
derece güçlü bir nükleer yanmaya neden olur. Artan bu enerji üretimine tepki
olarak da GÕú NÕVÕPODU JHQLúOHU ÕúÕQÕPOD HQHUML DNWDUÕPÕQÕQ Jc EX NDGDU ID]OD HQHUML\L GÕú NÕVÕPODUD
HWUDIÕQGDNL ELU NDEXNWD VRQ
WDúÕPD\D \HWPH] YH LoHUL\H GR÷UX GÕú QNOHHU \DQPD NDEX÷XQD NDGDU XODúDELOHQ GHULQ ELU \]H\ NRQYHNWLI
katmanÕROXúXU%XJHQLúOHPH\ÕOGÕ]ÕHR diyagraPÕQGDNÕUPÕ]ÕGHYOHUE|OJHVLQHGR÷UXJ|WUU
ø]ROH \ÕOGÕ]ODUOD LOJLOHQGL÷LPL] VUHFH \ÕOGÕ]ÕQ JHQLúOHPHVL G]HQOLGLU )DNDW oLIW \ÕOGÕ]ODU GXUXPXQGD EDú
kütleli, HYULPOHúPekte olan bir \ÕOGÕ]ÕQ
; anakoldDNLoHNLUGHNWHKLGURMHQLQWNHQGL÷LDQGDNLYHKHO\XPYH
\ÕOGÕ]ÕQ JHOLúPHVL \ROGDúÕQ YDUOÕ÷ÕQGDQ GROD\Õ HQJHOOHQLU 0
\DUÕoDSÕùHNLO¶WHJ|VWHULOPLúWLUùHNLO
NDUERQ\DQPDHYUHOHULQGHNL\DUÕoDSODUÕJ|VWHUPHNWHGLU
Hidrojen yanma evresinin sonunda, 40 M¶GHQ NoN RODQ \ÕOGÕ]ODUÕQ \DUÕoDSODUÕ RQODUÕQ =$06
\DUÕçDSODUÕQÕQ – NDWÕ NDGDUGÕU EX \]GHQ E|\OHVL \ÕOGÕ]ODUGD EDúODQJÕo NWOH RUDQÕ YH GRODQPD
G|QHPOHULQH ED÷OÕ RODUDN NWOH DNWDUÕPÕ RODELOLU %X HWNL NDEXNWD KLGURMHQ \DQPD HYUHVLQLQ VRQXQGD YH
yum yakma evresinde çok daha belirgindir. Daha büyük kütleli
konvektif
IÕUODWPDQÕQ overshoot LQJ E\NO÷QH ED÷OÕGÕU dRN E\N NWOHOL \ÕOGÕ]ODUÕQ JoO konvektif IÕUODWPD LOH
hesaplanan modellerinde, konvektif çekirdek o derece büyüktür ki, hidrojen yakma evresinin sona
\DUÕoDSÕQ NDWÕQD NDGDU oÕNWÕ÷Õ KHO
\ÕOGÕ]ODUGD LVH EX KHU ]DPDQ UDVWODQDQ ELU GXUXP GH÷LOGLU YH HWNL E\N |OoGH PHUNH]GHQ
HUPHVLQGHQ GDKD |QFH YH \ÕOGÕ] U]JDUODUÕQÕQ HWNLVL\OH EDúODQJÕo NRQYHNWLI oHNLUGH÷LQ GÕú NDWPDQODUÕ
\]H\GHJ|UQUOHU\DUÕoDSNoOUYHHYULP\ROXVRODGR÷UX\|QHOLU
NWOHOLELU\ÕOGÕ]ÕQ\DUÕoDSÕQÕQ, zaPDQÕQIRQNVL\RQXRODUDNGH÷LúLPL
ùHNLO0
5
dLIW<ÕOGÕ]ODUÕQ(YULPL
.ODVLN 6FKZDU]VFKLOG NULWHUOHUL \D GD ]D\ÕI
konvektif
li modeller, HR
IÕUODWPD LOH KHVDSODQDQ E\N NWOH
GL\DJUDPÕQÕQ NÕUPÕ]Õ E|OJHVLQH GR÷UX X]DQÕUODU PXKWHPHOHQ +5 GL\DJUDPÕQGD ,úÕQÕPOÕ 0DYL 'HYOHULQ
/%9¶V EXOXQGX÷X E|OJH\H JLUGLNOHULQGH oLIW VLVWHPOHULQ E\N NWOHOL ELOHúHQOHUL WÕSNÕ NWOHOL WHN
\ÕOGÕ]ODUGDROGX÷XJLELJoOYHG|QHPOLNWOHND\ÕSODUÕJ|VWHULUOHUDWPRVIHUKHO\XPEDNÕPÕQGDQ]HQJLQOHúLU
YH \ÕOGÕ] VROD GR÷UX KDUHNHW HGHU %X DúDPDGD \ÕOGÕ] E]O\RU RODFD÷ÕQGDQ PXKWHPHOHQ NWOH DNWDUÕPÕ
olmayacak ve model konvektif IÕUODWPDGXUXPXQGDNLLOHD\QÕVRQXFXYHUHFHNWLU
<ÕOGÕ] HYULPL RUWDN |]HOOLNOHUH VDKLS \ÕOGÕ] JUXSODUÕQÕQ J|]OHQHQ |]HOOLNOHULQL DoÕNODPDN \D GD WHN WHN
VLVWHPOHUL PRGHOOHPHN LoLQ NODVLN ELU DUDoWÕU %X GXUXP KHP WHN \ÕOGÕ]ODU KHP GH oLIW VLVWHPOHU LoLQ
JHoHUOLGLU $PDo J|]OHQHQ |]HOOLNOHUL DoÕNODPDN ROGX÷XQGDQ oLIWLQ HYULP GXUXPXQXQ VHoLPL J|]OHPOHUO
e
EHOLUOHQLU%X\]GHQ\DNÕQoLIWVLVWHPOHULoLQPHYFXWHYULPKHVDSODPDODUÕHOGHNLJ|]OHPOHUGHQ\DUDUODQÕODUDN
EHOLUOHQLU %X J|]OHPOHU J|]OHPVHO JUOWOHUGHQ VRQ GHUHFH HWNLOHQPLúWLUOHU NÕVD G|QHPOLOHUL \DNDODPDN
GL÷HUOHULQH J|UH GDKD NROD\GÕU oQN J|]OHP SURJUDP NRPLWHOHUL GDKD oRN NÕVD J|]OHP ]DPDQODUÕQD L]LQ
YHUPH\HH÷LOLPOLGLUOHUEXQHGHQOHX]XQG|QHPOLVLVWHPOHUGDKDD]J|]OHQPLúOHUYHGL÷HUOHULQHJ|UHGDKDD]
DQODúÕOPÕúODUGÕU7DULKVHORODUDNHYULPKHVDSODPDODUÕJ|]OHPVHOHWNLOHUGHQHWNLOHQPLúGLUYHD\QÕVÕQÕUODPDODU
QHGHQL\OH \RN GHQHFHN NDGDU D] VD\ÕGD HYULP GL]LVL PHYFXWWXU $\UÕFD EDúND IDNW|UOHU GH HYULP
KHVDSODPDODUÕ LoLQ
gereken
EDúODQJÕo SDUDPHWUHOHULQLQ VHoLPLQL HWNLOH
mektedir. Çift sistemlerin evrimi için
oRN GDKD JHQHO ELU \DNODúÕP DQFDN VRQ ]DPDQODUGD EDúOD\DELOPLúWLU 6RQUDNL NHVLPOHUGH EX NRQX D\UÕQWÕOÕ
RODUDNHOHDOÕQDFDNWÕU
<|UQJHDoÕVDOPRPHQWXPX
Kütleleri M1, M2 YH \DUÕoDSODUÕ R1, R2 RODQ YH VÕUDVÕ\OD r1 ve r2 \DUÕFDSOÕ oHPEHU \|UQJHOHUGH, v1 ve v2
KÕ]ODUÕ\ODGRODQDQYHDUDODUÕQGDNLX]DNOÕN A RODQùHNLOLNL\ÕOGÕ]J|] |QQHDODOÕP%DúODQJÕoWDE\N
kütleli olan ELOHúHQ EDú \ÕOGÕ] RODUDN DGODQGÕUÕODFDN YH R HYULP VÕUDVÕQGD \ROGDú \ÕOGÕ] GDKD E\N NWOHOL
olsa bile yine GH EDú \ÕOGÕ] RODUDN NDODFDNWÕU <ÕOGÕ]ODUÕQ NWOHOHULQLQ NWOH PHUNH]LQGH WRSODQGÕ÷ÕQÕ
YDUVD\DFD÷Õ] E|\OHFH KHU ELU ELOHúHQLQ oHNLP SRWDQVL\HOL \DNODúÕN RODUDN ELU QRNWD NWOHQLQNL LOH WHPVLO
HGLOPLúRODFDNWÕU
%XGXUXPGD\|UQJHDoÕVDOPRPHQWXPX
J = M 1 v1 r1 + M 2 v 2 r2
(15.1)
LOHLIDGHHGLOHELOLUYHKHULNL\ÕOGÕ]D\QÕDoÕVDOKÕ]ODUDVDKLSRODFD÷ÕQGDQ
v1 = ω r1 ; v 2 = ω r2
(15.2)
J = ( M 1 r12 + M 2 r22 )ω
(15.3)
olur. Sonuç olarak
r1 M 2
=
r2 M 1
(15.4)
dLIW<ÕOGÕ]ODUÕQ(YULPL
6
ùHNLO dLIW VLVWHPLQ |÷HOHUL ELOHúHQOHULQ oHPEHU \|UQJHOHUGH GRODQGÕNODUÕ YDUVD\ÕOPÕúWÕU øNL ELOHúHQLQ |÷HOHUL
kütleleri M1, M2PHUNH]HX]DNOÕNODUÕr1, r2ELOHúHQOHUDUDVÕX]DNOÕNAYH\|UQJHKÕ]ODUÕv1, v2’dir.
r1
M2
=
r1 + r2 M 1 + M 2
r1
M2
r
M1
; 2 =
=
A M1 + M 2
A M1 + M 2
ya da
r1 =
AM 2
AM 1
; r2 =
M1 + M 2
M1 + M 2
(15.5)
olur. Bu ifadeleri denklem 15.3¶GH\HULQH\D]GÕ÷ÕPÕ]GD
M 22
M 12
2
+
J = M 1 A2
M
A
ω
2
2
2
(M 1 + M 2 )
(M 1 + M 2 )
(15.6)
ya da
J = A2
M 1M 2
ω
M1 + M 2
(15.7)
elde edilir. Buradan
ω 2 A3 = G ( M 1 + M 2 ),
ω=
2π
,
P
P : dolanma dönemi
HúLWOLNOHULQLQ\DUGÕPÕ\OD
J2 =
ω 2 A 4 (M1M 2 ) 2
(M 1 + M 2 ) 2
=
GA( M 1M 2 ) 2
M1 + M 2
(15.8)
elde edilir.
15.3. Kritik Roche Hacmi
'g1(16ø67(0/(5'(327$16ø<(/
R1 ve R2, kütleleri M1 ve M2 olan ve A \DUÕoDSOÕ oHPEHU \|UQJHOHUGH GRODQDQ LNL \ÕOGÕ]
A¶QÕQ\ÕOGÕ]\DUÕoDSODUÕLOHD\QÕPHUWHEHGHQROGX÷XQXYDUVD\DFD÷Õ]$\UÕFDG|QPHQLQHú
]DPDQOÕ\DQL ω = Ω ROGX÷XQXYDUVD\DFD÷Õ]6LVWHPVDDWLQWHUVL\|QGH ω DoÕVDOKÕ]ÕLOHG|QPHNWHGLUùLPGL
\ÕOGÕ]ODUÕQ NWOHOHULQGHQ oRN GDKD NoN m NWOHOL ELU SDUoDFÕN GúQHOLP .WOH PHUNH]LQGH EXOXQDQ YH
VLVWHPOHELUOLNWHG|QHQELUJ|]OHPFL\HJ|UHEXSDUoDFÕ÷ÕQKDUHNHWLDúD÷ÕGDYHULOHQFm kuvveti ile belirlenir:
<DUÕoDSODUÕ
GúQHOLPEXUDGD
Fm = FM 1 + FM 2 + Fmerkezkaç + Fcoriolis ,
(15.9)
burada, Fmerkezkaç ve FcoriolisG|QHQELUUHIHUDQVVLVWHPLQLQVHoLOPLúROPDVÕQGDQGROD\ÕRUWD\DoÕNDn terimlerdir;
temel eylemsiz bir sistemde Fmerkezkaç = 0 ve Fcoriolis ¶GÕU3QRNWDVÕQGDNL ψ potansiyeli ùHNLO
ψ =
GM 1 GM 2 ω 2 s 2
+
+
r1
r2
2
m NWOHVLQLQ ELOHúHQOHUH RODQ
r1 ve r2LOHNWOHPHUNH]LQHX]DNOÕ÷ÕGD s LOHJ|VWHULOPLúWLU
LOH YHULOLU EXUDGD VRQ WHULP VLVWHPLQ G|QPHVL QHGHQL\OH RUWD\D oÕNPÕúWÕU
X]DNOÕNODUÕVÕUDVÕ\OD
7
dLIW<ÕOGÕ]ODUÕQ(YULPL
Dönen sistemdeki geometri.
ùHNLO
ùHNLO %LU oLIW VLVWHPLQ HúSRWDQVL\HO \]H\OHUL YH EHú /DJUDQJLDQ QRNWDVÕ <ÕOGÕ]ODU QRNWD NWOH RODUDN J|] |QQH
siyel yüzey (kritik
DOÕQPÕúWÕU (úSRWDQVL\HO \]H\OHU DLW ROGXNODUÕ SRWDQVL\HO GH÷HUOHUL LOH HWLNHWOHQPLúWLU .ULWLN HúSRWDQ
5RFKHOREXGDLúDUHWOHQPLúWLU6LVWHPLQNWOHPHUNH]LLVHLúDUHWLLOHJ|VWHULOPLúWLU
$\QÕ SRWDQVL\HOH VDKLS RODQ 3 QRNWDODUÕQÕQ NPHVL ELU HúSRWDQVL\HO \]H\L ROXúWXUXU <ÕOGÕ] PHUNH]OHULQLQ
\DNÕQÕQGDNL HúSRWDQVL\HO \]H\OHULKHPHQ KHPHQ NUHVHOGLU 'ÕúDUÕ\D GR÷UXJLGLOGLNoH NUHVHOOLNWHQJLGHUHN
D\UÕOÕUODU %X HúSRWDQVL\HO \]H\OHU DUDVÕQGDQ \DOQÕ]FD ELU WDQHVL Lo /DJUDQJH QRNWDVÕ GHQLOHQ YH LNL \ÕOGÕ]
DUDVÕQGD \HU DODQ /1 QRNWDVÕQGD NHQGLVL\OH NHVLúLU %X \]H\H Lo NULWLN 5RFKH \]H\L GHQLU øo NULWLN 5RFKH
\]H\L KHU ELUL ELOHúHQOHUGHQ ELUL HWUDIÕQGD RODQ LNL E|OJH WDQÕPODU YH EX E|OJHOHUH 5RFKH OREX GHQLU
<DOQÕ]FDELUELOHúHQLoHYUHOH\HQHúSRWDQVL\HO\]H\OHUL\ÕOGÕ]ODUÕQ5RFKHOREODUÕQÕQLoLQGHNDOÕUODU
(úSRWDQVL\HO \]H\OHU NWOHOHUL ELUOHúWLUHQ GR÷UX ]HULQGH \HU DODQ o
bunlar,
semer benzeri noktaya sahiptirler;
D\QÕ GR÷UX ]HULQGH EXOXQDQ o /DJUDQJLDQ QRNWDVÕGÕU /DJUDQJLDQ QRNWDODUÕQÕQ GL÷HU LNL WDQHVL
WDEDQODUÕ NWOH PHUNH]OHULQL ELUOHúWLUHQ GR÷UX SDUoDVÕ RODQ LNL HúNHQDU oJHQLQ WHSH QRNWDODUÕGÕU %|\OHFH
WRSODP EHú /DJUDQJLDQ QRNWDVÕ YDUGÕU ùHNLO EX EHú /DJUDQJLDQ QRNWDVÕQÕ KHU LNL \ÕOGÕ] HWUDIÕQGDNL
HúSRWDQVL\HO\]H\OHULYH\ÕOGÕ]ODUÕQ5RFKHOREODUÕQÕJ|VWHUPHNWHGLU
1%ø5%2<87/8+(6$3/$0$/$5 DURUMUNDA ROCHE YARIÇAPI
<ÕOGÕ]
PHUNH]OHULQLQ
FLYDUÕQGD
HúSRWDQVL\HO
\]H\OHU
\DNODúÕN
RODUDN
X]DNODúWÕNoD NUHVHO úHNLOGHQ VDSPDODU GD JLGHUHN GDKD E\N ROXU
NUHVHOGLU EX
PHUNH]OHUGHQ
ψ potansiyelinin belOL ELU GH÷HUL LoLQ
HúSRWDQVL\HO\]H\OHU\ÕOGÕ]PHUNH]OHULDUDVÕQGDRUWDNELUQRNWD\DVDKLSROXUODU
8
dLIW<ÕOGÕ]ODUÕQ(YULPL
5RFKHOREODUÕWDPRODUDNNUHVHOROPDVDODUGD
“
”
, bir küreden çok da IDUNOÕGH÷LOOHUGLU5RFKHOREXQXQKDFPLQH
RR ile gösterilir. Buna göre
HúLWELUNUHQLQ\DUÕoDSÕ 5RFKH\DUÕoDSÕ RODUDNDGODQGÕUÕOÕUYH
4
π R R3 = Roche lobunun hacmi .
3
5RFKH\DUÕoDSÕ
(15.11)
M1, M2NWOHOHULLOHDUDODUÕQGDNLAX]DNOÕ÷ÕQDED÷OÕGÕU3DF]\QVNL5RFKH\DUÕoDSÕLoLQ
DúD÷ÕGDNL\DNODúÕNLIDGH\LYHUPLúWLU
RR
M
= 0.38 + 0.2 log q, q = 1 , 0.3 < q < 20 için
A
M2
(15.12)
1/ 3
1
RR
= 0.46224
A
1 + 1/ q
, q ≤ 0.8 için .
(15.13)
'DKDGR÷UXLIDGHOHULVHú|\OHGLU
RR
= 0.37771 + 0.20247 log q + 0.01838(log q )2 + 0.02275(log q )3 , q > 0.1
A
LoLQ
RR
= 0.37710 + 0.21310 log q − 0.00800(log q )2 + 0.00660(log q )3 , q < 0.1
A
LoLQ
(15.14)
qRUDQÕ\HULQHqDOÕQDUDNGD\ROGDúELOHúHQLQRR5RFKH\DUÕoDSÕHOGHHGLOLU
.WOHDNWDUÕPÕYH\|UQJHQLQHYULPL
BiU \ÕOGÕ] gel-git \D GD 5RFKH OREXQX GROGXUGX÷XQGD \DSÕVÕQD LOLúNLQ VÕQÕUODPDODU GH÷LúLU <ÕOGÕ] VDELW
NWOHVL LOH GDKD ID]OD HYULPOHúHPH] YH 5RFKH OREXQXQ LoLQGHNL KDFPLQL NRUXPD\D oDOÕúDFD÷ÕQGDQ NWOH
ND\EHWPHN]RUXQGDNDOÕU%|\OHFH\ÕOGÕ]
, hacmini Roche lobuna uydurarak evrimini sürdürür.
dHPEHU \|UQJHOL ELU oLIW VLVWHPLQ \|UQJH DoÕVDO PRPHQWXPX GHQNOHPL LOH YHULOLU
Ω DOÕQDUDN
J yör =
M 1M 2
ΩA 2
M1 + M 2
yazabiliriz. AktDUÕODQ
ω yerine
(15.15)
PDGGHQLQ ELU PLNWDUÕQÕQ VLVWHPL WHUN HWWL÷LQL YDUVD\DOÕP EX GXUXPGD \|UQJH
D\UÕNOÕ÷ÕQÕQGH÷LúLPL
J yör
A
M 1 M 1 M 1
= −2 1 − (1 − α ) 1 − α
+
2
A
M 2 2 M 1 + M 2 M 1
J yör
(15.16)
úHNOLQGH\D]ÕODELOLU.RUXQXPOXHYULP\DQLVLVWHPGHQNWOHND\EÕROPDGÕ÷ÕGXUXPGD
M M
A
= −21 − 1 1
A
M 2 M1
elde ederiz.
ise daha basit olarak
(15.17)
9
dLIW<ÕOGÕ]ODUÕQ(YULPL
.WOH DNWDUÕPÕ
M 1 < 0 , M 1 M 2 < 1 GXUXPXQGD JHQLúOH\HQ ELU \|UQJH\H YH M 1 M 2 > 1 durumunda da
NoOHQ ELU \|UQJH\H \RO DoDU (÷HU \ÕOGÕ] U]JDUODUÕ\OD VLVWHPGHQ NWOH ND\EÕ ROPDVÕ GXUXPXQGD ROGX÷X
(
gibi, α > 0 LVH\|UQJHQLQHYULPLDWÕODQPDGGHQLQ|]DoÕVDOPRPHQWXPXRODQ α −1 J yör / M
)
LIDGHVLQHVÕNÕ
VÕNÕ\D ED÷OÕ ROXU %X DoÕVDO PRPHQWXP KDNNÕQGD oRN D] ELOJL VDKLEL ROGX÷XPX]GDQ \ÕOGÕ] U]JDUODUÕ\OD
PDGGHND\EÕQÕQELUoLIWVLVWHPLQHYULPLQHRODQHWNLVLVRQGHUHFHEHOLUVL]GLU
α = 0 ROVD ELOH oLIWLQ HYULPL NRUXQXPVX] RODELOLU gUQH÷LQ E|\OHVL ELU GXUXP \|UQJH DoÕVDO PRPHQWXPXnun, gel-git HWNLOHúimleri VRQXFXQGD G|QPH DoÕVDO PRPHQWXPXQD G|QúWUOPHVL VÕUDVÕQGD RUWD\D oÕNDELOLU
*HQHORODUDNEXGXUXP\|UQJHHYULPLLoLQoRN|QHPOLGH÷LOGLUoQNoRN\DNÕQELOHúHQOLVLVWHPOHUGÕúÕQGD
\|UQJH DoÕVDO PRPHQWXPX
J yör G|QPH DoÕVDO PRPHQWXPXQGDQ oRN E\NWU dRN NÕVD G|QHPOL
VLVWHPOHUGHGRODQPDRNDGDUKÕ]OÕGÕUNLDoÕVDOPRPHQWXPX
J yör
J yör
=−
32 G 3
M 1 M 2 (M 1 + M 2 )A − 4 s −1
5 c5
(15.18)
nin evrimini
önemOL |OoGH HWNLOHU 6LVWHP \HWHULQFH \DNÕQVD LOH YHULOHQ DoÕVDO PRPHQWXP LIDGHVLQGHNL
EDVNÕQ WHULP ROXU YH EX GXUXPGD E\N NWOHOL ELOHúHQH NWOH DNWDUÕPÕ ROVD ELOH A / A ifadesi negatif olur.
RUDQÕ\OD DNWDUDQ oHNLPVHO GDOJDODU VDOÕQÕU EN] /DQGDX DQG /LIVFKLW] YH EX GD \|UQJH
%|\OHVL\DNÕQVLVWHPOHUGHNoNNWOHOLELOHúHQVSLUDOOHUoL]HUYHVLVWHPJLGHUHNGDKDGD\DNÕQODúÕU
.WOHND\EHGHQ\ÕOGÕ]GDQELOHúHQLQHNWOHDNWDUPDKÕ]Õ\DNODúÕNRODUDN
M =
ψs
∫
ψc
ρ cs
dA
dψ
dψ
(15.19)
ρ (ψ ) ve cs (ψ ) , L1FLYDUÕQGDNL\R÷XQOXNYHVHVKÕ]ÕGÕU ψ s
ve ψ c LVH VÕUDVÕ\OD 5RFKH OREX YH \ÕOGÕ] \]H\LQGHNL PHUNH]NDo NXYYHWL LoLQG]HOWLOPLú SRWDQVL\HOOHULGLU
A, L1FLYDUÕQGDNLDNÕPWSQQNHVLWDODQÕGÕUoHNLPSRWDQVL\HOL/DJUDQJLDQQRNWDVÕFLYDUÕQGDVHUL\HDoÕODUDN
ED÷ÕQWÕVÕLOHYHULOHELOLU-HGU]HMHFEXUDGD
NHVLWDODQÕ
dA
= −2π (1 − φ )−1 / 2 φ Ω − 2
dψ
(15.20)
hesaplanabilir (Savonije, 1979). Burada φ NWOH RUDQÕ q’nun boyutsuz bir fonksiyonu, Ω ise
\|UQJHDoÕVDOKÕ]ÕGÕU. ∆ (ψ − ψ ) IDUNÕ
s
c
ED÷ÕQWÕVÕ\OD
GM 1
∆R
∆ψ = −
RRc
ED÷ÕQWÕVÕ\OD\DUÕoDSODUDUDVÕQGDNL
(15.21)
∆R = (R − Rc ) IDUNÕQDG|QúWUOHELOLU
<DUÕoDSÕQ NWOH ND\EÕQD WHSNLVL YH NWOH ND\EÕ QHGHQL\OH 5RFKH \DUÕoDSÕQGD RUWD\D oÕNDQ GH÷LúLP ED÷ÕQWÕVÕQGDYHULOGL÷L]HUHNWOHND\EÕKÕ]ÕQÕQRUDQÕQÕEHOLUOHUOHU
.WOHDNWDUÕPLúOHPL
.WOH DNWDUÕPÕ KDNNÕQGD ILNLU VDKLEL ROPDN LoLQ \ÕOGÕ]ÕQ NWOHVL D]DOGÕNoD \ÕOGÕ] YH 5RFKH \DUÕoDSODUÕQÕQ
GH÷LúLPLQL ùHNLO GLNNDWH DOPDPÕ] JHUHNLU ø]ROH ELU \ÕOGÕ]ÕQ \DUÕoDSÕQÕQ HYULPL VDELW NWOH LOH GúH\
′
GR÷UXOWXGDNL $% oL]JLVL\OH J|VWHULOPLúWLU <DNÕQ oLIW VLVWHPOHUGH \DUÕoDS NWOH DNWDUÕPÕQÕQ EDúODGÕ÷Õ %
QRNWDVÕQGDNL 5RFKH \DUÕoDSÕ RODQ
r1GH÷HULQH XODúÕOÕQFD\D NDGDU DUWDU 0DGGHGH÷LúLPLQLQEDúODQJÕo HYUHOHUL
VUHVLQFH \ÕOGÕ] \DUÕoDSÕ KHPHQ KHPHQ VDELW NDOÕU %& IDNDW GDKD VRQUD NWOH ND\EÕ GHYDP HWWLNoH \DUÕoDS
r1 D]DOÕU <|UQJH NoOU M1¶LQ D]DOÕ\RU ELU
fonksiyonu olarak r1¶LQGH÷LúLPL%¶GHQ(¶\HNDGDURODQr1H÷ULVL\OHJ|VWHULOPLúWLU
D]DOÕU &'1 .WOH ND\EÕ EDúODGÕ÷ÕQGD 5RFKH \DUÕoDSÕ
10
dLIW<ÕOGÕ]ODUÕQ(YULPL
%DúYH\ROGDúELOHúHQLQM1 ve M2 NWOHOHULHúLWROGX÷XQGDr1 ¶GH(QRNWDVÕQGDNLPLQLPXPGH÷HULQHXODúÕUM1
< M2 ROGX÷XQGD r1 \HQLGHQ DUWDU (' \DQL \|UQJH \HQLGHQ JHQLúOHU % LOH & DUDVÕQGD R > r1 ROGX÷XQGDQ
EDú \ÕOGÕ]ÕQ NWOHVLQLQ D]DOPDVÕ LoLQ NWOH ND\EÕ JHUHNOLGLU ,úÕQÕPOÕ ]DUIODU LoLQ EX GXUXP ÕVÕVDO ]DPDQ
|OoH÷LQGH PH\GDQD JHOLU
R1 H÷ULVL GÕú NDWPDQODUÕQÕ DWDUDN NWOHVLQL D]DOWDQ ÕVÕVDO GHQJHGHNL ELU \ÕOGÕ]ÕQ
\DUÕoDSÕQÕQQDVÕOGH÷LúWL÷LQLJ|VWHUPHNWHGLU&QRNWDVÕQÕQ|WHVLQGHEDú\ÕOGÕ]ÕQ\DUÕoDSÕ5RFKH\DUÕoDSÕQGDQ
küçüktür.
ùHNLO .WOH GH÷LúLPLQLQ ROGX÷X ELU oLIW VLVWHP
deki
EDú \ÕOGÕ]ÕQ \DUÕoDSÕ LOH 5RFKH \DUÕoDSÕQÕQ GDYUDQÕúÕ %&'1
,
D]DODQNWOHOLGHQJHPRGHOLQLQ\DUÕoDSÕQÕJ|VWHUPHNWHGLU
øNLRODVÕOÕNGLNNDWHDOÕQPDOÕGÕU
1.
2.
R1 < r1oLIWD\UÕNGXUXPDJHOLU
(÷HU \HQL ELU QNOHHU \DQPD HYUHVL EDúODUVD \ÕOGÕ] 5RFKH OR
bunu doldurur ve yeniden kütle
ND\EÕPH\GDQDJHOLUIDNDWEXVHIHU]DPDQ|OoH÷LQNOHHU]DPDQ|OoH÷LGLU&'
%|\OHFHLNLNWOHGH÷LúLPHYUHVLoLIWVLVWHPOHULQHYULPLLOHLOLúNLOHQGLULOHELOLU
1.
(q=M1/M2).
2.
+Õ]OÕ ELU NWOH GH÷LúLP HYUHVL EX HYUHGH VLVWHPLQ NWOH RUDQÕ
q > 1’den q < 1’e ters döner
M2¶QLQ\DYDúoDDUWWÕ÷ÕELUHYUHJHOLU
%XKÕ]OÕHYUHGHQVRQUD\ROGDúÕQNWOHVL
4
– 105 \ÕO PHUWHEHVLQGH ROGXNoD NÕVD RODELOLU %|\OHFH NWOH DNWDUÕPÕ VÕUDVÕQGDNL
VÕUDGDROXUENzùHNLO15.8):
1. A –%ELULQFL\ÕOGÕ]QNOHHU]DPDQ|OoH÷LQGHJHQLúOHU.
2. B –&ÕVÕVDO]DPDQ|OoH÷LQGHKÕ]OÕELUNWOHDNWDUÕPÕPH\GDQDJHOLU
+Õ]OÕ HYUH ROD\ODU úX
%X HYUHGH VLVWHP ELU DOW GHY EDú \ÕOGÕ]ÕQ NDOÕQWÕVÕ úLPGL NoN NWOHOL RODQ LOH ELU DQDNRO \ÕOGÕ]ÕQGDQ
(büyük kütlelL\ÕOGÕ]ROXúPDNWDGÕU
3. &QRNWDVÕQÕQ|WHVLQGHDOWGHYELUQNOHHU]DPDQ|OoH÷LQGHHYULPOHúHUHN\DYDúoDJHQLúOHUYHD]
PLNWDUGDELUPDGGH\LDNWDUÕU
)DUNOÕNWOHDNWDUÕP]DPDQ|OoHNOHUL
%LU \ÕOGÕ]
gel-git \D GD 5RFKH OREXQX GROGXUGX÷XQGD \DSÕVÕQD LOLúNLQ VÕQÕUODPDODU GH÷LúLU <ÕOGÕ] VDELW
NWOHVL LOH GDKD ID]OD HYULPOHúHPH] YH 5RFKH OREXQXQ LoLQGHNL KDFPLQL NRUXPD\D oDOÕúDFD÷ÕQGDQ NWOH
ND\EHWPHN ]RUXQGD NDOÕU %|\OHFH \ÕOGÕ] ÕVÕVDO GHQJH GXUXPXQX NDUX\DUDN \D GD EX GHQJHGHQ D\UÕOPDN
suretiyle, hacmini Roche lobuna uydurarak evrimini sürdürür.
11
dLIW<ÕOGÕ]ODUÕQ(YULPL
<ÕOGÕ] PDGGHVL GDKD ]L\DGH PHUNH]L NÕVÕPODUGD \R÷XQODúWÕ÷ÕQGDQ \ÕOGÕ]ODU Lo \DSÕODUÕQÕ NWOH ND\EÕQD J|UH
n gel-git
ve \ÕOGÕ]ÕQ KLGURVWDWLN GHQJHVL ER]XOPD\DFDN úHNLOGH DWÕODELOLUOHU )DNDW ÕVÕVDO GHQJH zaman
|OoH÷L \DQL QNOHHU HQHUML UHWLPL LOH DWPRVIHULN HQHUML ND\EÕ DUDVÕQGDNL GHQJHQLQ ]DPDQ |OoH÷L, dinamik
D\DUODPD \HWHQH÷LQH VDKLSWLUOHU 'Õú NÕVÕPODU R NDGDU LQFHGLU NL \ROGDúÕQ HWNLVL\OH RUWD\D oÕND
ROD\ODUÕ\OD
]DPDQ|OoH÷LQGHQoRNGDKDX]XQRODELOHFH÷LQGHQGROD\Õ \ÕOGÕ]ÕQ ÕVÕGHQJHVLER]XODELOLU<ÕOGÕ]ÕQ NWOHVLQGH
|QHPOL RUDQODUGD GH÷LúLPH QHGHQ RODQ E\N NWOH ND\EÕ RUDQODUÕ LoLQ \ÕOGÕ] LoLQGHNL HQWURSL SURILOL
GH÷LúPHGHQNDODELOLU\DGDGL÷HUELUGH÷LúOHLoNÕVÕPODUÕQWHSNLVLDG\DEDWLNRO
abilir.
'ø1$0ø.=$0$1g/d(öø1'(.h7/(.$<%,
5RFKH OREXQX GROGXUDQ \ÕOGÕ] VRQ GHUHFH \NVHN RUDQGDNWOHND\EHWVHELOH 5RFKHOREXQXQLoLQGHNDODPD]
.WOH ND\EHGHQ \ÕOGÕ]ÕQ NWOH ND\EHWPH KÕ]Õ \DOQÕ]FD /1 QRNWDVÕQGDQ JHoHQ ]DUIÕQ VHV KÕ]ÕQGDNL
geQLúOHPHVL\OH belirlenmektedir. ,VÕ GHQJHVLQGHNL ÕúÕQÕPOÕ ]DUID VDKLS \ÕOGÕ]ODU GLQDPLN NWOH DNWDUÕPODUÕQD
NDUúÕ NDUDUOÕGÕUODU %XQXQOD ELUOLNWH, GHULQ \]H\ NRQYHNWLI NXúDNOÕ \ÕOGÕ]ODU LOH \R]ODúPÕú \ÕOGÕ]ODU GLQDPLN
]DPDQ |OoH÷LQGHNL NWOH DNWDUÕPODUÕ LoLQ NDUDUVÕ]GÕUODU %|\OHFH, H÷HU NWOH ND\EHGHQ \ÕOGÕ] GHY NROXQGD \D
GD \DNÕQÕQGD YH\D DOW DQDNROGD EXOXQX\RUVD \D GD H÷HU \ÕOGÕ] \R]ODúPÕú LVH GLQDPLN NDUDUVÕ]OÕN NRúXOODUÕQÕ
VD÷ODPÕúROXU
.RQYHNWLI]DUIOÕ\ÕOGÕ]ODULoLQNWOHND\EÕ\DNODúÕNRODUDN
M ≈
M
P
∆R
R
3
ED÷ÕQWÕVÕ\OD YHULOHELOLU EXUDGD
M \ÕOGÕ]ÕQ NWOHVL P, dolanma dönemi; R \DUÕoDS YH ∆R ¶GH \DUÕoDSWDNL
r. Kütle
DUWÕúWÕU(VDVRODUDN \ÕOGÕ]LoLQGHNL\R÷XQOXNGD÷ÕOÕPÕQDED÷OÕRODQRUDQWÕNDWVD\ÕVÕPHUWHEHVLQGHGL
ND\EÕEDúODGÕ÷ÕQGDÕVÕGHQJHVLER]XOXUER]XOPD]NWOHND\EÕRUDQÕKÕ]ODDUWDU
,6,6$/=$0$1g/d(öø1'(.h7/(.$<%,
koruyabilseydi\DUÕoDSÕ
ve bu da daha büyük bir
5RFKHOREXQXGROGXUDQ\ÕOGÕ]NWOHND\EHGHUIDNDWÕVÕVDOGHQJHVLQLNRUX\DPD]H÷HU
5RFKH \DUÕoDSÕQGDQ E\N ROXUGX YH oRN GDKD E\N NWOH ND\EÕ RUWD\D oÕNDUGÕ
\DUÕoDSD \RO DoDUGÕ YH VUHo E|\OHFH GHYDP HGHUGL ,VÕ GHQJHVLQGHQ D\UÕOPD \ÕOGÕ]ÕQ 5RFKH OREXQX WDP
RODUDNGROGXUPXúRODUDNNDOPDVÕQDRODQDNVD÷ODU
.
,VÕVDO]DPDQ|OoHNOLNWOH DNWDUÕPODUÕ+5 GL\DJUDPÕQGD
, devler kolunun solundaki
\R]ODúPDPÕú \ÕOGÕ]ODUGD
KÕ]OÕNWOHND\EÕQHGHQL\OHNDUDUVÕ]ROGXNODUÕVÕUDGDPH\GDQDJHOLU,VÕVDO]DPDQ|OoHNOLNWOHDNWDUÕPÕE\N
da,
bozulmalar ile NRQWUROHGLOLU.WOHND\EÕX\JXQNWOHYH]DPDQ|OoH÷L
NWOHOL ELOHúHQ 5RFKH OREXQX GROGXUGX÷XQGD PH\GDQD JHOLU .WOH ND\EÕ \ÕOGÕ] ]DUIÕQÕQ GHQJH GXUXPXQ
NWOHND\EÕQÕQHWNLVL\OHRUWD\D oÕNDQ
LOHDúD÷ÕGDNLJLELWDKPLQHGLOHELOLU
M max = −
M
t KH
(15.22)
burada, tKHNWOHND\EHGHQ\ÕOGÕ]ÕQÕVÕVDO\DGD.HOYLQ-+HOPOKROW]]DPDQ|OoH÷LROXS
t KH =
E pot
L
=
GM 2
RL
M2
≈ 3 ×10
RL
7
VDQL\H
\ÕO G = × G\Q FP J −
(15.23)
M RLJQHúELULPLQGH
ED÷ÕQWÕVÕ\ODYHULOLU
1h./((5=$0$1g/d(öø1'(.h7/($.7$5,0,
.WOHDNWDUÕPÕWDPDPHQHYULPVUHoOHUL\OHNRQWUROHGLOLUEXQHGHQOH|QFHNLNHVLPOHUGHNLJLELWHNEDúÕQDHOH
DOÕQDPD].WOHND\EHGHQ \ÕOGÕ]ÕQ\DUÕoDSÕ5RFKH\DUÕoDSÕLOHD\QÕGÕUYH \ÕOGÕ]ÕVÕVDOGHQJHGHNDOÕU1NOHHU
]DPDQ |OoH÷LQGHNL NWOH DNWDUÕPÕ \ÕOGÕ]ÕQ
çekirdekte hidrojen yakma evresinde iken ROXúDQ KÕ]OÕ kütle
12
dLIW<ÕOGÕ]ODUÕQ(YULPL
DNWDUPD HYUHVLQGHQ VRQUD PH\GDQD JHOLU 1NOHHU ]DPDQ |OoH÷L GLQDPLN \D GD ÕVÕVDO ]DPDQ |OoHNOHULQGHQ
E\NROGX÷XQGDQEXWUNWOHDNWDUÕPÕQÕQJ|]OHQHELOPHRODVÕOÕ÷ÕGDE\NWU
.ULWLN\DUÕoDSYHNWOHDNWDUÕPÕ
Denklem 15.12 ve 15.13, M1’den M2¶\H NWOH DNWDUÕPÕ ROGX÷XQGD R R / A GH÷HULQLQ GDLPD D]DODFD÷ÕQÕ
J|VWHUPHNWHGLU .WOH DNWDUÕPÕ VÕUDVÕQGD H÷HU NWOH RUDQÕ q = M / M ELUGHQ NoN LVH 5RFKH \DUÕoDSÕQÕQ
1
2
kendisi büyüyecektir (bkz. denklem 15.17). Aksine RODUDN H÷HU M 1 / M 2 > 1 LVH NWOH DNWDUÕPÕ VÕUDVÕQGD
5RFKH \DUÕoDSÕ NoOU (÷HU EX GXUXP JHoHUOL LVH KÕ]OÕ PDGGH DNWDUÕPÕQD VDKLEL] GHPHNWLU %LU \ÕOGÕ]ÕQ
KÕ]OÕ PDGGH DNWDUÕPÕQD WHSNLVL Lo \DSÕVÕ LOH VÕNÕ VÕNÕ\D LOLúNLOLGLU g] HQWURSL \]H\H GR÷UX DUWWÕ÷ÕQGD GÕú
NDWPDQODU ÕúÕQÕP GHQJHVLQGH LVH \ÕOGÕ] \DUÕoDSÕQÕ 5RFKH \DUÕoDSÕQD X\GXUVXQ GL\H \HQLGHQ QRUPDO
ER\XWODUÕQDGR÷UXE]OPH\LEDúDUDELOLU(÷HU\ÕOGÕ]GHULQELUNRQYHNWLI\]H\NDWPDQÕQDVDKLSVH\DUÕoDSÕQ
D]DODQNWOH\HNDUúÕWHSNLVLWDPDPHQIDUNOÕROXU
.WOHDNWDUÕPÕQÕQ]DPDQ|OoH÷LGÕúNDWPDQODUÕQGXUXPXQDED÷OÕGÕU
dÕúNDWPDQODUÕúÕQÕPVDOROGX÷XQGD, kütle
DNWDUÕPÕÕVÕVDO]DPDQ|OoH÷LQGHROXUNHQNRQYHNWLIGÕúNDWPDQGXUXPXQGDLVH]DPDQ|OoH÷LGDKDGDNÕVDGÕU
,ù,
NIMLI ZARFLAR
<ÕOGÕ] PDGGHVLQLQ |] HQWURSLVLQLQ GÕúDUÕ\D GR÷UX DUWDELOPHVL LoLQ VÕFDNOÕN JUDGL\HQWLQLQ KHPHQ KHPHQ
DG\DEDWLN ROPDVÕ JHUHNLU <ROGDúD NWOH DNWDUÕPÕ NWOH ND\EHGHQ \ÕOGÕ]ÕQ KLGURVWDWLN GHQJHVLQL WHNUDU
VD÷OD\DELOPH
k üzere, sabit entropi
DOWÕQGD YH KLGURGLQDPLN ELU ]DPDQ |OoH÷LQGH JHQLúOHPHVLQH QHGHQ ROXU
<ÕOGÕ] NWOH DNWDUÕPÕQGDQ |QFHNLQGHQ ELUD] GDKD NoN ELU ER\XWD VDKLS ROXU <ÕOGÕ] KLGURVWDWLN GHQJH\H
XODúÕU IDNDW ÕVÕ GHQJHVLQH KHQ] XODúPDPÕúWÕU *HQLúOH\HQ NDWPDQODU ÕúÕQÕP DNÕVÕQGDQ HQHUML VR÷XUDUDUN ÕVÕ
GHQJHVL HQWURSL JUDGL\HQWLQL D\DUODPÕú ROXUODU *HQLúOHPH \ÕOGÕ]ÕQ KHPHQ KHPHQ NWOH DNWDUÕPÕQGDQ |QFHNL
ER\XWODUÕQDXODúDELOHFH÷LNDGDUE\NWU
Ancak, Roche lobunun, bu durumXQ PPNQ RODPD\DFD÷Õ NDGDU NoOPHVL RODVÕGÕU Bu durumun olup
ROPD\DFD÷ÕNWOHRUDQÕqLOHNWOHND\ÕSKÕ]Õ M ¶\HED÷OÕGÕU
M
i) q = 1 > 1 durumu
M2
<ÕOGÕ] \DUÕoDSÕ ÕVÕVDO GXUXOPDQÕQ ELWPHVLQGHQ |QFH 5RFKH \DUÕoDSÕQÕ DúDU EX GXUXPGD GDKD ID]OD PDGGH
DWÕODFDNYHÕVÕVDOGHQJH\HXODúÕODPD\DFDNWÕU5RFKHOREXNoOHFHNE|\OHFHGDKDID]ODNWOHND\EHGLOHFHNYH
ELU ÕVÕ NDoD÷Õ RUWD\D oÕNDFDNWÕU =DUI E\N PLNWDUGD HQHUML VR÷XUDFDN YH E|\OHFH NWOH ND\EHGHQ \ÕOGÕ] ÕVÕ
GHQJHVLQGHNLEHQ]HUELU\ÕOGÕ]DJ|UHoRNGDKDGúNÕúÕWPD\DVDKLSRODFDNWÕU
ii) q =
M1
< 1 durumu
M2
q < 1 oluncaya kadar devam
k (bkz. kesim 15.3.3), böylece A ve RRoche’un ikisi de
+Õ]OÕNWOHDNWDUÕPÕNWOHND\EHGHQ\ÕOGÕ]ELOHúHQLQGHQGDKDNoNNWOHOL\DQL
HGHU'DKDID]ODNWOHDNWDUÕOGÕNoD\|UQJHJHQLúOH\HFH
büyüyecektir. ,VÕNDoD÷ÕVÕUDVÕQGDNWOHDNWDUÕPÕQÕQPDNVLPXPGH÷HUL
M =
M
M
RL
(M, R, L JQHúELULPLQGH
=
≈ 3 ×10 −8
t KH 3 × 10 7 M 2 RL
M
PHUWHEHVLQGHGLU .WOH ND\EHGHQ \ÕOGÕ] EXQX VUGUHELOPHN LoLQ JHQLúOHPHN ]RUXQGDGÕU E|\OHFH GXUXOPD
]DPDQÕÕVÕGHQJHVLQLQ\HQLGHQNXUXOPDVÕQÕVD÷OD\DFDNNDGDUX]XQGXU%XWUNWOHDNWDUÕPÕNWOHND\EHGHQ
i
\ÕOGÕ]ÕQ JHQLúOHPH ]DPDQ |OoH÷LQGH GHYDP HGHU YH \ÕOGÕ] HYULPLQLQ LOHU NL DúDPDVÕQGD 5RFKH \DUÕoDSÕQÕQ
DOWÕQDNoOG÷QGHVRQDHUHU
)DUNOÕNWOHDNWDUÕPKÕ]ODUÕELUELULLOHNDUÕúWÕUÕOPDPDOÕGÕUDQDNRO \ÕOGÕ]ODUÕQNOHHUX]XQ]DPDQ|OoH÷LQGHNL
JHQLúOHPHOHUL VÕUDVÕQGDGúN NWOHOLELOHúHQOHULQH RUWDúLGGHWWH ELU NWOH DNWDUÕPÕQGDEXOXQXUODUH÷HUNWOH
kaybeden ELOHúHQ, çekirdekteki hidrojenin tükenmesLQGHQ VRQUDNL KÕ]OÕ PHUNH]L o|NPH HYUHVLQGH LVH ]DUI
, “QRGH NXUDPÕ” YHE\NNWOHOLELOHúHQHELOH \NVHNRUDQGDPDGGHDNWDUÕPÕ
meydana gelebilir.
KÕ]ODJHQLúOHUEN]NHVLP
.219(.7ø)=$5)/$5
13
dLIW<ÕOGÕ]ODUÕQ(YULPL
.RQYHNWLI ]DUIODU NWOH ND\EHGLOGL÷LQGH E]OPH \HULQH JHQLúOHPH H÷LOLPL J|VWHULUOHU 7DPDPHQ DG\DEDWLN
RODUDNNRQYHNWLIRODQELU\ÕOGÕ]ÕQ\DUÕoDSÕQÕQGH÷LúLPLNWOH\H
R ∝ M −1 / 3
úHNOLQGH ED÷OÕGÕU %XQD J|UH PDGGH DWÕOGÕ÷ÕQGD \ÕOGÕ] JHQLúOHU %|\OHVL \ÕOGÕ]ODU NWOH DNWDUÕPÕ VÕUDVÕQ
da,
5RFKH OREODUÕQGD NDOPD\Õ VUGUHPH]OHU (÷HU NWOH ND\EHGHQ \ÕOGÕ] WDP DG\DEDWLN VÕFDNOÕN JUDGL\HQWOL
GHULQELUNRQYHNWLI]DUIDVDKLSLVH]DUIWDNLPDGGHQLQHQWURSLVLGÕúDUÕ\DGR÷UXD]DOÕU
L.WOHRUDQÕ
(÷HU
q
q=
M1
’nin büyük ROGX÷Xdurum
M2
\HWHULQFHE\NVH NWOHWUDQVIHUL VUHVLQFH 5RFKH OREX \D VDELW NDOÕU \D GD NoOU
Belirli miktarda
NWOHDNWDUÕOGÕ÷ÕQGDNWOHND\EHGHQ\ÕOGÕ]KLGURVWDWLNGHQJHVLQL \HQLGHQVD÷OD\DELOPHNLoLQVDELWHQWURSLLOH
GeniúOH\HQNDWPDQODUGHQJHNRQXPXQDNÕ\DVODELUHQWURSLID]ODOÕ÷ÕQDVDKLSROXUODU
böylece \ÕOGÕ] ÕVÕVDO GHQJHVLQL \HQLGHQ VD÷ODPD\D oDOÕúWÕ÷ÕQGD, E]OPH H÷LOLPL J|VWHUHFHNWLU 'ROD\ÕVL\OH
kütle transferi, \ÕOGÕ]ÕQDG\DEDWLN olarak JHQLúOHPHsinden sonraki bR\XWODUÕQDVÕNÕFDED÷OÕGÕU
DG\DEDWLNRODUDNJHQLúOHU
(÷HU \ÕOGÕ] 5RFKH OREXQX DúDUVD NWOH DNWDUÕPÕ oRN KÕ]OÕ ELU DG\DEDWLN JHQLúOHPH ]DPDQ |OoH÷LQGH GHYDP
bu durumda süreç çok daha
idir (Paczynski =LRONRZVNL =\WNRZ .WOHND\ÕSKÕ]Õ oRN \NVHN RODFDNWÕU Bunlar, konvektif
]DUIÕNDUPDúÕNYHWDKPLQHGLOHPH\HQELUúHNLOGHHWNLOHr YHNWOHND\ÕSKÕ]ÕQÕQGX\DUOÕRODUDN tahmin edilmesi
mümkün olmaz.
HGHU YH ÕúÕQÕPOÕ ]DUI GXUXPXQGD ROGX÷X JLEL ELU ÕVÕVDO NDoDN ROXúXU IDNDW
úLGGHWO
M1
’ninNoNROGX÷XGXUXP
M2
q yeterince küçük olursa, Roche lobu, boyutODUÕ
LL.WOHRUDQÕ
(÷HU
q=
EDNÕPÕQGDQ
yÕOGÕ]ÕQ
DUWPDNWD RODQ \DUÕoDSÕ\OD
NDUúÕODúWÕUÕODELOLURODUDNNDODFDNúHNLOGH\HWHULQFHJHQLúOH\HELOLUYH \ÕOGÕ]ÕQHYULP]DPDQ|OoH÷LQGH\DYDúELU
NWOHDNWDUÕPÕPH\GDQD
gelir.
.WOHGH÷LúLPLQLQIDUNOÕGXUXPODUÕ
,
ni engelleyen bir durum yoktur
(YULPVÕUDVÕQGD \ÕOGÕ]\DUÕoDSÕ DOWHUQDWLIRODUDNDUWPDYHD]DOPDDúDPDODUÕJ|VWHULU7HN\ÕOGÕ]ODUGD\ÕOGÕ]ÕQ
JHQLúOHPHVL
YH EX úHNLOGH \ÕOGÕ] ELU NÕUPÕ]Õ GHY \D GD ELU NÕUPÕ]Õ VSHU GHY
olur. <DUÕoDSÕQ ]DPDQÕQ IRQNVL\RQX RODUDN GH÷LúLPL ùHNLO 4’te J|VWHULOPLúWLU (÷HU J|] |QQH DOÕQDQ
\ÕOGÕ] ELU \DNÕQ oLIW VLVWHPLQ EDú \ÕOGÕ]Õ LVH \ÕOGÕ]ÕQ JHQLúOHPHVL \ROGDúÕQ YDUOÕ÷Õ nedeniyle VÕQÕUOÕ YH
NRQWUROOX ELU úHNLOGH olur. 2QXQ \DUÕoDSÕ .HVLP \D GD ¶WH EHOLUOHQGL÷L ]HUH NULWLN 5RFKH
\DUÕoDSÕQÕJHoHPH]<ÕOGÕ] \DUÕoDSÕQÕQNULWLN5RFKHOREXLoHULVLQGHNDOabilmesi LoLQNWOHDNWDUÕPÕPH\GDQD
gelir. %XUDGD HVDV RODUDN \ÕOGÕ]ÕQ |QHPOL |OoGH JHQLúOH\Hrek Roche KDFPLQL DúDELOGL÷L o HYUH÷L HOH
DODFD÷Õ] .LSSHQKDKQ YH :HLJHUW ¶L L]OH\HUHN EX NWOH DNWDUÕP HYUHOHULQL $ % YH & türleri olarak
EHOLUWHFH÷L]
A türü:
(÷HU
,
VLVWHPLQ SDUDPHWUHOHUL NWOH \ÕOGÕ] PHUNH]OHUL DUDVÕQGDNL X]DNOÕN \ÕOGÕ]ÕQ
\DUÕoDSÕQÕQ ELULQFL J|UHOL PLQLPXPXQD YDUPDVÕQGDQ |QFH
evresi),
,
\DQL PHUNH]L KLGURMHQ \DQPDVÕ VÕUDVÕQGD DQDNRO
5RFKH OREXQX GROGXUPDVÕQÕ VD÷OD\DFDN úHNLOGH LVH EX GXUXPGD NWOH DNWDUÕPÕQÕQ $
-
türü
ROXúXU
%DúODQJÕoWDNWOHDNWDUÕPKÕ]ÕoRN\NVHNWLUYHELU.HOYLQ +HOPKROW]]DPDQ|OoH÷LQGHPH\GDQDJHOLU
buna
NWOH DNWDUÕPÕQÕQ KÕ]OÕ HYUHVL GHQLU %HOLUOL ELU ]DPDQ VRQUD NWOH RUDQÕ WHUVLQH G|QHU +Õ]OÕ HYUH\L QNOHHU
]DPDQ|OoH÷LQGH
ki bir \DYDúNWOHDNWDUÕPHYUHVLWDNLSHGHU
B türü (÷HU ELOHúHQOHU DUDVÕQGDNL $ X]DNOÕ÷Õ PHUNH]L KLGURMHQ \DQPD HYUHVLQLQ VRQXQGD EDú
\ÕOGÕ]ÕQ NULWLN 5RFKH \DUÕoDSÕ \ÕOGÕ]ÕQ \DUÕoDSÕQGDQ E\N YH KHO\XP \DQPD HYUHVLQLQ EDúODQJÕFÕQGD LVH
RQGDQ NoN RODFDN úHNLOGH LVH NWOH DNWDUÕPÕQÕQ %
türü meydana gelir. %X \ROOD \ÕOGÕ] GÕú NÕVÕPODUÕQ SHú
SHúH JHOHQ KÕ]OÕ JHQLúOHPHOHUL VÕUDVÕQGD EX ROD\ KÕ]OÕ PHUNH]L VÕNÕúPD\OD ELU DUDGD ROPDNWDGÕU NULWLN
hacmini doldurur..ULWLNKDFPHXODúÕOÕUXODúÕOPD]GDNWOHDNWDUÕPÕEDúODU,úÕWPDGúHUPLQLPXPELUGH÷HUH
XODúÕUYHWHNUDUDUWDU Çok GúNNWOHOHULoLQKLGURMHQNDEX÷XQzayfla PDVÕ\ODPHUNH]GHHOHNWURQ\R]ODúPDVÕ
EDúODU %X GXUXPGD PHUNH]LQ VÕNÕúPDVÕ \DYDúODU YH EX QHGHQOH ]DUIÕQ KÕ]OÕ JHQLúOHPH HYUHVL, GROD\ÕVÕ\OD GD
KÕ]OÕNWOHDNWDUÕPHYUHVLROPD]
C türü: Bu durum, çok ileri evrelerde, KHO\XPXQ \DQPD\DEDúODPDVÕQGDQVRQUD5RFKH\DUÕoDSÕQÕQ
\ÕOGÕ]\DUÕoDSÕQÕDúWÕ÷Õ]DPDQRUWD\DoÕNDU
14
dLIW<ÕOGÕ]ODUÕQ(YULPL
da ortaya
kütle aktarmaya devam eder: AB türü: A türü NWOH DNWDUÕP
evresinden sonra B türü NWOHDNWDUÕPÕROXúXU\DGD%&türü: A türünü, C WUNWOHDNWDUÕPÕizler. %LUNÕUPÕ]Õ
GHYGH KHO\XPXQ WXWXúPDVÕ QHGHQL\OH NWOH DNWDUÕPÕQÕQ NHVLQWL\H X÷UDGÕ÷Õ GXUXP LVH JHQellikle BB türü
RODUDNDGODQGÕUÕOÕU.
%X o GXUXPXQ ROXúXPODUÕ ùHNLO ¶GD EHWLPOHQPLúWLU %XQODUÕQ \DQÕQGD PHOH] GXUXPODU
oÕNDELOLU NWOH ND\EHGHQ \ÕOGÕ] LNL GXUXPGD
ùHNLO 'H÷LúLN HYULP DúDPDODUÕ
–ZAMS, merkezi H-WNHQPHVL NÕUPÕ]Õ QRNWD +H-WXWXúPDVÕ– LoLQ \ÕOGÕ] NWOHVLQLQ
IRQNVL\RQX RODUDN \ÕOGÕ] \DUÕoDSODUÕQÕQ GH÷LúLPL <ÕOGÕ]ÕQ ELU oLIW VLVWHPLQ EDú ELOHúHQL RODUDN J|] |QQH DOÕQPDVÕ
halinde, NWOH DNWDUÕPÕQÕQ $ % YH & türleri J|VWHULOPLúWLU $\UÕFD G|QHPOHUL – JQ DUDVÕQGD RODQ oLIW
sistemlerdeki EDú ELOHúHQOHULQ 5RFKH \DUÕoDSODUÕ GD J|VWHULOPLúWLU ùHNLOGH NWOH RUDQÕ ELU RODUDN NXOODQÕOPÕú ROPDVÕQD
NDUúÕQNWOHRUDQÕQÕQGL÷HUGH÷HUOHULNXOODQÕOGÕ÷ÕQGDGDúHNLOoRNID]ODGH÷LúPHPHNWHGLU
.RUXQXPOXNWOHDNWDUÕPÕ
<ÕOGÕ] 5RFKH OREX LoLQH JHUL JHOGL÷LQGH NWOH DNWDUÕPÕ VRQD HUHU %LU \ÕOGÕ]ÕQ HYULPVHO JHQLúOHPHVL HVDV
RODUDN \ÕOGÕ]ÕQ Lo NÕVÕPODUÕQGDNL oHNLUGHNOHULQ ELUOHúHUHN GDKD D÷ÕU oHNLUGHNOHU ROXúWXUPDODUÕQÕ VD÷OD\DQ
QNOHHU ELUOHúPHOHULQ QHGHQ ROGX÷X NLP\DVDO GH÷LúLPOHU LOH \DNÕWÕQÕ WNHWPHNWH RODQ \R]ODúPÕú oHNLUGH÷LQ
J|UQP YH JHOLúLPLQH ED÷OÕGÕU
çevrimi
Böylece, ya
\ÕOGÕ]ÕQ \R]ODúPÕú oHNLUGH÷LQGH \HQL ELU QNOHHU ELUOHúPH
,
+ YH\D +H \DQPDVÕ EDúODGÕ÷ÕQGD oHNLUGH÷LQ VÕQÕUÕQGD \DQPDNWD RODQ NDEXNODUÕQ
D]DODFD÷ÕQGDQ GROD\Õ \D GD \ÕOGÕ]ÕQ HQHUML ND\QDNODUÕQÕ
besleyen
n
]DUIÕ
etkisi
WNHQPHVL\OH EX JHQLúOHPHQLQ
. Gerçekte, atmosferdeki hidrojen EROOX÷XQXQ D]DOPDVÕ \ÕOGÕ]ÕQ \DUÕoDSÕQÕQ NoOPHVLQH
neden olur. $÷ÕUOÕNRODUDN QRUPDOGHFLYDUÕQGDRODQDWPRVIHULNKLGURMHQEROOX÷X GH÷HULQHGúW÷QGH
GXUDFD÷Õ DoÕNWÕU
RSDNOÕNE\NRUDQGDGH÷LúLUYHDWPRVIHUo|NHU
.WOH DNWDUÕP HYUHVLQLQ EDúODQJÕFÕ YH VRQX ùHNLO ¶GD J|VWHULOPLúWLU %X úHNLOGH \ÕOGÕ] NWOHVLQLQ ELU
IRQNVL\RQXRODUDN\ÕOGÕ]\DUÕoDSÕQÕWHPVLOHGHQH÷ULOHULOJLOLHYULPDúDPDODUÕ6ÕIÕU\DúDQNRO
-=$06NÕUQÕ]Õ
QRNWD \DQL PHUNH]L KLGURMHQ \DQPDVÕ VUHVLQFH HYULP oL]JLVLQLQ XODúWÕ÷Õ HQ VD÷ QRNWDPHUNH]GH KLGURMHQLQ
15
dLIW<ÕOGÕ]ODUÕQ(YULPL
WNHWLOPHVL KHO\XPWXWXúPDVÕNDUERQ WXWXúPDVÕLoLQ J|VWHULOPLúOHUGLU (÷HU EX \DUÕoDSODUÕ \DNÕQoLIWLQEDú
,
e
na
Bununla
\ÕOGÕ]ÕQÕQ 5RFKH \DUÕoDSÕ LOH WDQÕPODUVDN GL\DJUDP EL]H NWOH DNWDUÕPÕQÕQ QHU GH EDúOD\ÕS QHUHGH VR
HUHFH÷LQL \DQL EDúND GH÷LúOH $ % YH & WU NWOH DNWDUÕPODUÕQD NDUúÕOÕN JHOHQ NÕVÕPODUÕ J|VWHULU
ELUOLNWHHWNLOHúHQELUoLIWLQVRQDúDPDVÕQÕEHOLUOHPHNLoLQ\|UQJHHYULPLQLQGHGLNNDWHDOÕQPDVÕJHUHNOLGLU
Korununmlu evrim durumunda, iki biOHúHQLQ GH÷LúHQ X]DNOÕNODUÕ YH \|UQJH G|QHPLQLQ GH÷LúLPL (15.8)
denklemi ile verilen
J2 =
GA( M 1M 2 ) 2
M1 + M 2
ED÷ÕQWÕVÕQGDQNROD\FDDQODúÕOÕU
A=
C
( M 1M 2 ) 2
veya
Hem J hem de M1 + M2VDELWNDOGÕNODUÕQGDQ
A M 1o M 2o
=
A o M 1M 2
2
(15.24)
yazabiliriz, buUDGD R LQGLVL EDúODQJÕo GXUXPXQX YH YH LQGLVOHUL GH, VÕUDVÕ\OD EDú YH \ROGDú ELOHúHQOHUL
göstermektedir. CELUVDELWROXSEDúODQJÕoNRúXOODUÕQÕQ\DUGÕPÕ\OD
C = A o ( M 1o M 2o ) 2
ED÷ÕQWÕVÕ
(15.25)
ile verilir. µ = M 2 / M1 WDQÕPODPDVÕ\OD)ED÷ÕQWÕVÕQÕ
A (1 + µ ) 2 µ o
=
Ao (1 + µ o ) 2 µ
(15.26)
biçiminde yazabiliriz. Dönem ise,
M M
P = Po 1o 2o
M 1M 2
3
(15.27)
ED÷ÕQWÕVÕ\ODYHULOLU
%Dú YH \ROGDúÕQ
M1, M2 kütleleri ve yörüngH \DUÕ E\N HNVHQL A¶QÕQ YHULOPHVL\OH .HSOHULQ \DVDVÕ
NXOODQÕODUDN\|UQJHG|QHPL
log P = 1.5 log A − 0.5 log( M 1 + M 2 ) − 0.936
(15.28)
ED÷ÕQWÕVÕQGDQKHVDSODQDELOLUEXUDGD\DUÕE\NHNVHQX]XQOX÷XAJQHú\DUÕoDSÕ biriminde, yörünge dönemi
P gün biriminGHYHELOHúHQOHULQM1, M2NWOHOHULGHJQHúNWOHVLELULPLQGHGLU
5RFKH OREX LOH D\QÕ KDFLPOL ELU NUHQLQ \DUÕoDSÕ \DQL 5RFKH \DUÕoDSÕ ED÷ÕQWÕVÕ\OD YHULOLU
Kütle
DNWDUÕPÕVUGNoHEDú YH \ROGDúELOHúHQLQNWOHOHULYHEXQXQVRQXFXQGDGD5RFKH\DUÕoDSODUÕGH÷LúLU%LULP
NWOHRUDQÕLoLQELOHúHQOHUDUDVÕQGDNLX]DNOÕ÷ÕQIRQNVL\RQXRODUDN5RFKH\DUÕoDSÕ
RR
= 0.38 veya log A = log RR + 0.42
A
(15.29)
ED÷ÕQWÕVÕ\ODYH\|UQJHG|QHPLGH
log P = 1.5 log RR − 0.5 log M1 − 0.456
ED÷ÕQWÕVÕ\OD
(15.30)
verilir. BuED÷ÕQWÕ\DUGÕPÕ\ODùHNLONWOHRUDQÕRODQoLIWlerin dönemlerini, kütlelerinin bir
IRQNVL\RQXRODUDNJ|VWHUHQùHNLO¶DG|QúWUOHELOLU
dLIW<ÕOGÕ]ODUÕQ(YULPL
16
Toplam kütle M1 + M2 LOH WRSODP \|UQJH DoÕVDO PRPHQWXPX J¶QLQ NRUXQGX÷X YH Hú]DPDQOÕ dönmenin
YDUVD\ÕOGÕ÷Õ GXUXPGD NWOH DNWDUÕPÕQÕQ GHYDP HWWL÷L ELU oLIW sistemin dolanma dönemi, ùHNLO 1’de
J|VWHULOGL÷LJLELGH÷LúHFHNWLU
KWOH DNWDUÕP HYUHVL VUHVLQFH, sistemden kütlH YH DoÕVDO PRPHQWXP ND\EÕ ROGX÷XQGDQ GROD\Õ JHUoHNWH
durum çok dDKDNDUPDúÕNWÕU
ùHNLO ZAMS’tan, C-WXWXúPDVÕQD NDGDU RODQ HYULPOHUL VUHVLQFH HúLW NWOHOL YH LOJLOL 5RFKH \DUÕoDSODUÕ \ÕOGÕ]
dönemleri. ZAMS, merkezi H-WNHQPHVL NÕUPÕ]Õ QRNWD +H-WXWXúPDVÕ JLEL
\DUÕoDSODUÕQD HúLW RODQ \DNÕQ oLIW VLVWHPOHULQ
fDUNOÕH÷ULOHUùHNLO¶GDJ|VWHULOHQ\DUÕoDSODUDNDUúÕJHOPHNWHGLU
+ 1 MoLIWVLVWHPLQLQNRUXQXPOXNWOHDNWDUÕPÕYDUVD\ÕPÕ
M1 kütlesinin fonksiyonu olarak dönem GH÷LúLPL
ùHNLO%DúODQJÕoGRODQPDG|QHPLJQRODQELU0
DOWÕQGDEDúELOHúHQLQLQ
.258180/8(95ø0
øOHUOHPHQLQ HQ EDVLW \ROX \ROGDú \HULQH EDú \ÕOGÕ]ÕQ D\UÕQWÕOÕ \DSÕVÕQÕ KHVDSODPDN YH \ROGDúÕQ NWOHVLQGHNL
GH÷LúLPL \DOQÕ]FD \DUÕ E\N HNVHQ X]XQOX÷X LOH G|QHPGHNL GH÷LúLPOHUL KHVDSODPDN DPDFÕ\OD GLNNDWH
17
dLIW<ÕOGÕ]ODUÕQ(YULPL
DOPDNWÕU.WOHDNWDUÕPHYUHVLVUHVLQFHNWOHEDú\ÕOGÕ]GDQND\EHGLOLUYHYHULOHQELU]DPDQDUDOÕ÷ÕLoHULVLQGH
EDú \ÕOGÕ]ÕQ Lo \DSÕVÕEX GXUXPD X\JXQ RODUDN \HQLGHQ D\DUODQÕU .WOHOHUH YHELOHúHQOHUDUDVÕQGDNLX]DNOÕ÷D
ED÷OÕ RODQ \|UQJH SDUDPHWUHOHUL KHVDSODQDELOLU <ROGDúÕQ Lo \DSÕVÕ KHVDSODQPD] YH EDVLWoH EDú \ÕOGÕ]GDQ
DWÕODQ PDGGHQLQ \ROGDúÕQ NWOHVLQH HNOHQGL÷L YDUVD\ÕOÕU 6RQUD GD GH÷LúLN NWOH YH GH÷LúLN G|QHPOL oLIWOHULQ
evrimleri, gözlenen sistemleri ve Algoller, Wolf-Rayet çiftleri ve X-ÕúÕQoLIWOHULJLELGH÷LúLN \ÕOGÕ]JUXSODUÕQÕ
DoÕNODPDGDNXOODQÕOÕU
.WOH DNWDUÕP HYUHVL úX úHNLOGH HOH DOÕQÕU \ÕOGÕ]ÕQ \DUÕoDSÕ 5RFKH \DUÕoDSÕ
RR¶GHQ NoN NDOGÕ÷Õ VUHFH EDú
\ÕOGÕ]ÕQHYULPLEDú \ÕOGÕ]VDQNLELUWHN\ÕOGÕ]PÕúJLELGLNNDWHDOÕQDUDNKHVDSODQÕU<DUÕoDS5RFKH\DUÕoDSÕQD
HúLW ROGX÷XQGD \ÕOGÕ]ÕQ KDFPLQL NoOWPHN YH \DUÕoDSÕ 5RFKH \DUÕoDSÕQD HúLW RODUDN WXWDELOPHN DPDFÕ\OD
R = RR úHNOLQGH ELU VÕQÕU GH÷HU NRúXOX NXOODQÕODUDN \DSÕODELOLU Alternatif
olarak, verilen bir sÕQÕULoHULVLQGH R’nin RR’den küçük NDOPDVÕ VD÷ODQDELOLUhoQFELU \RORODUDN GD DWÕODQ
PDGGHPLNWDUÕ∆MLOH\ÕOGÕ]YH5RFKH\DUÕoDSODUÕDUDVÕQGDNL∆rIDUNÕDUDVÕQGDELUED÷ODQWÕNXUXODELOLU
\HWHUOL RUDQGD NWOH DWÕOÕU %X Lú
Bunun \DOQÕ]FD ELU LON \DNODúÕP RODFD÷Õ DoÕNWÕU Çok daha ayrÕQWÕOÕ \|QWHPOHU D\QÕ HYULP NRGX LoHULVLQGH
ELOHúHQOHULQKHULNLVLQLQGHLo\DSÕKHVDSODPDODUÕQÕLoHUmelidir.
.25818068=(95ø0
.RUXQXPOX
HYULP
VHQHU\RVX
KHU
]DPDQ
JHoHUOL
GH÷LOGLU
YH
J|]OHQHQ
VLVWHPOHULQ
SDUDPHWUHOHULQL
DoÕNOD\DELOPHN LoLQ NWOH YH DoÕVDO PRPHQWXP ND\ÕSODUÕ GD GLNNDWH DOÕQPDOÕGÕU %XQXQ \DQÕQGD oLIW
VLVWHPOHULQ D\UÕN HYUHOHUL VÕUDVÕQGD
,
\ÕOGÕ] U]JDUODUÕQÕQ QHGHQ ROGX÷X NWOH ND\ÕSODUÕ GD J|] |QQH
DOÕQPDOÕGÕU
.RUXQXP YDUVD\ÕPÕQÕQ JHoHUOL ROPDGÕ÷Õ GXUXPODUGD NWOH DNWDUÕPÕQÕQ
ilk
DúDPDVÕQÕQ VUHVL LQDQÕOPD]
RUDQGDX]D\DELOLUYHNWOHGH÷LúLPLQGHQVRQUDRUWD\DoÕNDQVLVWHPNRUXQXPOXGXUXPGDNLQGHQIDUNOÕRODELOLU
6LVWHPLWHUNHGHQNWOHLVWHU\ÕOGÕ]U]JDUODUÕYDVÕWDVÕ\ODROVXQLVWHUNWOHDNWDUÕPÕVÕUDVÕQGDROVXQVLVWHPGHQ
DoÕVDO PRPHQWXP ND\EÕQD QHGHQ ROXU %LOHúHQOHU DUDVÕQGDNL YH FLYDUODUÕQGDNL JD] DNÕPODUÕQÕQ GDYUDQÕúÕQD
LOLúNLQ ELOJLOHULPL] HNVLN YH DQFDN QLWHO \DSÕGD ROGX÷XQGDQ VLVWHPGHQ NWOH YH DoÕVDO PRPHQWXP ND\EÕQÕQ
etkilerini ancak bir çok serbest parametre yarGÕPÕ\ODEHOLUOH\HELOLUL]
.WOHND\EÕLOHNWOH\Õ÷ÕúPDK]ÕELUELUOHULQHDúD÷ÕGDNLúHNLOGHED÷ODQDELOLU
dM r
dM d
,
= −β
dt
dt
(15.31)
burada Mr ve Md VÕUDVÕ\OD DOÕFÕ LOH vericinin kütleleridir. %X ED÷ÕQWÕGD NDoÕQÕOPD] RODQ \ÕOGÕ] U]JDUODUÕ\OD
NWOH ND\EÕ KHVDED NDWÕOPDPÕúWÕU β parametresi keyfi olarak seçilebilir (β RODFD÷Õ DoÕNWÕU β = 1,
korunuPOXGXUXPDNDUúÕOÕNJHOLU- βVLVWHPLWHUNHWWL÷LGúQOHQPDGGHQLQNHVULGLU
%D]Õ GXUXPODUGD NWOH ND\EÕ LOH RUWD\D oÕNDQ
açÕVDO PRPHQWXP ND\EÕ
ROGXNoD L\L ELU úHNLOGH WDKPLQ
edilebilir.
1.
<ÕOGÕ] U]JDUODUÕ\OD NWOH ND\EÕ \ÕOGÕ] U]JDUODUÕ\OD NWOH ND\EÕQÕQ -HDQV PRGXQD +XDQJ J|UH
ROXúWX÷X
yDQLQRNWDVDONWOH RODUDNJ|]|QQHDOÕQDQ \ÕOGÕ]GDQNUHVHOVLPHWULde YH \ÕOGÕ]GDQ EHOLUOLRUDQGD
ki yükseNKÕ]ODUODROGX÷XNDEXOHGLOLU%XGXUXPGDG|QHPYH
DoÕVDOPRPHQWXPWDúÕQÕPÕQD\RODoDFDNúHNLOGH
D\UÕNOÕ÷ÕQGH÷LúLPL
P
M + M 2i 2
)
= ( 1i
Pi
M1 + M 2
(15.32)
A M 1i + M 2i
=
Ai
M1 + M 2
A, M ve P VÕUDVÕ\OD ELOHúHQOHU DUDVÕQGDNL D\UÕNOÕ÷Õ WRSODP NWOH\L YH VLVWHPLQ
dolanma dönemini göstermektedir.
ED÷ÕQWÕODUÕ\OD YHULOLU EXUDGD
18
dLIW<ÕOGÕ]ODUÕQ(YULPL
2) L2¶GHQ NWOH ND\EÕ %LOHúHQOHUGHQ ELULQL WHUN HGHQ GúN KÕ]ODUD Vahip JD]ÕQ DoÕVDO PRPHQWXPX sistemi
terk etmesinden önce, gel-git etkileri nedeniyle daha da artar.$oÕVDOPRPHQWXPND\EÕ 1.65ω A2 ED÷ÕQWÕVÕ\OD
ω A2 GH÷HULQGHQ NoN ROGX÷X -HDQV
modundan tahmin edilenden büyüktür. $VOÕQGD bu, L2 QRNWDVÕQGDQ NDoDQ PDGGHQLQ DoÕVDO momentumuyla
WDKPLQ HGLOHELOLU EX WDKPLQ |]JQ DoÕVDO PRPHQWXP ND\EÕQÕQ GDLPD
NDUúÕODúWÕUÕODELOLU GH÷HUGHGLU %XQXQOD ELUOLNWH \ÕOGÕ] U]JDUODUÕQGD KÕ]ODU \HWHULQFH E\NWU YH EX QHGHQOH
-HDQVPRGXL\LELU\DNODúÕPGÕU
L2¶GHQJHoHQHúSRWDQVL\HO\]H\Lni dolGXUGX÷XQGD
meydana gelir. %X GXUXPGD |]JQ DoÕVDO PRPHQWXP ND\EÕ \DNODúÕN RODUDN 1.75ω A2 ROXS NWOH RUDQÕQGDQ
%XGXUXPGH÷HQELUoLIWVLVWHPLQGÕúNULWLN\]H\LQL\DQL
ED÷ÕPVÕ] YH VLVWHPLQ NHQGLVLQLQ DoÕVDO PRPHQWXPXQGDQ oRN GDKD E\NWU VLVWHPLQ NHQGLVL LoLQ DoÕVDO
momentum q( 1 − q)ω A2 ¶GLU(Q\NVHNGH÷HULQHq ¶WHXODúÕUEXGXUXPGDDoÕVDOPRPHQWXP 0.25ω A2
olur. %|\OHFH DoÕVDOPRPHQWXP VLVWHPLQ NHQGLVLQLQ |]JQ DoÕVDOPRPHQWXPXQun \DNODúÕN RODUDN NDWÕGÕU.
%XWUNWOHND\EÕ\|UQJHG|QHPLYHELOHúHQOHUDUDVÕQGDNLD\UÕNOÕ÷ÕQE\NRUDQGDNoOPHVLQHQHGHQROXU
'L÷HU WP GXUXPODUGD NWOH YH DoÕVDO PRPHQWXP ND\ÕSODUÕQÕ WDKPLQ HGHELOPHN RODQDNVÕ]GÕU LVWLVQDL WHN
\RO DoÕVDO PRPHQWXP ND\EÕQÕ EHOLUWHQ ELU VHUEHVW SDUDPHWUH NXOODQPDNWÕU .WOH DNWDUÕP VÕUDVÕQG
a, yörünge
DoÕVDOPRPHQWXPXQXQWRSODPNWOH\H
J = Mα
(15.33)
úHNOLQGH\DGDHúGH÷HURODUDN
∆J
∆M α
)
= 1 − (1 −
J
M
(15.34)
, burada α
tirilmeyecek bir sabittir. YÕOGÕ]ODUÕQ NWOHOHUL LOH
yörünge dönemi ile sistemin
D\UÕNOÕ÷Õ da hesaplanabilir. 5RFKH OREX WDúPDVÕ ROD\Õ RULMLQDO RODUDN -HGU]HMHF EN] 3DF]\Q]ki ve
Sienkiewicz, 1972) WDUDIÕQGDQ JHOLúWLULOHQ WUGHQ EDVLWOHúWLULOPLú bir KLGURGLQDPLN \DNODúÕPOD WDQÕPODQDELOLU
úHNOLQGH ED÷OÕ ROGX÷X NDEXO HGLOHELOLU
GH÷Lú
\|UQJH DoÕVDO PRPHQWXPXQGDQ \DUDUODQÕODUDN NULWLN \DUÕoDSODU \DQÕQGD
%DVLWPRGHOHJ|UHDNDQPDGGH\Õ÷ÕúPD\ÕOGÕ]ÕQÕQ \]H\NDWPDQODUÕQDEXNDWPDQODUÕQVDKLSROGX÷XHQWURSL
LOH\XPXúDNELUúHNLOGHGúHU %XYDUVD\ÕPKDNOÕJ|UQPHNWHGLUoQN\ÕOGÕ]\]H\LQLQDQFDNoRNNoNELU
kesri, çarpan maddeden, bir leke ya da ekvatoryal
ELU NXúDN YDVÕWDVÕ\OD HWNLOHQLU GúHQ PDGGHQLQ GLQDPLN
EDVÕQFÕ LKPDO HGLOHELOLU <Õ÷ÕúDQ PDGGHQLQ QHGHQ ROGX÷X NLQHWLN HQHUML ID]ODOÕ÷Õ GD÷ÕODFDN úRN E|OJHVLQLQ
yüksek VÕFDNOÕ÷Õ QHGHQL\OH EX HQHUML PRU|WH YH ;-ÕúÕQODUÕ úHNOLQGH \D\ÕPODQDFDNWÕU (÷HU, kütle kazanan
\ÕOGÕ] \D GD RODVÕ ELU \Õ÷ÕúPD GLVNL úLGGHWOL ELU úHNLOGH JHQLúOHPH]VH, senkronizasyon devam edebilir ve
yörünge çember olarak kalabilir. Korunumlu kütle aktDUÕPÕQÕ GHVWHNOH\HQ dinamik nedenler olabilir. Küçük
0DFK VD\ÕVÕQD VDKLS DNDQ JD], L1 FLYDUÕQGDNL NoN ELU Eölgede ses KÕ]ÕQGD ELU JHoLú \DSDELOLU NWOH
ND]DQDQÕQ 5RFKH OREXQD JLUHU YH EX \]H\ LoHULVLQGH WX]DNODQÕU (÷HU DNÕQWÕ NHQGLVLQe ya da kütle alan
\ÕOGÕ]ÕQ \]H\LQH oDUSDUVD yörünge enerjisi GD÷ÕOÕU YH PDGGH NWOH ND]DQDQ \ÕOGÕ]ÕQ SRWDQVLyeli içerisinde
GHULQOHUHGúHUYHVLVWHPGHQNWOHND\EÕROPD]
.WOH\Õ÷ÕúPDVÕ
-Helmholtz zaPDQ |OoH÷LQGH -bu süre genel
arak
.WOH ND]DQDQ \ÕOGÕ] PDGGH\L NWOH ND\EHGHQ \ÕOGÕ]ÕQ .HOYLQ
-
RODUDN NWOH ND]DQDQ \ÕOGÕ]ÕQNLQGHQ IDUNOÕGÕU \Õ÷ÕúWÕUÕU %X GXUXPGD NWOH ND]DQDQ \ÕOGÕ] ER\XW RO
úLGGHWOL ELU úHNLOGH E\U5RFKHOREXQX GROGXUXU YH ELUGH÷HQVLVWHP ROXúXU6RQUDNLHYULPDúDPDVÕ |QFHNL
durumlardan farkOÕROXU
'H÷PHHYUHVLVUHVLQFHNWOHDNWDUÕPKÕ]ÕKHULNL\ÕOGÕ]ÕQGDD\QÕHúSRWDQVL\HO\]H\LGROGXUPDODUÕJHUHNWL÷L
NRúXOX LOH EHOLUOHQLU %X YDUVD\ÕP \HWHULQFH GR÷UXGXU RUWDN ]DUIÕQ OREODUÕ DUDVÕQGDNL EDVÕQo IDUNOÕOÕNODUÕ
QHGHQL\OHHúSRWDQVL\HONRúXOXQGDQVDSPDLKPDOHGLOHELOLU
Kütle aktarÕP
HYUHVL VUHVLQFH NWOH ND\EHGHQ \ÕOGÕ] JLGHUHN GÕú NDWPDQODUÕQÕ ND\EHGHU YH oHNLUGHN
kar; böylece, NWOH ND]DQDQ \ÕOGÕ] WDUDIÕQGDQ \Õ÷ÕúWÕUÕODQ PDGGH
BX úHNLOGH \Õ÷ÕúDQ PDGGH ]DUI
WHSNLPHOHULQLQ ROGX÷X NDWPDQODU RUWD\D oÕ
KHO\XP EDNÕPÕQG
an,
NHQGL NDWPDQODUÕQD J|UH oRN GDKD ]HQJLQ ROXU
NDWPDQODUÕQGDQ GDKD E\N ELU PROHNOHU D÷ÕUOÕ÷D VDKLS ROXU YH NWOH ND]DQDQ \ÕOGÕ] WHUVLQH G|QPú
PROHNOHUJUDGL\HQWOLELU]DUIJHOLúWLULU
azalmakWDGÕU
Dengesiz olan bu zarfta, molekülHUD÷ÕUOÕN\]H\GHQ,PHUNH]HGR÷UX
19
dLIW<ÕOGÕ]ODUÕQ(YULPL
Büyük µPROHNOD÷ÕUOÕNOÕ \ÕOGÕ]PDGGHVLQLQGDKDNoNµPROHNOD÷ÕUOÕNOÕNDWPDQODUÕQ]HULQHEÕUDNÕOPDVÕ
durumu, bir miktar tuzlu suyun, VR÷XN WDWOÕ VX NDWPDQÕ ]HULQH EÕUDNÕOPDVÕ durumuyla NDUúÕODúWÕUÕOabilir; bu
durumda, ara \]GH SDUPDN EHQ]HUL ELU NDUDUVÕ]OÕN JHOLúLU 6WHUQ 9HURQLV %X NDUDUVÕ]OÕ÷ÕQ
JHQHO DGÕ ³ÕVÕVDO WDúÕQÕP konveksiyonu (thermohaline convection)” dur ve ona ED]HQ ³\DODQFÕ NRQYHNVL\RQ´
da denir.
Bu ÕVÕVDOWDúÕQÕP NDUÕúÕPÕQÕ, astrofizikte E\NPROHNOHUD÷ÕUOÕNOÕPDGGHQLQGDKDNoNPROHNOHUD÷ÕUOÕNOÕ
PDGGH ]HULQGH EÕUDNÕOPDVÕ LOH RUWD\D oÕNDQ WUGHQ NRQYHNVL\RQ GXUXPX\OD NDUúÕODúWÕUDELOLUL]. Bu konudaki
JHQHO WDUWÕúPDODU LoLQ &R[ YH *LXOL 6SLHJHO =DKQ YH 3DFNHW ¶H EDNÕODELOLU Bu
ÕVÕVDOWDúÕQÕP NDUÕúÕPÕLoLQ]DPDQ|OoH÷L\Õ÷ÕúPD]DPDQ|OoH÷LQGHQoRNNÕVDGÕUYHEXQHGHQOH ona,DQOÕNELU
süreçJ|]\OHEDNÕODELOLU.
bu nedenle, çekirdek
elir. %X NDWPDQODU \ROGDúD
.WOH DNWDUÕP HYUHVL VUHVLQFH NWOH YHUHQ ELOHúHQ GÕú NDWPDQODUÕQÕ DWDU YH
WHSNLPHOHULQLQ GHYDP HWWL÷L GDKD DOW NDWPDQODU J|UQU \]H\ NDWPDQÕ KDOLQH J
DNWDUÕOGÕ÷ÕQGDE\N ELU
EÕUDNÕOPÕú ROXU
Bu
µ PROHNO D÷ÕUOÕNOÕNDWPDQODU RULMLQDONLP\DVDOELOHúLPH VDKLSNDWPDQODUÕQ]HULQH
VXUHWOH WHUV \|QO ELU PROHNOHU D÷ÕUOÕN JUDGL\HQWL RUWD\D oÕNPÕú ROXU YH EX GXUXP
NDUDUVÕ] ELU GXUXPD QHGHQ ROXU .WOH YHUHQ YH DODQÕQ GH÷LúHQ KLGURMHQ EROOXNODUÕ NDUÕúÕP ]HULQH \DSÕODQ
.
oHúLWOLYDUVD\ÕPODULoLQùHNLO ¶GHJ|VWHULOPLúWLU
Helyumca]HQJLQ]DUIOÕ\ÕOGÕ]PRGHOOHUiQRUPDOEROOXNOXPRGHOOHULQVROXQGD\HUDOÕUODUùHNLOGH÷LúLN
NWOHOHULoLQ QRUPDO NLP\DVDO NDUÕúÕPOÕX KRPRMHQ NLP\DVDONDUÕúÕP =$06 PRGHOOHUL LOHKHO\XPFD
]HQJLQ ]DUIOÕ X
\ÕOGÕ] NWOHVLQLQ ¶XQX içeren helyumca zengin zarf) modelleri göstermektedir.
=DPDQ |OoH÷L WDKPLQOHULNDUÕúÕP]DPDQ|OoH÷LQLQ NWOH DNWDUÕP ]DPDQ|OoH÷LQGHQ oRN GDKD NÕVDROGX÷XQX
göstermektedir.%XQHGHQOHÕVÕVDOWDúÕQÕPNDUÕúÕPÕDQOÕNELUROJXRODUDNJ|]|QQHDOÕQDELOLU
dLIW<ÕOGÕ]ODUÕQ(YULPL
20
ùHNLO .WOH ND\EHGHQ VWWH YH \Õ÷ÕúDQ ELU \ÕOGÕ]ÕQ DOWWD NLP\DVDO SURILOL ùHNLO G|UW RODVÕ GXUXPX
göstermektedir: A <Õ÷ÕúDQ PDGGHQLQ kimyasal ELOHúLPL DOÕFÕ \ÕOGÕ]ÕQNL\OH D\QÕ B) Helyum ID]ODOÕ÷ÕQÕQ
D]DOGÕ÷Õ NDWPDQODUGD birikim; böyleFH NoN PROHNO D÷ÕUOÕNOÕ NDWPDQODUÕQ VWQGH, E\N PROHNO D÷ÕUOÕNOÕ
katmanlarÕQROXúXmu; C<DUÕ-NDUÕúÕPG]GúH\oL]JLROPDNVÕ]ÕQÕVÕVDOWDúÕQÕPNDUÕúÕPÕD<DUÕ-NDUÕúÕPOÕ
H÷ULoL]JLÕVÕVDOWDúÕQÕPNDUÕúÕPÕ
ùHNLO Kütleleri 2 - 9 M
araVÕQGDNL QRUPDO NDUÕúÕPOÕ, X = 0.7 (noktalar), KRPRMHQ \ÕOGÕ]ODU LOH
helyumca zengin, X = 0.3, modeller LoL ERú oHPEHUOHU -burada He-zengin katmanlar, \ÕOGÕ] NWOHVLQLQ
%10’unu içermektedir- için ZAMS modellerinin Hertsprung-5XVVHOGL\DJUDPÕ
21
BÖLÜM 16
.hdh.9(257$.h7/(/ødø)76ø67(0/(5ø1(95ø0ø
16*LULú
1NOHHU \DQPD VUHVLQFH \ÕOGÕ]ÕQ \DUÕoDSÕ DUWDU (÷HU \ÕOGÕ] ELU \DNÕQ oLIW VLVWHPLQ \HVL LVH \DUÕoDSWDNL EX
DUWÕú \ROGDúÕQ YDUOÕ÷Õ QHGHQL\OH VÕQÕUOÕGÕU (÷HU \DUÕoDSÕQ ROGXNoD KDVVDV RODUDN EHOOL RODQ NULWLN GH÷HUL
, hatta VLVWHPGHQ NWOH ND\EÕ olabilir ya da bir
halka veya diskte kütle birikimi meydana gelebilir. %X NWOHDNWDUÕPÕDúDPDVÕQÕQKHVDSODPDODUÕDQFDNEHOLUOi
\DNODúÕPODUÕQ NDEXO HGLOPHVL\OH RODQDNOÕ RODELOLU Hidrodinamik ve küresel simetriden sapmalar (dönme ve
DúÕOÕUVD ELOHúHQOHUGHQ ELULQGHQ GL÷HULQH NWOH DNWDUÕPÕ EDúODU
oHNLPVHO HWNLOHU JHQHOOLNOH GLNNDWH DOÕQPD] YH \|UQJH JHQHOOLNOH oHPEHU RODUDN HOH DOÕQÕU %LOHúHQOHULQ
dönmeleri yörünge hareketi ile senkronize oOPXú
YDUVD\ÕOÕU <DNÕQ oLIW VLVWHPOHULQ HYULPL ELOHúHQOHULQ
NWOHOHULQHNWOHRUDQÕQDYH\|UQJHG|QHPLQHED÷OÕGÕU
*|] |QQH DOÕQDQ \ÕOGÕ]ÕQ NULWLN HúSRWDQVL\HO \]H\OHU
iyle
ED÷ODQWÕOÕ RODUDN oLIW VLVWHPLQ GXUXPX o
-
NDWHJRUL\HD\UÕODELOLUD\UÕN\DUÕ D\UÕNYHGH÷HQHYUHOHU
, görsel çiftler ile
i verebiliriz. <DUÕ-D\UÕN ELU VLVWHPGH ELOHúHQOHUGHQ ELUL NULWLN KDFPLQL
GROGXUPXúNHQ \ROGDúÕ GROGXUPDPÕúWÕU Bu türe örnek olarak, Algol türü çiftleri ve β /\UDH¶\Õ YHUHELOLUL]
$\UÕNHYUHVÕUDVÕQGDELOHúHQOHULQKLoELULNULWLNKDFLPOHULQLGROGXUPD]%XWUH|UQHNRODUDN
HYULPOHúPHPLú WD\IVDO oLIWOHU
'H÷HQELUVLVWHPGHLVHELOHúHQOHULQLNLVLGHNULWLNKDFLPOHULQLGROGXUPXúWXU|UQH÷LQ:80D\ÕOGÕ]ODUÕ
Doldurma faktörü genellikle f
LOH J|VWHULOLU YH LNL \ÕOGÕ] DUDVÕQGDNL GH÷PH GHUHFHVLQLQ ELU |OoVGU
L1’den geçen yüzeyin
L2 ve L1¶GHQJHoHQ\]H\OHULQHúSRWDQVL\HOOHUL
fDUNÕQDRUDQÕRODUDNWDQÕPODQÕU <DUÕ-D\UÕNVLVWHPOHULoLQf = 0; L2’den geçen ortak bir yüzeye sahip GH÷HQELU
sistem için de f = 1’dir.
'ROGXUPD IDNW|U \ÕOGÕ] \]H\LQLQ HúSRWDQVL\HOL LOH Lo /DJUDQJLDQ QRNWDVÕ
HúSRWDQVL\HOLDUDVÕQGDNLIDUNÕQGÕúYHLo/DJUDQJLDQQRNWDODUÕ
$\UÕN VLVWHPOHUGHKHULNL ELOHúHQ GH oR÷XQOXNOD QRUPDO DQD NRO \ÕOGÕ]ÕGÕU (YULP KHVDSODPDODUÕ =$06¶WDQ
BüyüN NWOHOL \ÕOGÕ] EDú \ÕOGÕ] RODUDN LVLPOHQGLULOLU YH NWOHVL M1 ile gösterilir; onun küçük kütleli
M2 LOH J|VWHULOLU %Dú YH \ROGDúÕQ EX úHNLOGHNL WDQÕPODPDVÕ
EDúODQJÕoWDE\NNWOHOLRODQELOHúHQHYULP süresince meydana gelen NWOHDNWDUÕPODUÕQÕQELUVRQXFXRODUDN
sistemin küçük kütleli ELOHúHQL KDOLQH JHOVH ELOH GH÷LúWLULOPH] 'L÷HU WP \ÕOGÕ] SDUDPHWUHOHUL LoLQ GH DOW
EDúODU
ELOHúHQL LVH \ROGDú RODUDN DGODQGÕUÕOÕU YH NWOHVL
LQGLVLEDú\ÕOGÕ]YHDOWLQGLVLGH\ROGDú\ÕOGÕ]LoLQNXOODQÕOÕUYHKHUKDQJLELUNDUÕúÕNOÕ÷DQHGHQROPDPDNLoLQ
NWOH ND\EHGHQ \ÕOGÕ] ³ND\EHGHQ´ \D GD ³YHULFL´ RODUDN YH NWOH ND]DQDQ \ÕOGÕ] GD ³ND]DQDQ´ \D GD ³DOÕFÕ´
olarak belirtilir. Bu durumda alt indis olarak l (kaybeden), d (verici), g (gazanan) ve r DOÕFÕ harfleri
NXOODQÕODFDNWÕU%DúODQJÕoGXUXPXi (initial) ve son durum da f (final) alt indisleri ile gösterilecektir.
Küçük ve orta kütleli çiftlere örnekler Çizelge 16.1 – $¶GD YHULOPLúWLU %LOLQHQ WP \DUÕ-D\UÕN VLVWHPOHUGH
5RFKH OREXQX GROGXUPD\DQ \ÕOGÕ] ELU DQD NRO \ÕOGÕ]ÕGÕU YH RQXQ \ROGDúÕ bir alt devdir. %X \ROGDúÕQ NWOHVL
GDLPD
DQD
NRO
\ÕOGÕ]Õ
RODQ
EDú
\ÕOGÕ]ÕQNLQGHQ
J|]NPHNWHGLUOHU QRUPDO \ÕOGÕ]ODU GXUXPXQGD
NoNWU
%X
VLVWHPOHU
JDULS
GDYUDQÕúOÕ
RODUDN
L ≈ M 3.5 ED÷ÕQWÕVÕ JHoHUOL YH \DúDP VUHVL t ≈ ML−1 ya da
t ≈ M −2.5 dur.'DKDE\NNWOHOL\ÕOGÕ]GDKDLOHULHYULPDúDPDVÕQGDROPDOÕGÕUIDNDWJ|]OHPOHUEXQXQE|\OH
ROPDGÕ÷ÕQÕ J|VWHUPHNWHGLU Bu durum, Algollerin listesinden (Çizelge 16.1 – B) J|UOHELOLU HYULPOHúPLú
ELOHúHQler -JHULWUWD\IOÕRODQELOHúHQler – daha küçük kütlelere sahiptir.
%X SDUDGRNVXQ ELU DoÕNODPDVÕ &UDZIRUG WDUDIÕQGDQ EXOXQPXúWXU GDKD LOHUL HYULP EDVDPD÷ÕQGD RODQ
-
ELOHúHQ RULMLQDO RODUDN GDKD E\N NWOHOL RODQGÕU IDNDW \DUÕ D\UÕN ELU HYUH VUHVLQFH ELOHúHQLQH NWOH
DNWDUPDVÕQHGHQL\OHúLPGLNLGDKDNoNNWOHOLELOHúHQKDOLQHJHOPLúWLU
-
6LVWHPOHUD\UÕNGDQ \DUÕ D\UÕN YH PXKWHPHOHQ GH÷HQHYUH\H HYULPOHúHELOLUOHU dHNLP DODQÕQÕQGDYUDQÕúÕLoLQ
\ÕOGÕ]ODUQRNWDNWOHRODUDNHOHDOÕQÕUODUEXGXUXPGDHúSRWDQVL\HO\]H\OHULQJHRPHWULVL5RFKHPRGHOLEN]
.HVLPLOHEHOLUOHQLUYH\DOQÕ]FDELOHúHQOHULQ
q (= M 2 / M 2 ) NWOHRUDQÕQDED÷OÕGÕU
22
Çizelge 16.1 – A
ø\LELOLQHQNoNNWOHOLoLIWOHU3RSSHU
6R÷XND\UÕNVL
stemler
Çizelge 16.1 – B
Algol sistemler (Popper, 1980)
+HU ELU ELOHúHQ LoLQ NULWLN \DUÕoDS \DQL ELULQFL /DJUDQJLDQ QRNWDVÕ
L1¶GHQ JHoHQ HúSRWDQVL\HO \]H\LQ
oHYUHOHGL÷L KDFPH 5RFKH KDFPL HúLW KDFLPOL ELU NUHQLQ \DUÕoDSÕ EHOLUOHQHELOLU +HU LNL ELOHúHQ GH 5RFKH
KDFLPOHULQLDúWÕNODUÕQGDGH÷HQELUVLVWHPHVDKLSROPXúROXUX]%XGXUXPGD\ÕOGÕ]ODU
L1FLYDUÕQGDNLELUER÷D]
YDVÕWDVÕ\ODELUELUOHULQHIL]LNVHORODUDNED÷OÕGÕUODUYHRUWDNELUHúSRWDQVL\HO\]H\LGROGXUXUODU
23
%LU VLVWHPGH NWOH DNWDUÕPÕ ROGX÷XQGD ELOHúHQOHU DUDVÕQGDNL X]DNOÕN YH \|UQJH GRODQPD G|QHPLQLQ
-
GH÷LúHFH÷LDoÕNWÕUEN] GHQNOHPOHUL%\NNWOHOLELOHúHQNWOHND\EHWWL÷LQGHNLEXPDGGHRQXQ
\ROGDúÕ WDUDIÕQGDQ \Õ÷ÕúÕU \|UQJH NoOU NWOH ND\EHGHQ NoN NWOHOL ROGX÷XQGD LVH \|UQJH E\U
.oN NWOHOL ELOHúHQLQ ELU DOW GHY ROGX÷X $OJRO VLVWHPOHUL GXUXPXQGD NoN NWOHOLGHQ E\N NWOHOL
,
ELOHúHQHNWOHDNWDUÕOPDNWDGÕUYHEXQHGHQOH ELOHúHQOHUDUDVÕQGDNLX]DNOÕNYHGRODQPDG|QHPLDUWPDNWDGÕU
øONRODUDNE\NNWOHOL\ÕOGÕ]\ROGDúÕQDNWOHDNWDUÕUYH\|UQJHNoOUEDú\ÕOGÕ]ÕQ5RFKHOREXGDNoOU
ve kütle
ND\EÕQÕQ KÕ]Õ DUWDU øNL \ÕOGÕ] HúLW NWOHOL ROGXNODUÕQGD DUDODUÕQGDNL X]DNOÕN
dD PLQLPXP GH÷HULQH
XODúÕU 6RQUDNL NWOH DNWDUÕPÕ \|UQJH\L JHQLúOHWLU YH VRQXQGD GD NWOH ND\EHGHQ \ÕOGÕ] DUWÕN 5RFKH OREXQX
e
GROGXUDPD\DFDNKDOHJHOLUYHE|\OHFHNWOHDNWDUÕPÕELUVRQD ULúPLúROXU
.HVLP¶GH DoÕNODQGÕ÷Õ JLELNWOH ND\EÕ DQFDN \ÕOGÕ] \DUÕoDSÕQÕQ DUWWÕ÷ÕHYUHOHUGH \DQL PHUNH]LKLGURMHQ
yanma evresinde (A evresi), kabukta hidrojen yanma evresinde (B evresi) ya da helyum yanma evresinde (C
HYUHVLEDúOD\DELOLU
=$06¶D YDUGÕNODUÕQGD ELOHúHQOHULQ KLo ELULQLQ 5RFKH OREODUÕQÕ DúPDGÕNODUÕ \DQL VLVWHPLQ D\UÕN ROGX÷X
YDUVD\ÕPÕ\ODLúHEDúODUÕ]7DNLSHGHQHYULPVÕUDVÕQGDKHULNLELOHúHQLQ
de
\DUÕoDSÕ
büyür. Daha büyük kütleli
RODQ GDKD KÕ]OÕ HYULPOHúHFH÷LQGHQ JHUHNOL NRúXOODUÕQ VD÷ODQPDVÕ\OD EX \ÕOGÕ] VRQXQGD 5RFKH OREXQX
Temsili olarak, Algol sistemlerin orijini dikkate DOÕQDELOLU
Algoller, ya merkezi hidrojen yanma evresi (A evresi)VÕUDVÕQGDNL\DGDVRQUDNLHYUHOHU%HYUHVLVÕUDVÕQGDNL
NWOHDNWDUÕP\ROX\OD,LNLúHNLOGHROXúDELOLUOHU%LULQFLGXUXPGDEDú \ÕOGÕ]NWOHVLQLQ\DNODúÕNRODUDN \DUÕVÕQÕ
GROGXUXU YH E|\OHFH NWOH GH÷LúLPL EDúODU
5105 \ÕOGDQ GDKD NÕVD ELU VUHGH DNWDUÕU YH EX VXUHWOH \ROGDú ELOHúHQ VLVWHPLQ E\N NWOHOL ELOHúHQL KDOLQH
gelir. %X HYUHGHQ VRQUD NWOH ND\EHGHQ ELU DOW GHYGLU PHUNH]LQGH KDOD KLGURMHQ \DQPDNWDGÕU IDNDW GÕú
NÕVÕPODUÕQGD QRUPDO ana kol \ÕOGÕ]ODUÕQD nazDUDQ GDKD D] NWOH YDUGÕU %|\OHVL ELU \ÕOGÕ]ÕQ PHUNH]L YH
ÕúÕWPDVÕ D\QÕ NWOHOL QRUPDO ELU \ÕOGÕ]GDQ EHNOHQHQGHQ GDKD E\NWU Hesaplamalar, \ÕOGÕ]ÕQ evrimi
VÕUDVÕQGDki JHQLúOHPHVLQL PLO\RQODUFD \ÕO GHYDP HWWLUPHVLQH UD÷PHQ NWOH DNWDUÕPÕQÕQ DQFDN oRN GúN ELU
KÕ]ODGHYDPHGHFH÷LQLJ|VWHUPHNWHGLU
,
, hidroMHQ\DQPDNDEX÷X\ODoHYULOL\R]ODúPÕúELUKHO\XP
2.4 M¶GHQ NoN ROGX÷X GXUXPODUGD PH\GDQD JHOLU Böylesi
øNLQFLROXúXPWULVHDQFDN EDú\ÕOGÕ]ÕQNWOHVLQLQ
oHNLUGH÷LQLQ ROXúDELOPHVLQLQ VW OLPLWL RODQ
\ÕOGÕ]ODU 5RFKH OREODUÕQÕ GROGXUGXNODUÕQGD oRN \NVHN KÕ]ODUOD NWOH DNWDUÕUODU 6RQXQGD JHUL\H \R]ODúPÕú
KHO\XP oHNLUGH÷L LOH VÕ÷ ELU KLGURMHQ ]DUID VDKLS RODQ NDEXNWD KLGURMHQ \DNDQ YH KDOD 5RFKH OREXQX
GROGXUX\RU RODQ YH EX QHGHQOH GH \ROGDúÕQD GúN KÕ]ODUOD GD ROVD PLO\RQODUFD \ÕO
kütle aktarmaya devam
HGHFHNRODQELUDOWGHYNDOÕU
% HYUHVL NWOH DNWDUÕPÕ\OD ROXúDQ $OJROOHU $ WU LOH ROXúDQODUGDQ WDPDPHQ IDUNOÕ Lo \DSÕODUD VDKLS
basitELUúHNLOGHbu sonuca varmak LPNDQVÕ]GÕU Ancak, bazen, kütle belirlemesi yoluyla, A
ve B duUXPODUÕQÕ D\ÕUPDN RODQDNOÕ ROXU WRSODP NWOHOHUL 0’in DOWÕQGD olan sistemlerin, B türü kütle
DNWDUÕPÕ\OD ROXúWXNODUÕQÕ KHPHQ KHPHQ NHVLQ RODUDN V|\OH\HELOLUL] |UQH÷LQ $OJRO λ Tau). Küçük kütleli
ROPDODUÕQDNDUúÕQ
\ÕOGÕ]ODULoLQLVHNHVLQELUúH\V|\OHQHPH]
16.2. Evrim türleri
.oN NWOHOL oLIWOHULQ VÕQÕIODPDVÕ\OD HYULPOHULQLQ VRQ DúDPDVÕQGD JHUL\H NDODQ NWOHOHUL &KDQGUDVHNKDU
OLPLWLQL DúPD\DQ EDú ELOHúHQOL VLVWHPOHUL DQOD\DELOLUL] dHúLWOL KHVDSODPD VHULOHULQH J|UH EDú \ÕOGÕ]ÕQ NWOHVL
12 M - 14 MGH÷HULQLDúDPD]gQFHNLE|OPGHDoÕNODQGÕ÷Õ]HUHNWOHDNWDUÕPÕQÕQELUoRNoHúLWLQLGLNNDWH
alabiliriz.
$(95(6ø0(5.(=ø+ø'52-(1<$10$
SI SIRASINDA.ø.h7/('(öøùø0ø
%Dú \ÕOGÕ] 5RFKH OREXQX GROGXUPD\D EDúODGÕ÷ÕQGD KÕ]OÕ ELU NWOH DNWDUÕP HYUHVL EDúODPÕú ROXU %Dú \ÕOGÕ]ÕQ
NWOHVLQLQE\NELUNÕVPÕ\ROGDúDDNWDUÕOÕU%DúODQJÕoWDE\NNWOHOLRODQ\ÕOGÕ]EDú\ÕOGÕ]VLVWHPLQNoN
.
kritik hacminiGROGXUPD\DGHYDPHWWL÷L\DYDúELUNWOHDNWDUÕP evresi gelir.%XúHNLOGHELU\DUÕ-D\UÕN
VLVWHP ROXúPXú ROXU =$06¶WD EDúODQJÕo NLP\DVDO ELOHúLPL X = 0.602, Z = 0.044’tür. %LOHúHQOHU =AMS
ELOHúHQOHUL DUDVÕQGDNL X]DNOÕN, EDú \ÕOGÕ]ÕQ 5RFKH OREXQX KLGURMHQ \DQPD HYUHVL VÕUDVÕQGD GROGXUDFD÷Õ
úHNLOGHGLU%XGXUXPGDEDú\ÕOGÕ]ÕQX\JXQ\DUÕoDSÕRR = 11.60 R
olur.$\QÕNWOHOLELUWHN\ÕOGÕ]ÕQ\DUÕoDSÕ
ise, hidrojen yanma evresinin sonunda 11.7 RGH÷HULQHXODúÕU
NWOHOLELOHúHQLKDOLQHJHOLU\DQLVLVWHPLQNWOHRUDQÕWHUVLQHG|QHU %XKÕ]OÕNWOHDNWDUÕPHYUHVLQLWDNLEHQEDú
\ÕOGÕ]ÕQ
24
ùHNLO $ WU LoLQ NWOHOL ELU \DNÕQ oLIW VLVWHPLQ HYULPL =DPDQ PLO\RQ \ÕO FLQVLQGHQ \|UQJH G|QHPL LVH JQ
ELULPLQGH YHULOPLúWLU %Dú \ÕOGÕ] PHUNH]L KLGURMHQ \DQPD HYUHVL VÕUDVÕQGD 5RFKH OREXQX GROGXUXU YH \ROGDúÕQ
DNWDUPD\D EDúODU ùHNLOGH NWOH DNWDUÕPÕQÕQ LNL HYUHVL J|VWHULOPLúWLU +Õ]OÕ HYUHGH 0
a kütle
’den biraz fazla bir kütle
\DOQÕ]FD\ÕOLoHULVLQGHDNWDUÕOÕUNHQEXHYUH\L\DYDúELUNWOHDNWDUÕPHYUHVLL]OHU6L\DKGDLUHOHUKLGURMHQ
-zengin, gri
çemberler ise helyum-zengin bölgeleri göstermektedir (Kippenhahn ve Weigert, 1967).
su, karakteristik nicelikleriyle birlikte
daùHNLO¶GHJ|VWHULOPLúWLU
øOJLOL ED]Õ HYUHOHU LoLQ HYULP VHQHU\R
\ROODUÕ
DKÕ]OÕNWOHDNWDUÕPÕ0
ùHNLO ¶GH YH VLVWHP
in evrim
’den 3.73 M’e)
7
%Dú \ÕOGÕ] NULWLN \DUÕoDSÕQD \ÕO VRQXQGD XODúÕU +LGURMHQ EROOX÷X ¶GHQ GH÷HULQH GúHU
Hidrostatik dengeyi yeniden kurabilmek için, alt
katmanlar JHQLúOHPHN ]RUXQGD NDOÕUODU %X JHQLúOHPH LoLQ JHUHNOL RODQ HQHUML ÕúÕWPDGDQ KDUFDQÕU YH E|\OHFH
.WOHDNWDUÕPHYUHVLVUHVLQFHNWOHGÕúNDWPDQODUGDQDWÕOÕU
\ÕOGÕ]ÕQÕúÕWPDVÕGúHUùHNLO+Õ]OÕNWOHDNWDUÕPHYUHVLQLQVRQXQGDÕúÕWPD\HQLGHQDUWDU
ùHNLO %LU 0
+ 5 M VLVWHPLQLQ HYULPL %Dú \ÕOGÕ]ÕQÕQ HYULPL NDOÕQ oL]JL LOH J|VWHULOPLúWLU .WOH DNWDUÕPÕQÕQ
EDúODQJÕFÕD LOH YH KÕ]OÕNWOHDNWDUÕP HYUHVLQLQ VRQX ELOHJ|VWHULOPLúWLUEGHQF \H NDGDU \DYDúHYUHGLU$\UÕFD
MNWOHOLWHNELU\ÕOGÕ]ÕQHYULP\ROXGDJ|VWHULOPLúWLU
25
b) yaYDúNWOHDNWDUÕPÕ
Konvektif merkezde
sürmektedir<ÕOGÕ]\DNODúÕN PLO\RQ \ÕO VUHVLQFH5RFKH \]H\LQGHQPDGGHDNWDUPD\D
-8
YHGROD\ÕVL\OHNWOHND ybetmeye (10
M\ÕO-1 mertebesinde) deam eder. <ROGDú ELUNDoPLO\RQ \ÕOER\XQFD
$UWÕNEDú\ÕOGÕ]ÕQNLP\DVDOHYULPLNWOHND\EHWPH\HQELU\ÕOGÕ]ÕQNL\OHD\QÕúHNLOGHROXU
KLGURMHQ \DQPDVÕ
=$06 \DNÕQÕQGDNDOÕU%XHYUHGHVLVWHP $OJROOHULQ NDUDNWHULVWLN|]HOOLNOHULQLJ|VWHULU3HN HYULPOHúPHPLú
RODQ E\N NWOHOL ELOHúHQ =$06 \DNÕQÕQGD LNHQ =$06¶WDQ D\UÕOPÕú RODQ NoN NWOHOL ELOHúHQ 5RFKH
OREXQX GROGXUPXúWXU %Dú \ÕOGÕ]ÕQ NWOHVL 0
PHUNH]LKLGURMHQEROOX÷X
X = 0.002’dir.
GH÷HULQH JHOGL÷LQGH NWOH DNWDUÕPÕ GXUXU EX GXUXPGD
Çizelge 16.2
Bir 9 M + 5 M sisteminin evrimi
M1 ve M2 EDú YH \ROGDú \ÕOGÕ]ODUÕQ NWOHOHUL AELOHúHQOHU DUDVÕQGDNL X]DNOÕN R1 \ÕOGÕ]ÕQ RR LVH 5RFKH OREXQXQ JQHú
ELULPLQGH\DUÕoDSÕGÕUXoHNLUGHNWHNLKLGURMHQEROOX÷XDEYHFLVH+5GL\DJUDPÕQGDNLNRQXPODUÕJ|VWHUPHNWHGLU
Çizelge 16.3
Bir 2 M + 1 M sisteminin evrimi (Kippenhahn, Kohl, Weigert, 1967)
Çizelgede \Dú, EDú YH \ROGDú ELOHúHQLQ M1 ve M2 kütleleri, gün biriminde P dolanma dönemi, durum –D\UÕN G \DUÕD\UÕN VG; ÕúÕWPD L HWNLQ VÕFDNOÕN Teff YH EDú \ÕOGÕ]ÕQ DWPRVIHULN KLGURMHQ EROOX÷X Xat parameWUHOHUL YHULOPLúWLU Orijinal
NDUÕúÕPX = 0.602, Y = 0.354, Z ¶WU6RQNRORQGDNLKDUIOHULVHùHNLO¶HJ|nGHUPH\DSPDNWDGÕU
26
+ 1 M sisteminin B evresi evrimi. Evrim süresi t PLO\RQ \ÕO GRODQPD G|QHPL JQ ELULPLQdedir.
Siyah daireler hidrojen-zengin, gri çemberler ise helyum-zengin bölgeleri göstermektedir.
ùHNLO %LU 0
.hdh..h7/(%(95(6ø
(1 M < M1 < 2.8 M)
o
ve bu nedenle ]DUIÕQKÕ]OÕJHQLúOHGL÷LELUHYUHJ|UOPH] HidrojeniQL\DNPÕúRODQoHNLUGH÷LQNWOHVL,
M < 2.8 M için 0.35 M¶GHQNoNWUVÕFDNOÕNDUWÕúÕ+H-\DQPDVÕQDL]LQYHUHFHNG]H\GHGH÷LOGLU Hidrojen
NDEX÷XQ \RNROPDVÕ\ODNWOHDNWDUÕPÕVRQDHUHU<ÕOGÕ]ELUEH\D]FFHROXU0
+ 1 MNWOHOL \DNÕQoLIW
VLVWHPLQ%WUHYULPLùHNLO¶WH, +5GL\DJUDPÕQGDNLHYULP\ROODUÕLVHùHNLO¶WHJ|VWHULOPLúWLU
+LGURMHQ NDEX÷X ]D\ÕIODGÕ÷ÕQGD PHUNH]GH HOHNWU Q \R]ODúPDVÕ PH\GDQD JHOLU 0HUNH]L VÕNÕúPD \DYDú
KÕ]GDGÕU
27
+ 1 M\DNÕQoLIWVLVWHPLQLQEDú\ÕOGÕ]ÕQDLOLúNLQHYULP\ROODUÕ
ùHNLOdL]HOJH¶WHYHULOHQúHPD\DJ|UHELU0
1RUPDO KLGURMHQ EROOX÷X
X = 0.7 (ZAMS) ile X
KHO\XP VÕIÕU \Dú DQD NROX +H =$06 LoLQ VÕIÕU \Dú DQD NROODUÕ GD
J|VWHULOPLúWLU(YULP\ROODUÕ]HULQGHNLKDUIOHUdL]HOJH¶HJ|QGHUPH\DSPDNWDGÕU
16.2.3. ORT$.h7/(%(95(6ø0 < M1 < 14 M)
Çekirdek kütlesi, hidrojenini WNHWPLú bir oHNLUGH÷LQ ÕVÕVDO NDUDUOÕOÕ÷Õ LoLQ JHUHNOL RODQ &KDQGUDVHNKDU kütlesinden daha
büyüktür. 0HUNH]L VÕNÕúPD oRN KÕ]OÕ ROXU YH oO DOID LúOHPL EDúODU %X KÕ]OÕ JHQLúOHPH KÕ]OÕ ELU NWOH DNWDUÕP HYUHVLQH
neden olur. %DúODQJÕo G|QHPL JQ RODQ ELU 0 + 8 M sisteminin evrimi (De Greve ve de Loore,
1976) ùHNLOúX úHNLOGHROXU hLGURMHQ \DQPD HYUHVLQLQ |PU \DNODúÕN PLO\RQ \ÕOPHUWHEHVLQGH iken
-5
NWOH GH÷LúLPLQLQ VUHVL \DNODúÕN RODUDN \ÕOGÕU KWOH ND\EÕQÕQ RUWDODPD GH÷HUL 5.2 10
M\ÕO-1 ve
-4
-1
PDNVLPXP GH÷HUL GH M\ÕO ’dir. +HO\XP \DQPDVÕ PLO\RQ \ÕO VUHU VRQUD \R]ODúPÕú KHPHQ
KHPHQHúVÕFDNOÕNOÕELUoHNLUGHNJHOLúLU<ÕOGÕ]+5GL\DJUDPÕQGDVD÷DGR÷UXLOHUOHU.WOHDNWDUÕPÕQÕQLNLQFL
0.94 M NWOHOL ELU &2 oHNLUGH÷LQH YH 0 kütleli bir helyum atmosferine sahip
kütleli, çok ince, aktif bir helyum kabuk
kD\QD÷Õ YDUGÕU 2 10-5 M\ÕO-1 mertebesindeki \DYDú ELU NWOH DNWDUÕP HYUHVL \ÕO VUHU sonra helyum
NDEXN ND\QD÷Õ WNHWLOLU NDOÕQWÕQÕQ NWOHVL M ’dir. .WOH GH÷LúLPLQLQ VRQXQGD EDú \ÕOGÕ] KLGURMHQFH
]HQJLQ ]DUIÕQÕQ QHUHGH\VH WDPDPÕQÕ ND\EHGHU sonuç kütle 0.264 M ’dir. Bu son kütle o kadar küçüktür ki,
HYUHVL EDúODU <ÕOGÕ]
ROXUEXQODUÕQ DUDVÕQGDWRSODP HQHUMLQLQ ¶Q UHWHQ0
+H DVOD WXWXúDPD] YH \ÕOGÕ] VR÷XPD\D EDúODU <ÕOGÕ] KHO\XP VÕIÕU \Dú DQD NROXQD +H=$06 GR÷UX
HYULPOHúHPH] YH EH\D] FFHOHULQ EXOXQGX÷X E|OJH\H GR÷UX LOHUOHU +HVDSODPDODUÕQ VRQXQGD \ÕOGÕ]ÕQ
yDUÕoDSÕD\QÕNWOHOLLGHDOELUEH\D]FFHQLQ&KDQGUDVHNKDUOLPLWLQLQ\DNODúÕNRODUDNLNLNDWÕGÕU<ÕOGÕ]KDOHQ
toplam kütlesinin %0.9’una sahip olan, hidrojence zengin bir zarfa sahiptir, böylece o, ölmekte olan hidrojen
\DQPD]DUIOÕKRPRMHQROPD\DQELU beyaz cücedir.
-
0HUNH]GHNLQ|WULQRODUÕQNDWNÕVÕDUWDUPHUNH]LVÕFDNOÕND]DOÕUIDNDW\DUÕ \R]ODúPÕúE|OJHOHUGHEXE|OJHOHUGHNL
E]OPHQHGHQL\OHVÕFDNOÕNDUWPD\DGHYDPHGHU.DEXNHQHUMLND\QD÷Õ\RNWXUEXQHGHQOHGHELUEWQRODUDN
E]OPH J|]OHQLU +Õ]OÕ E]OPH \DNODúÕN \ÕO Q|WULQR ND\ÕSODUÕQÕ NDUúÕOD\DPD] YH ÕúÕWPD GúHU
Buradan itibaren (log Teff = 5.2) beyaz cüce HYUHVLQHGR÷UX HYULPEDúODU.WOHOHUL0¶GHQE\N \ÕOGÕ]ODU
LoLQ \DSÕODQ KHVDSODPDODUDWPRVIHUik KLGURMHQ EROOX÷XQXQ \DNODúÕk olarak ROGX÷XQGD,NWOH ND\ÕSODUÕQÕQ
VRQDHUGL÷LQLJ|VWHUPLúWLU
28
ùHNLO%DúODQJÕoG|QHPLJQRODQELU0
Loore, 1976).
+ 8 MVLVWHPLQLQEDú\ÕOGÕ]ÕQDLOLúNLQHYULP\ROX'H*UHYHYHGH
(YULPKHVDSODPDODUÕ
16.3.1. KORUNUMLU9(.25818068=(95ø0
(YULP\ROODUÕQÕQKHVDSODPDODUÕQGDúXRODVÕOÕNODUÕGLNNDWHDODELOLUL]
Korunumlu evrim için, WRSODPNWOHYHDoÕVDOPRPHQWXPVDELWRODUDNHOHDOÕQÕU.WOHDNWDUÕPÕEDúODGÕ÷ÕQGD
NWOH DWÕOÕU YH DWÕODQ EX NWOH \ROGDúÕQ NWOHVLQH HNOHQLU %X LNL ELOHúHQLQ NWOHOHULQGHNL GH÷LúLPGHQ KDUHNHW
HGHUHNGHVLVWHPLQGRODQPDG|QHPLQGHNLGH÷LúLPLOHELOHúHQOHULQ5RFKH\DUÕoDSODUÕQÕQGH÷LúLPLKHVDSODQÕU
Korunumsuz evrim içinNWOHYHDoÕVDOPRPHQWXPGDNLGH÷LúLPOHUKHVDEDNDWÕOÕU Böylesi bir dDYUDQÕúGH÷HQ
sistemlerinGLNNDWHDOÕQPDVÕQDL]LQYHULU%XGXUXPGD \ROGDúWDUDIÕQGDQ \Õ÷ÕúWÕUÕOPD\DUDNVLVWHPLWHUNHGHQ
ELU GLVNWH \D GD RUWDN ELU ]DUI LoHULVLQGH ELULNWLULOHQ NWOH NHVUL LoLQ ELU WDQÕPODPD JHUHNLU D\QÕ úH\ DoÕVDO
momentum için de yaSÕOPDOÕGÕU
'DKD |QFH %|OP ¶WH EHOLUWLOGL÷L ]HUH KHVDSODPDODUÕ EDú \ÕOGÕ]ÕQ HYULPLQH VÕQÕUOD\DUDN YH \ROGDúÕQ
NWOHVLQGHNLGH÷LúLPL\DOQÕ]FDVLVWHPLQGRODQPDG|QHPLQGHNLGH÷LúLPLEHOLUOHPHGHNXOODQPDN \DGDKHULNL
ELOHúHQLQHYULPLQLHú]DPDQOÕRO
arak hesaplamak \ROODUÕQÕQLNLVLGHRODVÕGÕU
Korunumsuz durumu için NWOH YH DoÕVDO PRPHQWXP ND\ÕSODUÕ PXWODND GLNNDWH DOÕQPDOÕGÕU .WOH DNWDUÕP
∆MNWOHPLNWDUÕ\ÕOGÕ]5RFKHOREXQXQLoLQGHNDODFDNúHNLOGHEHOLUOHQir;
HYUHVLVUHVLQFHEDú\ÕOGÕ]GDQDWÕODQ
NWOH ND\EÕ ]DPDQ |OoH÷L LOH \Õ÷ÕúPD ]DPDQ |OoH÷LQLQ GR÷DO RODUDN EHQ]HU ROPDPDODUÕ QHGHQL\OH DWÕODQ
β kesrinin yani β ∆MPLNWDUÕQÕQ\ROGDúWDUDIÕQGDQ\Õ÷ÕúWÕUÕOGÕ÷ÕYDUVD\ÕODELOLU
NWOHQLQ\DOQÕ]FD
$oÕVDOPRPHQWXPND\EÕLoLQGH EHQ]HU ELULúOHP \DSÕODELOLUH÷HUG|QPHDoÕVDOPRPHQWXPX LKPDO HGLOLUYH
ELU \D GD KHU LNL ELOHúHQGHQ DWÕODQ PDGGHQLQ VLVWHPL WHUN HWWL÷L YDUVD\ÕOÕUVD DWÕODQ EX NWOH LOH WDúÕQDQ
ND\EHGLOHQDoÕVDOPRPHQWXPKHVDSODQDELOLU
29
.HVLUVHONWOHND\EÕ
c
c = ∆M /( M 1i + M 2i )
(16.1)
ED÷ÕQWÕVÕ LOH LIDGH HGLOHELOLU 6LVWHPL WHUN HGHQ PDGGH LOH WDúÕQDQ DoÕVDO PRPHQWXP LVH -HDQV \DNODúÕPÕ
NXOODQÕODUDN
∆J = cJ
(16.2)
úHNOLQGH GH÷HUOHQGLULOHELOLU
6RQXo RODUDN .HSOHU¶LQ oQF \DVDVÕQD J|UH ELOHúHQOHU DUDVÕ X]DNOÕN YH
GRODQPDG|QHPLQLQGH÷LúLPOHULLoLQ
A (1 − c) 2 ( M 1i M 2i ) 2 ( M 1 + M 2 )
=
Ai
( M 1M 2 ) 2 ( M 1i + M 2i )
(16.3)
P (1 − c) 3 ( M 1i M 2i ) 3 ( M 1 + M 2 )
=
Pi
( M 1 M 2 ) 3 ( M 1i + M 2i )
(16.4)
in fonksiyonu
LIDGHOHULQL \D]DELOLUL] (÷HU NHVLUVHO DoÕVDO PRPHQWXP ND\EÕQÕ VLVWHPGHQ DWÕODQ J|UHOL NWOHQ
olarak ifade edersek, c için çok daha genel bir ifade elde edebiliriz
c = c(∆M /( M1 + M 2 )) .
(÷HU
∆MNWOHVLQLQDWÕOPDVÕQGDQVRQUDVLVWHPGHNDODQDoÕVDOPRPHQWXPXd = 1 – c ile temsil edersek
d(O) = 1,
d(1) = 0
0 d
(16.5)
elde ederiz.(÷HU
∑ ∆M k = ∆M
(16.6)
k
ise, bu durumda
d(
∆M
∆M k
)=
d(
)
M 1i + M 2i
M 1k −1 + M 2k −1
k
∏
(16.7)
olur. Bir d IRQNVL\RQXQXQ EXOXQPXú ROGX÷XQX YDUVD\GÕ÷ÕPÕ]GD YH ED÷ÕQWÕODUÕQÕ VD÷OD\DQ
fonksiyon ailesi bir bütün olarak belirlenebilir.
d(
∆M
∆M
) =1−
M 1i + M 2i
M 1i + M 2i
(16.8)
IRQNVL\RQXYHED÷ÕQWÕODUÕQÕVD÷ODGÕ÷ÕQGDQ
∆M
∆M
) = (1 −
)α α ≥ 0
M1i + M 2i
M1i + M 2i
DLOHVLGHVD÷ODU%XGXUXPGDc’yi
dα (
cα (
∆M
∆M
) = 1 − (1 −
)α α ≥ 0
M1i + M 2i
M1i + M 2i
úHNOLQGH\HQLGHQ\D]DELOLUL]
(16.9)
30
%HOOL ELU HYULP HYUHVL VUHVLQFH ELOHúHQOHUGHQ ELUL WDUDIÕQGDQ ND\EHGLOHQ PDGGH \ROGDúÕ WDUDIÕQGDQ
β, bu kütle kesrini göstersin, yani
β = ( M 2 − M1 ) / ∆M .
\Õ÷ÕúWÕUÕODELOLU
(16.10)
%XGXUXPGDELOHúHQOHUDUDVÕQGDNLX]DNOÕNLOHG|QHPGHNLGH÷LúLPOHUL
A
M + M 2 2α +1 M 1i M 2i 2
=( 1
)
(
)
Ao
M 1i + M 2i
M 1M 2
(16.11)
P
M + M 2 3α +1 M 1i M 2i 3
=( 1
)
(
)
Po
M 1i + M 2i
M 1M 2
biçiminde yazabiliriz, burada M2, (16.10) ile verilir.
ø.ø%ø/(ù(1ø1(95ø0ø
(ú]DPDQOÕHYULPLoLQELUNRGNXOODQÕODUDNKHULNLELOHúHQLQ\DSÕVÕDQODúÕODELOLU
Bu durumdaKHULNLELOHúHQLQ
,
\DUÕoDSODUÕ YH RQODUÕQ 5RFKH \DUÕoDSODUÕ KHVDSODQÕU YH EX GD \ÕOGÕ] \DUÕoDSODUÕ LOH 5RFKH \DUÕoDSODUÕ
DUDVÕQGDNDUúÕODúWÕUPD\DSPD\DRODQDNVD÷ODU
Bu suretle, VRQUDNLGH÷PHHYUHOHULJ|]GHQNDoÕUÕOPDPÕúYHRQD
J|UH GDYUDQÕOPÕú ROXU <Õ÷ÕúPD \ÕOGÕ]ÕQÕQ GDYUDQÕúÕ úX úHNLOGH DQODúÕODELOLU EX \ÕOGÕ] NWOH \Õ÷ÕúPDVÕ
QHGHQL\OH JHQoOHúLU YH |PU |QHPOL |OoGH DUWD
bilir.
*HQoOHúHQ EX \ROGDú \ÕOGÕ] 5RFKH OREXQX GD
GROGXUDELOLUYHE|\OHFHWHUVLQHG|QPúELUNWOHDNWDUÕPHYUHVLRUWD\DoÕNDELOLU
(YULP KHVDSODPDODUÕQGDNL VÕQÕUODPDODU úXQODUGÕU VLVWHP GÕú NULWLN \]H\LQL L2
QRNWDVÕQGDQ JHoHQ Hú
SRWDQVL\HO \]H\DúPDGÕ÷ÕVUHFHKHVDSODPDODUNRUXQXPOXGXUXPDJ|UH\DSÕOÕUGÕúNULWLN \]H\DúÕOGÕ÷ÕQGD
ise sistemden olaVÕ NWOH ND\ÕSODUÕ GD GLNNDWH DOÕQÕU .WOHQLQ VLVWHPGHQ NDoDELOPHVL LoLQ HQ D]ÕQGDQ L2
QRNWDVÕ LOH 5RFKH OREXQXQ SRWDQVL\HO HQHUMLOHUL DUDVÕQGDNL IDUNÕ VD÷ODPD\D \HWHFHN E\NONWH ID]ODGDQ ELU
.
, bu enerjiQLQ E\NO÷ q = 1 için, 0.27 GM/A ile
hesaplanabilir..WOHRUDQÕQÕQJHQLúELUDUDOÕ÷ÕQGDEXGH÷HUROGXNoDWLSLNWLU%D÷ÕQWÕ\DJ|UHJHQLúVLVWHPOHUGH
kütlenin sistemden kaçabilmesi, \DNÕQ VLVWHPOHUH J|UH GDKD NROD\GÕU NWOH RUDQÕQÕQ Xo GH÷HUOHULQGH 27
oDUSDQÕ\HULQLoRNGDKDNoNELUoDUSDQDEÕUDNÕUYHEu nedenle de, büyük kütleli sistemlerde kütlenin sistemi
terk etmesi çok daha kolay olur.
HQHUML\H JHUHNVLQLPL YDUGÕU %LULP NWOH EDúÕQD
M + 1 M
sistemiQLQ KHU LNL ELOHúHQLQLQ GH /RRUH YH 'H *UHYH WDUDIÕQGDQ KHVDSODQDQ HYULP \ROODUÕQÕ D\QÕ EDúODQJÕo
(ú ]DPDQOÕ HYULP GH÷HULQLQ NRQWURO HGLOPHVL DPDFÕ\OD EDúODQJÕo G|QHPL JQ RODQ ELU G|QHPLQHVDKLSD\QÕELU VLVWHPLQEDú\ÕOGÕ]ÕQÕQ.LSSHQKDKQ.RKOYH:HLJHUWWDUDIÕQGDQKHVDSODQDQ
HYULP \ROX\OD NDUúÕODúWÕUPDVÕQÕ ùHNLO ¶GD YHUL
yoruz.
*|UOHFH÷L JLEL KHU LNL EDú \ÕOGÕ]ÕQ HYULP \ROODUÕ
ROGXNoDX\XúPDNWDGÕU+HULNLGXUXPGDGDGH÷PHHYUHVLROXúPDPDNWDGÕUELOHúHQOHULQHYULP\ROODUÕD\UÕD\UÕ
KHVDSODQDELOLU \DQL LON RODUDN EDú \ÕOGÕ]ÕQ HYULPL KHU DGÕPGD VLVWHPGHQ NWOH ND\EÕQÕGD LoHUHFHN úHNLOGH
KHVDSODQGÕNWDQ VRQUD PDGGHQLQ \Õ÷ÕúWÕ÷Õ \ROGDúÕQ HYULPL GH KHVDSODQDELOLU .LSSHQKDKQ YH DUN 7DUDIÕQGDQ
EDú\ÕOGÕ]LoLQKHVDSODQDQHYULP\ROXGDKD|QFHùHNLO¶WHJ|VWHULOPLúWL
.WOHRUDQÕYHG|QHPLQVLVWHPLQGDYUDQÕúÕ]HULQGHNLHWNLOHULQLLQFHOHPHNDPDFÕ\OD
MNWOHOLEDú\ÕOGÕ]D
VDKLS RODQ ELU VLVWHPLQ Hú ]DPDQOÕ HYULPL L]OHQHELOLU 'H÷PH HYUHVLQLQ ROXS ROPD\DFD÷Õ EDúODQJÕo NWOH
M+ 8.1 M sistemi,
M\ÕO¶OÕN PDNVLPXP
GH÷HULQHXODúÕUYHDWPRVIHULNKLGURMHQEROOX÷XNWOHRODUDNYHULFL\ÕOGÕ]GD¶GHQ¶HYHDOÕFÕ\ÕOGÕ]da da
RUDQÕQD YH EDúODQJÕo G|QHPLQH ED÷OÕGÕU %DúODQJÕo G|QHPL JQ RODQ ELU koUXQXPOX HYULPLQ NODVLN \ROXQX WDNLS HGHU ùHNLO .WOH ND\ÕS KÕ]Õ -4
¶GHQ¶\HGúHU9HULFL\ÕOGÕ]GDQJHUL\HNDODQKHO\XP\DQPDHYUHVLER\XQFDHYULPOHúLUVRQUD\HQLGHQ
M
ile 10 M DUDVÕQGDRODQEDú\ÕOGÕ]ODULoLQPH\GDQDJHOLUYH helyum kabuk kayQD÷ÕQGDQHQHUMLoÕNÕúÕQÕQQHGHQ
JHQLúOHUYHEXVXUHWOHNWOHDNWDUÕPÕQÕQLNLQFLHYUHVLEDúODU.WOHDNWDUÕPÕQÕQEXLNLQFLHYUHVLNWOHOHUL
ROGX÷X KHO\XP ]DUI JHQLúOHPHVLQLQ ELU VRQXFX RODUDN DWPRVIHULN KLGURMHQ EROOX÷X NWOH RODUDN YHULFL
\ÕOGÕ]GD¶GHQ¶HYHDOÕFÕ\ÕOGÕ]GDGD¶GHQ¶\HGúHU
Bir 10 M+ 8 MVLVWHPLLoLQ\DSÕODQNRUXQXPOXKHVDSODPDODUEN].HVLPLOHNDUúÕODúWÕUPDGH÷PH
HYUHVLQLQ J|UOPHGL÷L EX GXUXPGD Hú ]DPDQOÕ HYULP VRQXoODUÕQÕQ NRUXQXPOX HYULP LOHHOGH HGLOHQOHUOH oRN
L\LX\XúWX÷XQXJ|VWHUPHNWHGLU
%DúODQJÕo G|QHPL JQ RODQ ELU 0
+ 5.4 M sistemi için, kütle DNWDUÕPÕQÕQ EDúODPDVÕQGDQ \DNODúÕN
¶OLNELUNWOHDNWDUÕOGÕ÷ÕQGD,ELUGH÷PHHYUHVLPH\GDQDJHOLU. Bu
RODUDN\ÕOVRQUD\DNODúÕNRODUDN0
31
GH÷PHHYUHVLNWOH RUDQÕ WHUVG|QQFH\H NDGDU \DNODúÕN RODUDN \ÕOGHYDPHGHU %Dú \ÕOGÕ]ÕQ NWOHVL
M¶HGúW÷QGHGH÷PHHYUHVLVRQDHUHU6RQUDNLHYULPVUHFL|QFHNLGXUXPGDNLJLELROXU
ùHNLO%DúODQJÕoG|QHPLJQRODQELU0
+ 1 MVLVWHPLQLQGH/RRUHYH'H*UHYHWDUDIÕQGDQELUHú]DPDQOÕ
HYULP NRGX LOH KHVDSODQDQ HYULP \ROODUÕQÕQ .LSSHQKDKQ YH :HLJHUW WDUDIÕQGDQ GDKD |QFH KHVDSODQDQ HYULP
\ROODUÕ LOH NDUúÕODúWÕUPDVÕ (ú ]DPDQOÕ KHVDSODPDODUÕQ EDú \ÕOGÕ]Õ NDOÕQ oL]JL LOH \Õ÷ÕúDQ \ROGDú \ÕOGÕ]ÕQ HYULP \ROX LVH
]HULQGH LoL ERú oHPEHUOHULQ EXOXQGX÷X LQFH oL]JL LOH J|VWHULOPLúWLU .LSSHQKDKQ YH :HLJHUW¶ÕQ HYULP \ROX LVH ]HULQGH
QRNWDODUEXOXQDQoL]JLLOHJ|VWHULOPLúWLU
32
ùHNLO%DúODQJÕoG|QHPLJQRODQELU0
]DPDQOÕKHVDSODQDQHYULP\ROODUÕ
+ 8.1 MVLVWHPLQLQNWOHDNWDUÕPÕQÕQHUNHQ%HYUHVLQHJ|WUHQHú
+ 2.7 MVLVWHPLQLQEDúYH
Xc1 ve Xc2 LOH NWOH RUDQÕQÕQ HYULPL 0HUNH]L KLGURMHQLQ GH÷LúLP KÕ]Õ\OD
ùHNLO%DúODQJÕoG|QHPLJQRODQYH$HYUHVLQHGR÷UXHYULPOHúPHNWHRODQELU0
\ROGDú \ÕOGÕ]ODUÕQÕQ PHUNH]L KLGURMHQ EROOXNODUÕ
ED÷ODQWÕOÕRODUDNNWOHRUDQÕLNLNH]WHUVLQHG|QHU
.h7/(25$1,1,17(56ø1('g10(6ø
(ú ]DPDQOÕ HYULP KHVD÷ODPDODUÕ oLIW VLVWHPOHULQ HYULPOHUL VÕUDVÕQGD ED]Õ GXUXPODUGD NWOH RUDQÕQÕQ WHUVLQH
G|QPHVL GXUXPXQXQ \DúDQGÕ÷ÕQÕ RUWD\D NR\PDNWDGÕU gUQHN RODUDN EDúODQJÕo G|QHPL JQ RODQ ELU M+ 2.7 M VLVWHPLQLQ $ WU HYULPL 3DFNHW HOH DOÕQDELOLU +Õ]OÕ ELU NWOH DNWDUÕP HYUHVL VÕUDVÕQGD
NWOH RUDQÕ WHUVLQH G|QHU .WOH ND]DQDQ \ROGDúÕQ PHUNH]L KLGUÕMHQ \DQPDVÕ KÕ]ODQÕU E|\OHFH \ROGDúÕQ
PHUNH]LQGHNLKLGURMHQEROOX÷X
Xc2EDú\ÕOGÕ]ÕQPHUNH]L NÕVPÕQDQD]DUDQGDKDKÕ]OÕRODUDND]DOÕU Xc2 ≈ 0.4
ROGX÷XQGD \ROGDúÕQ JHQLúOHPHVL VRQXFXQGD 5RFKH OREX WDúPDVÕQÕQ PH\GDQD JHOPHVL QHGHQL\OH NWOH RUDQÕ
WHUVLQH G|QHU .WOH RUDQÕ ELU NH] GDKD PH\GDQD JHOLU YH WD]H KLGURMHQLQ EDú \ÕOGÕ]ÕQ PHUNH]L NÕVPÕQGD
NDUÕúPDVÕQHGHQL\OH
Xc1DUWDU6LVWHPDUWÕNELU\DUÕ-D\UÕNWÕUùLPGLNLGXUXPGDVLVWHPLQE\NNWOHOLRODQEDú
L2’den geçen kritik yüzeye
ELOHúHQLGDKDKÕ]OÕ HYULPOHúLUYH ELUPGGHWVRQUD \HQLGHQ5RFKHWDúPDVÕ ROXúXU
daha çabuk uODúÕOÕU E\N |OoHNOHUGH NWOH YH DoÕVDO PRPHQWXP ND\ÕSODUÕ ROXúXU VRQXoWD LNL \ÕOGÕ]ÕQ
ELUOHúPHVLQH QHGHQ RODQ LoH GR÷UX ELU VSLUDO KDUHNHWL RUWD\D oÕNDU .WOH RUDQÕ YH EROOX÷XQ HYULP ùHNLO
¶GHJ|VWHULOPLúWLU
, kütOH RUDQÕQÕQLNL NH] WHUVLQH G|QG÷ EX DUGÕúÕN NWOH DNWDUÕP HYUHOHUL LOH
ortaya koyar. Örnek olarak, bDúODQJÕoG|QHPL 2.27 gün olan
bir 9 M+ 5.4 M sisteminin3DFNHWWDUDIÕQGDQKHVDSODQDQHYULPJ|]GHn geçirilebilir.
(ú ]DPDQOÕ HYULP KHVDSODPDODUÕ
ELUD]GDKDNDUPDúÕN GXUXPODUÕQROXúDELOHFH÷LQL
16.4. KonvektifIÕUODWPDOÕHú]DPDQOÕHYULP
GeniúOHPLú NDUÕúÕP GLNNDWH DOÕQGÕ÷ÕQGD \ÕOGÕ]ÕQ HYULPL \DOQÕ]FD PHUNH]L KLGURMHQ \DQPD HYUHVL VUHVLQLQ
DUWPDVÕ GROD\ÕVÕ\OD GD \ÕOGÕ]ÕQ DQD NRO |PUQQ X]DPDVÕ EDNÕPÕQGDQ GH÷LO D\QÕ ]DPDQGD, \ÕOGÕ]ÕQ Lo
NÕVPÕQGD KLGURMHQ SURILOLQGHNL JUDGL\HQWLQ NRQYHNWLI PHUNH]L NÕVPÕQ o|NPHVLQLQ ELU VRQXFX RODUDN \]H\H
GDKD\DNÕQROPDVÕEDNÕPÕQGDQGDGH÷LúLU
Konvektif
ktadaki
konvektif IÕUODWPDOÕ PRGHOOHU GXUXPXQGD oRN
IÕUODWPDQÕQ GLNNDWH DOÕQGÕ÷Õ YH DOÕQPDGÕ÷Õ KHVDSODPDODUÕQ NDUúÕODúWÕUPDVÕ NÕUPÕ]Õ QR
\DUÕoDSÕQ \DQL DQDNRO VÕUDVÕQGD XODúÕODQ PDNVLPXP \DUÕoDSÕQ
33
GDKD E\N ROGX÷XQX J|VWHUPHNWHGLU %XQXQ ELU VRQXFX RODUDN \DNÕQ oLIW VLVWHPOHUGH % YH $ HYULP
GXUXPODUÕQÕQJ|UHOLROXúXPODUÕ
konvektif IÕUOatmadan önemli ölçüde etkilenecektir.
konvektif IÕUODWPD GLNNDWH DOÕQGÕ÷ÕQGD NWOH DNWDUÕPÕQÕQ A, B ve C
konvektif IÕUODWPDQÕQGLNNDWHDOÕQPDGÕ÷Õ%GXUXPXLoLQDOWOLPLW
de÷HUOHULQL J|VWHUPHNWHGLU ùHNLO NWOH RUDQÕ 9 RODQ \DNÕQ oLIWler için VRQXoODUÕ J|VWHUPHNWHGLU IDUNOÕ
ùHNLO \DNÕQ oLIW G|QHPOHULQLQ
GXUXPODUÕQDRODQDNVD÷OD\DQDOWOLPLWOHULLOH
HYULPOHúPH GXUXPODUÕQÕQ RUWD\D oÕNPDVÕ NWOH RUDQÕQD DQFDN ]D\ÕIoD ED÷OÕGÕU .WOH RUDQÕQÕQ DOÕQPDVÕ
durumunda, ùHNLO¶GD%GXUXPXQDDLWRODQH÷UL,\DOQÕ]FDELUNDoPLOLPHWUH\XNDUÕ\DGR÷UXND\PDNWDGÕU
k
bir 10 M+ 8 M çift sisteminin, Roxburgh kriterine uygun, konvektif
$GXUXPXNWOHDNWDUÕPÕQÕQNDUDNWHULVWLN|]HOOLNOHULQLRUWD\DNR\PD DPDFÕ\ODEDúODQJÕoG|QHPLJQRODQ
IÕUODWPDOÕ HYULPL EDúODQJÕo G|QHPL
JQ RODQ YH D\QÕ NWOHOL ELU VLVWHPLQ 6FKZDU]VFKLOG NULWHUL\OH KHVDSODQDQ HYULPL
yle
NDUúÕODúWÕUÕODELOLU
Konvektif IÕUODWPDVRQXoODUÕùHNLO¶GDYHULOPLúWLU
Konvektif
M \ROGDúD DNWDUÕOÕU %X
MDNWDUÕOÕU.WOHDNWDUÕPÕQÕQEDúODPDVÕQGDQ
IÕUODWPD GXUXPXQGD KÕ]OÕ NWOH DNWDUÕP HYUHVL VUHVLQFH \DNODúÕN HYUH\L\DYDúELUNWOHDNWDUÕPHYUHVLL]OHUYHEXHYUHGHGH
6
\DNODúÕN \ÕO VRQUDNL EHOLUOL ELU DQGD RULMLQDO RODUDN \ROGDú ELOHúHQ RODQ \ÕOGÕ] RULMLQDO RODUDN EDú
ELOHúHQ RODQ \ÕOGÕ]Õ JHoHUHN VLVWHPLQ GDKD HYULPOHúPLú ELOHúHQL KDOLQH JHOLU 5RFKH OREXQX GROGXUXU
NHQGLVLQLQ $ GXUXPX NWOH DNWDUÕPÕQÕ EDúODWÕU YH E|\OHFH ELU GH÷HQ VLVWHP RUWD\D oÕNDU 7HUVLQH NWOH
DNWDUÕPÕEDúODGÕ÷ÕQGDRULMLQDOEDú \ÕOGÕ]ÕQÕúÕWPDVÕQRUPDONWOHND\EHGHQELU \ÕOGÕ]LoLQRODQODD\QÕúHNLOGH
6
GúHU 'H÷PH HYUHVL \DNODúÕN RODUDN \ÕO VUHU 6LVWHP \DNODúÕN RODUDN M ND\EHGHU <ROGDúÕQ
da sistem,
PHUNH]L KLGURMHQ \DQPDVÕQÕQ VRQXQGD GH÷PH ER]XOXU YH % GXUXPX NWOH DNWDUÕPÕ EDúODU 6RQXQ
PHUNH]LKLGURMHQPLNWDUÕ M
olan, 6.37 MNWOHOLELUDQDNRO\ÕOGÕ]ÕLOHKHO\XP\DNPD\DEDúODPÕúRODQ
MNWOHOLELU\ÕOGÕ]DVDKLSROXU
34
ùHNLO <DNÕQ oLIW VLVWHPOHULQ $ % YH & GXUXPODUÕQD LOLúNLQ DOW OLPLW G|QHPOHUL JQ ELULPL
ND\EÕ YH RUWDúLGGHWWHNL
nde). Düz çizgiler, kütle
konvektif IÕUODWPDLOH\DSÕODQ KHVDSODPDODUÕQ'RRP VRQXFXQX J|VWHUPHNWHLNHQ NHVLNOL
çizgi, B durumu, Schwarzschild merkezi için (Vanbeveren, 1980) limit dönemleri göstermektedir.
+ 8 M oLIW VLVWHPLQLQ EDú YH \ROGDú ELOHúHQLQLQ HYULP \ROODUÕ
(Sybesma, 1987). .HVLNVL] oL]JLOHU D\UÕN HYUHOHUL NHVLNOL oL]JLOHU LVH EDú \ÕOGÕ]GDQ \ROGDúD NWOH DNWDUÕP HYUHOHULQL
göstermektedir; kareler tersine kütlHDNWDUÕPGXUXPXQX\DQL\ROGDúÕQNWOHND\EHGHQELOHúHQROGX÷XGXUXPXYHoJHQOHU
ùHNLO %DúODQJÕo G|QHPL JQ RODQ ELU 0
GHGH÷PHHYUHOHULQLJ|VWHUPHNWHGLU
2UWDYHGúNNWOHOLoLIWVLVWHPWUOHUL
$/*2/6ø67(0/(5ø
Algol-VLVWHPOHUL\DUÕD\UÕNVGVLVWHPOHUROXS5RFKHOREXQXGROGXUPXúRODQNoNNWOHOLELOHúHQ\ROGDúÕQD
NWOHDNWDUPDNWDGÕU.oNELOHúHQEDúODQJÕoWDGDKDE\NNWOHOLROXSGDKDKÕ]OÕHYULPOHúPLúRODQGÕU Kütle
RUDQÕq = Ml / Mg ¶QLQGD÷ÕOÕPÕWHNPDNVLPXPOXROXSPDNVLPXP–FLYDUÕQGDGÕU Kütle oranÕGD÷ÕOÕPÕ
ùHNLO¶GHYHULOPLúWLU.
'DKDE\NNWOHOLELOHúHQOHULQNWOHOHUL
– 4 MFLYDUÕQGDELU]LUYH\HVDKLSROXS\Õ÷ÕOPDNoNNWOHOHUH
mleri
GR÷UX GDKD ID]ODGÕU NWOH DNWDUDQ VLVWHPOHUGHNL E\N NWOHOL ELOHúHQOHULQ NWOHOHUL D\UÕN DQDNRO VLVWH
için olandan daha küçüktür.
M DOÕFÕQÕQ
ise 5.60 M¶GLU 2UWDODPD G|QHP JQ YH RUWDODPD NWOH RUDQÕ YHULFLDOÕFÕ ¶GLU .WOH RUDQODUÕQÕQ
bir IRQNVL\RQX RODUDN WRSODP NWOH YH DoÕVDO PRPHQWXP ]HULQH \DSÕODQ ELU LQFHOHPH D\UÕN VLVWHPOHU LoLQ
NWOHOHULOHDoÕVDOPRPHQWXPODUÕQNWOHRUDQÕQGDQED÷ÕPVÕ]ROGX÷XQXRUWD\DNR\PXúWXU+DOEXNL\DUÕ-D\UÕN
0XKWHPHOHQ NWOH RUDQÕ LOH G|QHP LOLúNLOL GH÷LOGLU $OJRO YHULFLQLQ RUWDODPD NWOHVL \DNODúÕN VLVWHPOHU GXUXPXQGD EX SDUDPHWUHOHU DUDVÕQGD NWOH DNWDUÕP HYUHVL VUHVLQFH WRSODP NWOHQLQ D]DOGÕ÷ÕQD
-
LúDUHW HGHQ ELU LOLúNL YDUGÕU .oN NWOH RUDQOÕ \DUÕ D\UÕN VLVWHPOHULQGDKD LOHUL HYULP DúDPDVÕQGD ROGXNODUÕ
-
r. Son kütle (Mf),
NDEXO HGLOHELOLU <DUÕ D\UÕN VLVWHPOHU KDOHQ NWOH DNWDUÕP DúDPDVÕQGD RODQ VLVWHPOHUGL
EDúODQJÕoNWOHVL
MiNXOODQÕODUDNDúD÷ÕGDNLúHNLOGHEXOXQDELOLU'H*UHYH
M f = M i /(9.645 − 0.342M i ),
M f = 0.04M i
1.62
2 M< M < 11 M için
(3.11)
11 M< M < 30 M için.
(3.12)
%X NXUDPVDO LOLúNLOHU LOH J|]OHPOHULQ NDUúÕODúWÕUPDVÕ J|]OHQHQ \ÕOGÕ]ODUÕQ NWOHOHULQLQ GDKD \DUÕVÕQÕ
DNWDUPDODUÕJHUHNWL÷LQLRUWD\D NR\PDNWDGÕU%XQHGHQOH$OJROOHUNWOHDNWDUÕPHYUHVLQLQVRQXQGDGH÷LOOHUGLU
35
Konvektif
IÕUODWPD YHULOHQ ELU
M için, son kütlenin daha büyük olmDVÕ YH NWOH GH÷LúLP HYUHVLQGH YHULFLQLQ
ÕúÕWPDVÕQÕQ6FKZDU]VFKLOGGXUXPXLoLQEHNOHQHQGHQGDKDE\NROPDVÕúHNOLQGHELUHWNL\HVDKLSWLU0HUNH]L
IÕUODWPHoHNLUGHNOHUL6FKZDU]VFKLOGoHNLUGHNOHULQGHQE\NWUYHEXQHGHQOHYHULOHQELU
MfGH÷HULLoLQGDKa
küçük bir MiGH÷HULYHGDKDE\NELUEDúODQJÕoNWOHRUDQÕGH÷HULJHUHNLU
q = Ml / Mg¶QLQ $OJRO VLVWHPLQH LOLúNLQ GD÷ÕOÕPÕ 1RNWDODU q¶QXQ DUDOÕNODUÕ\OD
. φ (q) fonksiyonu, belli bir q GH÷HULQLQ ± 0 DUDOÕ÷Õ LoHULVLQGHNL RUWDODPD NWOH RUDQÕQD VDKLS RODQ
sistemlerin kesrini göstermektedir (Giuricin ve Mordirossian, 1981).
ùHNLO .WOH RUDQÕ
LúDUHWOHQPLúWLU
q = 0.5 ve P = 2 gün için, konvektif
1987):
IÕUODWPD GXUXPXQGD VRQ NWOHOHU úX úHNLOGH LIDGH HGLOHELOLU 6\EHVPD
M f = M i1.41 − 6.16
$GXUXPXNDOÕQWÕODUÕLoLQ
M f = M i1.72 − 21.92
%GXUXPXNDOÕQWÕODUYH
(16.13)
Mi > 6 M için.
(16.14)
%LULODJQDUDVÕQGDNLG|QHPOHULQoR÷XVHoLPHWNLVLQGHQGROD\ÕKDWDOÕGÕU']HOWPHVRQUDVÕQGDG|QHPOHULQ
D\UÕNVLVWHPOHUHQD]DUDQGDKDNoN ROGX÷XEXOXQPXúWXU%XLVHNWOHGH÷LúLPLVÕUDVÕQGDDoÕVDOPRPHQWXP
ND\EÕ ROGX÷XQD LúDUHW HGHU
GeUoHNWHQ GH GHQNOHPLQH J|UH D LoLQ E\N ELU GH÷HU NXOODQÕOPDGÕNoD
G|QHPLQDUWPDVÕJHUHNLU
n olan bir 5 M + 4 M VLVWHPLQGHQEDúOD\DUDNNWOHQLQVRQNWOHQLQ
β DoÕVDO
PRPHQWXPXQNRUXQGX÷XYHNRUXQPDGÕ÷Õα
GXUXPODUDLOLúNLQVRQdönemi hHVDSOD\ÕQÕ]
3UREOHP%DúODQJÕoG|QHPLJ
¶Õ ROGX÷X ELU HYUH LoLQ NRUXQXPOX NWOH DNWDUÕP NRUXQXPVX] NWOH DNWDUÕP 13 –JQDUDVÕQGDNLX]XQG|QHPOL $OJROVLVWHPOHU GHNHúIHGLOPLúWLURQODU:6HUSHQWLV \ÕOGÕ]ODUÕRODUDN
VÕQÕIODQGÕUÕOÕUODU%WQ:6HUSHQWLV\ÕOGÕ]ODUÕRSWLNWD\IODUÕQGDVDOPDoL]JLOHULROXúWXUDPD\DFDNNDGDUVR÷XN
RODQ ELU \ÕOGÕ]ÕQ RSWLN VUHNOLOL÷L LOH X\XPOX RODQ YH EX QHGHQOH GH VÕFDN ELU ND\QDN ROGX÷XQD LúDUHW HGHQ
salma çizgileri (Balmer çizgileri) gösterirler. ³6HUSHQWLGH´ WD\IODUÕ
RUWDN NDUDNWHULVWLN RODUDN 89¶GH
gösterirler. 2SWLN ELOHúHQler
ve NWOH ND]DQDQ ELU \Õ÷ÕúPD GLVNLQH VDKLS VÕFDN ELOHúHQLQLQ
Böylesi sistemlere örnek olarak Beta Lyrae, SX Cas, W Ser
\DNODúÕN .¶OÕN VÕFDN ELU VUHNOLOLN ]HULQH ELQPLú JoO VDOPD oL]JLOHUL
GDKD VR÷XNWXU %X VLVWHPOHU ELU VR÷XN \ÕOGÕ]
ROXúWXUGXNODUÕ ELU PRGHO LOH DoÕNODQÕUODU
verilebilir.
SalPDoL]JLOHULPXKWHPHOHQPDGGHDNÕPÕYH\Õ÷ÕúPDVÕLOHLOLúNLOLGLUiyonizasyon da,HQSODVÕRODUDN,VÕFDNELU
OHNH\DGDGLVNLQLoNÕVPÕQGDNLVÕFDN ELUE|OJHLOHLOLúNLOLGLU 6ÕFDNELOHúHQL oHYUHOH\HQPDGGH \ÕOGÕ]NHQGLVL
\ROGDúÕQ DUNDVÕQGD J|UOPH] ROGX÷XQGD ELOH WDPDPHQ |UWOPH] YH NDEXN oL]JLOHULQLQ EHOLUOL ELOHúHQOHUL
VUHNOL KLGURMHQ ÕúÕQÕPÕQÕQ JHUL ]HPLQLQGH J|UOU RODUDN NDOÕUODU 'DKD VRQUDODUÕ NÕVD G|QHPOL $OJRO
36
VLVWHPOHULQ GH EHQ]HU WD\IVDO |]HOOLNOHU J|VWHUGL÷L EXOXQGX YH EX QHGHQOH JoO DNWL
vite, muhtemelen tüm
Algol sistemlerde mevcuttur.
257$.<$ù$0/,<,/',=/$5
2UWDN \DúDPOÕ \ÕOGÕ]ODU WD\IODUÕQGD JoO NÕUPÕ]Õ VUHNOLOLN LOH ]D\ÕI PDYL VUHNOLOL÷H VDKLS NDUDNWHULVWLN
, uzun dönHPOL \ÕOGÕ]ODUGÕU 2UWDN \DúDPOÕ \ÕOGÕ]ODU
dönemli olarak patlamalar gösterirler. ,úÕQÕP WD\IÕ ROGXNoD JDULSWLU YH X]XQ VUH DQODúÕODPDPÕúWÕU )RWR÷UDI
VR÷XUPD |]HOOLNOHUL YH SDUODN VDOPD oL]JLOHUL EXOXQDQ
SODNODUÕQGDNoNVÕFDNELUELOHúHQLQYDUOÕ÷ÕPRU|WHGHNHQGLQLHOHYHUPLúWLU
Örnek sistemler: 964 gün dönemli HBV 475, 760 gün dönemli Z And, V1016 CYG, RR Tel, RX Pup, CI
Cyg’dir. <DNODúÕN RODUDN FLYDUÕQGD RUWDN \DúDPOÕ \ÕOGÕ] ELOLQPHNWe ve bunlar \DúOÕ GLVN |EH÷LQH DLW
gözükmektedirler. Gözlenen M-WU |]HOOLNOHU JHUL WU ELU \ÕOGÕ] GHY LOH LOLúNLOHQGLULOHELOLUNHQ PDYL
süreklilik ile salma çizgileri ancak VÕFDNELU\ROGDúWDQND\QDNODQÕ\RUROPDOÕGÕU
'L÷HU WDUDIWDQ NWOH YH NLQHWLN PRPHQWXP ND\EÕQÕQ RUDQÕ KDNNÕQGD KLo ELU ELOJL\H VDKLS ROPDGÕ÷ÕPÕ]GDQ
GROD\Õ J|]OHQHQ |]HOOLNOHU LOH EDúODQJÕoWDNL JD] EXOXWODUÕQÕQ EDúODQJÕo NRúÕXOODUÕQÕ LOLúNLOHQGLULUNHQ oRN
GLNNDWOL ROXQPDOÕGÕU 'DKDVÕ PDQ\HWLN DODQODUÕQ \ÕOGÕ] G|QPHVL YH VLVWHPLQ HYULPL ]HULQH RODQ HWNLVL JLEL
GL÷HUIDNW|UOHUGXUXPXGDKDGDNDUPDúÕNODúWÕUPDNWDGÕU
16.5.3. .$7$./ø60ø.'(öøù(NLER
Kataklismik GH÷LúHQOHULQ genel özellikleri
, genellikle, GHMHQHUH ELU \ÕOGÕ] \DQL ELU EH\D] FFH LOH kimi zaman ELU NÕUPÕ]Õ GHY
bazen bir cüce ve bazen de ELU GHMHQHUH \ÕOGÕ]GDQ ROXúPXú çift sistemOHU ROGXNODUÕ NDEXO HGLOLU Kataklismik
.DWDNOLVPLN GH÷LúHQOHULQ
GH÷LúHQOHULQVWDQGDUWPRGHOLQGH\ROGDúELUDQDNRO\ÕOGÕ]Õ\DQLKLGURMHQ\DNDQELU\ÕOGÕ]GÕU
<DNODúÕN VLVWHPLQ \|UQJH G|QHPL ELOLQPHNWHGLU G|QHPOHU LOH VDDW DUDVÕQGD GH÷LúPHNWHGLU
<ROGDúÕQWD\IÕQÕQELOLQGL÷LVLVWHPOHUGHEX*.\D
da M türündendir.<ROGDúÕQELUFFHROGX÷XGXUXPODUGD o,
KLGURMHQ\DNDQELUDQDNRO\ÕOGÕ]ÕGÕU'L÷HUGXUXPODUGD|]HOOLNOHVDDWLQDOWÕQGDNLG|QHPOHUHVDKLSRODQODUGD
\ROGDú GR÷UXGDQ J|]OHQHPH] YH RQODUÕQ DQDNRO \ÕOGÕ]Õ ROGX÷XQGDQ HPLQ ROXQDPD] <ROGDú
, Roche lobunu
,
GROGXUPXúWXU YHEXQHGHQOH GHEH\D]FFH\H GR÷UX PDGGH DNÕúÕ YDUGÕU0DQ\HWLN DODQÕQ\RNOX÷XQGD GúHQ
PDGGH EDú \ÕOGÕ]ÕQ HWUDIÕQGD ELU \Õ÷ÕúPD GLVNL ROXúWXUXU 0DGGH DNÕPÕQÕQ \Õ÷ÕúPD GLVNLQH oDUSWÕ÷Õ \HU
“parlak leke” dir. (÷HU JoO ELU PDnyetik alan mevcutsa, alan çizgileri, GúHQ PDGGH\L ELOHúHQLQ PDQ\HWLN
XoODNODUÕQD GR÷UX \|QOHQGLULU 'LNLQH KÕ] |OoPOHUL PHYFXW RODQODU DUDVÕQGD ELU LVWLVQD RODUDN (0 &\J
,
GÕúÕQGDNLVLVWHPOHULQKHSVLQGH EH\D]FFHEDú\ÕOGÕ]ÕVLVWHPLQE\NNWOHOLELOHú
enidir.
.DWDNOLVPLNGH÷LúHQOHULQ ELUoRNWUYDUGÕU
Novalar: ELU oLIW VLVWHPLQ GHMHQHUH EDú \ÕOGÕ]ÕQÕQ VÕFDN ]DUIÕQGD hidrojenin ani
RODUDN ELUOHúPHVL +Õ]OÕ
\NVHOPHYH\DYDúGúPHOLoRNE\NELUSDWODPDROXU
Tekrarlayan novalar: novalardakini andÕUDQ ROJXODUGÕU IDNDW JHQOLNOHU GDKD GúNWU $UGÕúÕN SDWODPDODU
DUDVÕQGDNLVUH–\ÕOGÕU
Cüce novalar:
<Õ÷ÕúDQ PDGGH PLNWDUÕQÕQ DQLGHQ \NVHOPHVLQH ED÷OÕ RODUDN \Õ÷ÕúPD GLVNLQLQ SDUODNOÕ÷ÕQÕQ
DQLGHQ\NVHOPHVL&FHQRYDODUVÕNYHNoNSDWODPDO
ar gösterirler.
1RYD EHQ]HUOHUL SDWODPD VÕUDVÕQGD FFH QRYDODUD \D GD SDWODPD |QFHVL YH\H VRQUDVÕQGD QRYDODUD EHQ]HUOHU
8;8UVDH0DMDULV\ÕOGÕ]ODUÕ
0DQ\HWLN \Õ÷ÕúDQ \ÕOGÕ]ODU ÕúÕNODUÕ GDLUHVHO XoODúPÕúWÕU 'H÷LúHUHN D\ODU YH\D \ÕOODU VUHQ \NVHN Y
e alçak
düzeyler gösterirler.
.DWDNOLVPLNGH÷LúHQOHULQ
yörünge dönemleri
<DNODúÕN VLVWHPLQ G|QHPL ELOLQPHNWHGLU G|QHPOHU GDNLND := 6JH LOH VDDW GDNLND DUDVÕQGD
n bir tekrarlayan nova ve GK
Per, 1.99 gün dönemli bir nova. '|QHP ERúOX÷X \DQL YH VDDW DUDOÕ÷ÕQGD KLo ELU G|QHPLQ J|]OHQHPHPLú
GH÷LúLUøNL LVWLVQD ELOLQL\RU 7&RURQDH %RUHDOLV \|UQJHG|QHPL JQ ROD
37
ROPDVÕ YH G|QHP GD÷ÕOÕP H÷ULVLQLQ GDNLNDQÕQ DOWÕQGD NHVNLQ ELU úHNLOGH VRQD HUPHVL ùHNLO GúQGUFGU
ùHNLO.DWDNOLVPLNGH÷LúQOHULQ\|UQJHG|QHPOHULQLQKLVWRJUDPÕ5LWWHU
+HPG|QHPNHVLQWLVLOLPLWLQLQKHPGHG|QHPERúOX÷XQXQELUJHFHOLNJ|]OHPoHYULPLQLDúPDPDVÕQHGHQL\OH
bX|]HOOLNOHU\|UQJHVHOG|QHPOLOL÷LQEHOLUOHQHELOLUOL÷Lterminolojisiyle DoÕNODQDPD]
'|QHP GD÷ÕOÕPÕQÕQ NDUDNWHULVWLNOHULQL DoÕNOD\DELOPHN LoLQ J|]OHQHQ DUDOÕNODUGD GH÷HQ VLVWHP KDOLQH JHOHQ
bir kaç çiftin ROXúWX÷XQXYHHWNLOHúHQVLVWHPOHULQ\DEXG|QHPDUDOÕNODUÕQDhiç HYULPOHúHPHGLNOHULQL
ZAMS kütlelerinin alt limitinin (0.085 M)
birazDOWÕQGD bir kütleye sahip, hidrojence-]HQJLQGHMHQHUHELU \ROGDúDNDUúÕOÕN JHOHQG|QHP GDNLNDGÕU 30
GDNLND FLYDUÕQGDNLE|\OHVLQHNoN G|QHPOHULQEXOXQPDPÕúROPDVÕ JHUoH÷L oLIWOHULQ HYULPLnin (kataklismik
GH÷LúHQOHU olmadan önce), KLGURMHQ \DQPDVÕ LoLQ JHUHNOL RODQ PLQLPXP NWOHden daha büyük bir kütleye
\DOQÕ]FD
\D GD oRN KÕ]OÕ HYULPOHúWLNOHULQL NDEXO HWPHN JHUHNPHNWHGLU
VDKLS\ROGDú\ÕOGÕ]ÕQJHUHNWL÷LDQODPÕQDJHOLU
.WOHDNWDUÕPÕ
KDWDNOLVPLN
GH÷LúHQOHUGHNL \ROGDú ELOHúHQO
er kütle kaybedenlerdir. YÕ÷ÕúPD
GLVNLQLQ VÕFDN OHNHQLQ YH
WLWUHPHOHULQYDUOÕ÷ÕNWOHND\EÕQÕQGR÷UXGDQNDQÕWODUÕGÕU$\UÕFDFFHQRYDYHQRYDSDWODPDODUÕQÕQJHQHOOLNOH
NWOHDNWDUÕPÕQÕQEHOLUWLVLROGX÷XGúQOU*HUoHNWHQGHELUFFHQRYDSDWODPDVÕQÕQPXKWHPHOHQ\ROGDúÕQ
NWOH DNWDUPDVÕQGDNL NDUDUVÕ]OÕNODUÕQ \D GD \Õ÷ÕúPD GLVNLQLQ NHQGL OLPLW oHYULP NDUDUVÕ]OÕNODUÕQÕQ ELU VRQXFX
RODUDN \Õ÷ÕúPD GLVNLQLQ SDUODPDVÕQÕQ ELU VRQXFX RODUDN RUWD\D oÕNWÕ÷Õ NRQXVXQGDNL NDQÕWODU ROGXNoD
JHOLúPLúWLU $NWDUÕODQ
.WOHDNWDUÕPKÕ]Õ
madde, yROGDúÕQ NDEXO HGLOHQ HYULP durumuyla uyumlu olarak, hidrojence zengindir.
ile 10-8.5 M\ÕO-1 DUDVÕQGDGÕU
-10.5
.WOH DNWDUÕPÕQÕ NRQWURO HGHQ PHNDQL]PD oHNLPVHO ÕúÕQÕP \D GD PDQ\HWLN IUHQOHPHGLU EN] .HVLP Çekimsel ÕúÕQÕP NDWDNOLVPLN GH÷LúHQOHU LoLQ EDVNÕQ ELU HYULPVHO PHNDQL]PD haline gelebilir. Gözlemler,
JUDYLWDV\RQHO ÕúÕQÕPÕQ WHN EDúÕQD NWOH DNWDUÕPÕQÕ NRQWURO HWPH\H her zaman \HWHUOL RODPD\DFD÷ÕQÕ
göstermektedir. 2ODVÕ GL÷HU ELU PHNDQL]PD ise \ROGDúWDQ JHOHQ PDQ\HWLN RODUDN oLIWOHúPLú ELU \ÕOGÕ]
U]JDUÕQÕQ QHGHQ RODFD÷Õ PDQ\HWLN frenlemedir (bkz. Kesim 18.5.2). ³(QJHOHQPLú PDQ\HWLN IUHQOHPH´
modeli, G|QHPERúOX÷XQXQ]HULQGHELUNDo-9 M\ÕO-1GH÷HULQGHki\NVHNNWOHND\ÕSKÕ]ODUÕQÕve dönem
-10
ERúOX÷XQun aOWÕQGDise 10
M\ÕO-1GH÷HULQGHkiGúNNWOHND\ÕSKÕ]ODUÕQÕWDKPLQHWPHNWHGLU
1 – 2 MNWOHOLo|NPúELUELOHúHQLOHMFLYDUÕQGDNLGúNNWOHOLELUELOHúHQGHQROXúQXúG|QHPOHUL
VDDW \D GDGDKDNoN RODQ \DNÕQ oLIWVLVWHPOHULQHYULPLoHNLPVHOÕúÕQÕPÕQ VHEHEROGX÷X yörüngeGDUDOPDVÕ
38
VRQXFXQGDRUWD\DoÕNDQNWOHDNWDUÕPÕLOHEHOLUOHQLU.WOHND\ÕSKÕ]ÕNDWDNOLVPLNGH÷LúHQOHUOHX\XPOXRODUDN
\DNODúÕN -10
M \ÕO-1 mertebesindedir. dRN NÕVD \|UQJH G|QHPOHULQGH .HOYLQ-Helmholtz zaman öloH÷L
oHNLPVHO ÕúÕQÕP ]DPDQ |OoH÷LQL DúWÕ÷Õ LoLQ \ROGDú ÕVÕVDO GHQJHGH GH÷LOGLU %X DúDPDGD \ROGDú GHMHQHUH
oldukça 60 – 75 GDNLNDOÕN PLQLPXP ELU yörünge dönemine eULúLOLU %X PLQLPXP G|QHP NDWDNOLVPLN
GH÷LúHQOHULoLQ\|UQJHG|QHPLGD÷ÕOÕPH÷ULVLQGHNLNÕVDG|QHPDQLNHVLQWLVLLOHHúWXWXODELOLU
:80D6ø67(0/(5
'H÷HQoLIWOHU KHULNLVLGH5RFKHOREXQXWDúPÕú YH VÕ÷ELURUWDN]DUIJHOLúWLUPLúRODQELUELULQHoRN \DNÕQ LNL
\ÕOGÕ]GDQROXúXUODU%XNXUDPVDOWDQÕPODPDGDQKDUHNHWOHJ|]OHPVHOVRQXoODUDXODúÕODELOLU
-
GDPEÕOEHQ]HULúHNLOOHULRQODUÕQoR÷XQXQ|UWHQRODFD÷ÕQDLúDUHWHGHU
JHUHN L]GúPVHO DODQÕQ GH÷LúLPLQLQ JHUHNVH \]H\ SDUODNOÕN GH÷LúLPLQLQ NHQDU NDUDUPDVÕ oHNLP
Bunlar, ön tür
özellikleridir. :80D \ÕOGÕ]ODUÕ oRN \D\JÕQ olup,
NDUDUPDVÕ VUHNOL ROPDVÕ QHGHQL\OH WXWXOPDODU DUDVÕQGDNL ÕúÕN GH÷LúLPOHUL VUHNOL ROPDOÕGÕU
GH÷HQ oLIWOHU LOH :8 0DMRULV \ÕOGÕ]ODUÕQÕQ NDUDNWHULVWLN
JQHúNRPúXOX÷XQGDNLWP|UWHQoLIWOHULQ¶LQL\DGDEWQ)YH*WU\ÕOGÕ]ODUÕQ\DNODúÕNRODUDN¶LQL
WHúNL
l ederler.
WUMa sistemleri için, gözlemsel özelliklerin WPQ VD÷OD\DQ ELU GH÷HQ modeli yapmak oldukça zordur.
%D]Õ :80D VLVWHPOHUL QNOHHU ]DPDQ |OoH÷LQGHQ GDKD KÕ]OÕ ELU ]DPDQ |OoH÷LQGH HYULPOHúLUOHU YH ÕVÕVDO
WUMa sistHPOHULQLQ\DúODUÕROGXNoDEHOLUVL]ROXSWDKPLQOHU5 107 - 5 109
mektedir. 'H÷HQ VLVWHPOHULQ RULMLQL DQDNRO |QFHVL ELUOHúPH RODUDN veya DoÕVDO PRPHQWXP
GHQJHGHQD\UÕOPDPH\GDQDJHOLU
\ÕO DUDVÕQGD GH÷Lú
ND\EÕ \D
da ELOHúHQOHUGHQ ELULQLQ JHQLúOHPHVL QHGHQL\OH GH÷HQ VLVWHPOHU GXUXPXQD HYULPOHúPH
RODUDN
DoÕNODQDELOLU
'H÷HQ VLVWHPOHULQ VRQX ELOHúHQOHULQ PXKWHPHOHQ RUWDN ELU ]DUI LoHULVLQGH oRN KÕ]OÕ G|QHQ WHN ELU \ÕOGÕ]
ROXúWXUDFDNúHNLOGHELUOHúPHOHULRODELOLU
Son,ELUD\UÕN\DGD\DUÕ-D\UÕNGXUXPGDRODELOLU
Dönemler 0.22 ile 0.62 gQDUDVÕQGDGH÷LúLUWD\IWUOHULLVH)¶GDQ.¶DNDGDUGÕU2UWDODPDNWOHRUDQÕ
olup alt limiti 0.07 ve üst limiti 0.87’dir. Toplam kütle 1- 2 M (0.9 M ile 2.3 M DUDVÕQGD FLYDUÕQGDGÕU
,úÕN H÷ULOHUL HúLW GHULQOLNWH PLQLPXPODUD VDKLSWLU ,úÕN H÷ULlerinin analizlerinden, WUMa sistemlerinin
ELOHúHQlerLQLQ \DNÕQ VÕFDNOÕNODUD VDKLS ROGXNODUÕ DQODúÕOÕU %XQXQOD ELUOLNWH ELOHúHQOHUGHQ ELULQGH OHNH \D GD
OHNHOHULQROXSROPDPDVÕQDED÷OÕRODUDNELOHúHQOHUDUDVÕQGDSDUODNOÕN YH VÕFDNOÕNIDUNOÕOÕNODUÕRUWD\DoÕNDELOLU
.XUDPFÕODU DoÕVÕQGDQ HQ |QHPOL |]HOOLN :80D VLVWHPOHULQLQ ROGXNoD GúN NWOHOL ROPDODUÕ YH KLo ELULQGH
ELOHúHQOHULQ
NWOHOHULQLQ
HúLW
ROPDPDVÕGÕU
Kütle –
ÕúÕWPD
ED÷ÕQWÕVÕ
DOÕúÕOPDGÕNWÕU
%D]Õ
VLVWHPOHU
HYULPOHúPHPLúJ|]NPHNWHGLUOHU
Kuramsal yorumlama
6ÕFDNOÕNODUÕQKHPHQKHPHQHúLWROPDVÕQHGHQL\OH
L1 R1
=
L2 R2
2
(16.15)
yazabiliriz, burada L1 ve L2 ELOHúHQOHULQ J|]OHQHQ \]H\ ÕúÕWPDODUÕ YH R1 ve R2 LVH RQODUÕQ HúSRWDQVL\HO
\]H\OHULQLQ \DUÕoDSODUÕGÕU 6LVWHP GH÷HQ ROGX÷XQGDQ KHU LNL ELOHúHQ HúLW SRWDQVL\HOH VDKLSWLU EX DúD÷ÕGDNL
gibi bir kütle –\DUÕoDSED÷ÕQWÕVÕ\ODLIDGHHGLOHELOLU
R1 M 1
=
R2 M 2
β
.
(16.16)
Kopal (1978), io5RFKHOREODUÕQGDβ
2
M
L1 R1
= 1
=
L2 R2
M2
–
2β
≈
ROGX÷XQXEXOPXúWXU
Bu da, 2β ≈1 olmDVÕQHGHQL\OH
M1
M2
(16.17)
–
úHNOLQGHELUNWOH ÕúÕWPDED÷ÕQWÕVÕYHULU +DOEXNLJQHúJLELELUDQDNRO\ÕOGÕ]ÕLoLQNWOH ÕúÕWPDED÷ÕQWÕVÕ
39
L1 M 1
=
L2 M 2
4
(16.18)
úHNOLQGHGLU
enlerin merNH]L NRúXOODUÕ, RQODUÕQ GH÷HQ ROPDODUÕ JHUoH÷LQGHQ KDUHNHW HGHUHN normal kütle – ÕúÕWPD
Lnuc için daha fazla JHoHUOL RODPD\DFD÷ÕQÕ NDEXO HGHUHN GH÷LúWLULOHPH] Yüzey
VÕQÕU NRúXOODUÕQGDNL GH÷LúLNOLNOHU PHUNH]L EDVÕQo YH VÕFDNOÕN ]HULQGH oRN NoN ELU HWNL GR÷XUXU Bu
QHGHQOH KHU LNL \ÕOGÕ]ÕQ ÕúÕWPDODUÕQÕ SD\ODúWÕNODUÕ VRQXFXQD YDUÕUÕ] EDú \ÕOGÕ] ∆L RUDQÕQGD ELU HQHUML\L
%LOHú
ED÷ÕQWÕVÕQÕQ QNOHHU ÕúÕWPD
\ROGDúÕQDDNWDUÕUYHE|\OHOLNOH
L1nuc − ∆L1 L2 nuc − ∆L2
=
M1
M2
(16.19)
úHNOLQGHELUGHQJHGXUXPXNXUXOPXúROXU
Muhtemelen bu enerji,RUWDN]DUIÕQLo5RFKHOREXQXQ]HULQGH\ÕOGÕ]ODUDUDVÕQGDL\LELUGH÷PHQLQROGX÷XELU
yerde üretilmektedir. Ortak zarf muhtemelen tamamen konvektiftir.
üzerine keyfi bir ∆L HQHUMLVL HNOHQLUNHQ EDú \ÕOGÕ]ÕQ
r. ∆L enerjisi, sistem dengede olacak YH GH÷HQ kalacak úHNLOGH VHoLOLU Bu
GúQFHOHUOH PRGHOOHU \DSÕODELOLU IDNDW =$06 modelleri için yöntem geçersizdir. Gerçekte, WUMA
sistemleri için kütle – ÕúÕWPD ED÷ÕQWÕVÕ β ≈1 üssünü gerektirirken, ZAMS modelleri için, 2β = 4 üssü
gereklidir. Bu ise ancak M1 = M1NRúXOX\ODVD÷ODQÕUDQFDNEXGXUXPJ|]OHPOHULOHoHOLúLU.XLSHUSDUDGRNVX
'H÷HQ oLIWOHULQ oR÷X VD\ÕVDO PRGHOL ROJXVDOGÕU \ROGDú
ÕúÕWPDVÕ D\QÕ RUDQGD D]DOWÕOÕ
sistemlerin, ELU ÕVÕVDO ]DPDQ |OoH÷LQGH HYULPOHúPLú ROGXNODUÕ ve dengede
olmaGÕNODUÕ LOHUL VUOPúWU %LU ÕVÕVDO ]DPDQ |OoH÷LQGHki HYULPOHúPHnin GH÷PHQLQ RUWDGDQ NDONPDVÕQD
neden olaca÷Õ DQODúÕOPDNWDGÕU %X JHUoH÷L DoÕNODPDN LoLQ oHYULPVHO GDYUDQÕúODU |QHUHQ PRGHOOHU “ÕVÕVDl
durulma” PRGHOOHUL RODUDN DGODQGÕUÕOÕUODU 2OD\ODU ]LQFLUL ùHNLO YH ùHNLO ¶WH J|VWHULOPLúWLU
%LU oRN WDUWÕúPDGD GH÷HQ
6HQHU\RúXúHNLOGHGLU
ùHNLO ¶GHNL NHVLNOL NDOÕQ oL]JL GH÷PH NRúXOXQX J|VWHUPHNWHGLU 'LQDPLN GHQJH GXUXPXQGD KHU LNL
\ÕOGÕ] GD EX oL]JL ]HULQGH EXOXQPDOÕGÕU .HVLNOL LQFH oL]JL WHN \ÕOGÕ]ODU LoLQ =$06 NRúXOXQX
göstermektedir. 3QRNWDVÕQGDNL EDú \ÕOGÕ]ÕQ, ÕVÕVDOYHGLQDPLNGHQJHGH ROGX÷XQXYDUVD\DOÕP GLQDPLNGHQJH
\ROGDúÕ6′¶GHROPD\D]RUODU2ÕVÕVDOGHQJHGHROPDGÕ÷ÕQGDQ6¶GHNLGHQJH\HGR÷UXJHQLúOHPH\HoDOÕúÕU
ùHNLO ,VÕVDO GXUXOPD PRGHOL .DOÕQ NHVLNOL oL]JL GH÷PH NRúXOXQX WHPVLO HWPHNWHGLU øQFH NHVLNOL oL]JL WHN \ÕOGÕ]ODU
LoLQ =$06 NRúXOXQXJ|VWHUPHNWHGLU%Dú \ÕOGÕ] ÕVÕVDOYH 3FLQVLQGHQ GLQDPLN GHQJHGH EDúOÕ\RU GLQDPLNGHQJH \ROGDúÕ
S′¶GHROPD\D]RUODU2ÕVÕVDOGHQJHGHROPDGÕ÷ÕQGDQÕVÕVDOGHQJH\HXODúPDNLoLQ6¶\HGR÷UXJHQLúOHU2UWD\DoÕNDQKDILI
JHQLúOHPHEDú\ÕOGÕ]DGR÷UXPDGGHDNWDUÕPÕQDQHGHQROXU%LOHúHQOHUDUDVÕQGDNLX]DNOÕNDUWDUYHGH÷PHVRQDHUHU.WOH
vH HQHUML DNWDUÕPÕ GXUXU <ROGDú E]OU EDú \ÕOGÕ] JHQLúOHU YH EDú \ÕOGÕ]Õ =$06 NRQXPXQD XODúPDVÕQGDQ |QFH 5/2)
EDúODU 'HYDPHGHPNWOH DNWDUÕPÕ E\NNWOHOL EDú\ÕOGÕ]GDQNoNNWOHOL \ROGDúDELOHúHQOHUDUDVÕQPGDNL X]DNOÕ÷ÕQ
D]DOPDVÕQDYHGH÷PHHYUHVLQLQ \HQLGHQROXúPDVÕQDQHGHQROXU'H÷PH \HQLGHQROXúXQFD\ROGDúÕVÕVDOGHQJH \DUÕoDSÕQD
XODúÕQFD\DNDGDUJHQLúOHUNWOHDNWDUÕPÕWHUVLQHG|QHUYHoHYULP\HQLGHQEDúODPÕúROXU
40
ùHNLO:80D\ÕOGÕ]ODUÕLoLQÕVÕVDOGXUXOPDPRGHOLDoÕNODPDPHWLQGHYHULOPLúWLU
+DILIoHJHQLúOHPHQHGHQL\OH EDú \ÕOGÕ]DGR÷UXNWOHDNWDUÕPÕEDúODU .RUXQXPOX NWOHDNWDUÕPÕ
durumunda,
NWOHDNWDUÕPÕ NoN NWOHOLGHQE\N NWOHOL\H ROGX÷XQGDQ ELOHúHQOHU DUDVÕQGDNLX]DNOÕN E\U YH GH÷PH
sona erer. Kütle ve eneUML DNWDUÕPÕ GXUXU <ROGDú E]OU YH \DUÕoDSÕ =$06 GH÷HULQH \DNODúÕU EDú \ÕOGÕ]
E\U YH =$06 NRQXPXQD \HUOHúPHGHQ |QFH 5/2) \HQLGHQ EDúODU 'HYDP HGHQ NWOH DNWDUÕPÕ EDú
\ÕOGÕ]ÕGDQ \ROGDúD \DQL E\N NWOHOLGHQ NoN NWOHOL\H ELOHúHQOHU DUDVÕQGDNL
yeni bir
GH÷PH GXUXPX ROXúPDVÕQD
yol açar.
a\UÕNOÕ÷ÕQ NoOPHVLQH YH
durumunda, kütle
.RQYHNWLI ]DUIOÕ NoN NWOHOL ELU \ROGDú
\Õ÷ÕúPDVÕ \DUÕoDSÕ D]DOWÕFÕ ELU HWNL\H VDKLS RODFDN YH
yeni bir GH÷PH GXUXPXQXQ ROXúPDVÕ GÕú NÕVÕPODUÕ
mELUúHNLOGHRODFDNWÕU'H÷PH\HQLGHQNXUXOXQFD
ÕúÕQÕPVDORODQELU\ROGDúGXUXPXQGDNLQHJ|UHGDKD\DYDú
\ROGDú ÕVÕVDO GHQJH \DUÕoDSÕQD XODúÕQFD\D NDGDU JHQLúOHU NWOH DNWDUÕPÕ WHUVLQH G|QHU YH ROJXODU oHYULPL
en, çevrimin D\UÕN HYUH \D GD ]D\ÕI
süresi, gözlemlerin aksine çok uzundur. .WOH DNWDUÕPÕ PXKWHPHOHQ NRUXQXPOX GH÷LOGLU YH DoÕVDO
PRPHQWXPND\ÕSODUÕLoLQbelirtiler YDUGÕU .WOHND\EÕELOHúHQOHUDUDVÕQGDGDKDNoND\UÕNOÕ÷DQHGHQROXUYH
böyleFH GDKD JoO YH GDKD X]XQ VUHOL GH÷PH HYUHVL NXUXODELOLU ADoÕVDO PRPHQWXP ND\EÕ LoLQ HQ RODVÕ
mekanizma manyetik frenlemedir.
\HQLGHQ EDúODU %XQXQ L\L oDOÕúDQ ELU PRGHO RODUDN J|UQPHVLQH UD÷P
GH÷PH
Manyetik
frenlemenin bir sonucX RODUDN WHN \ÕOGÕ]ODU GDKD \DYDú G|QHUOHU Halbu ki, çekimsel sürtünmenin, rüzgar
WDUDIÕQGDQ WDúÕQDQ DoÕVDO PRPHQWXPX \|UQJH DoÕVDO PRPHQWXPXQGDQ DOPDVÕQÕ VD÷ODPDVÕ nedeniyle, çift
VLVWHPOHUGDKDKÕ]OÕG|QHUOHU%XVUHFLQ]DPDQ|OoH÷LELOLQPHPHNWHGLU Bir çift sistemELUWHN\ÕOGÕ]ÕQNLQGen
GDKD E\N ELU WRSODP DoÕVDO PRPHQWXPa sahiptir ve bunun sonucu olarak da bir çift sistemin dönme
5]JDUOD NWOH ND\EÕ YH PDQ\HWLN DODQÕQ ELUOHúLPL PDQ\HWLN IUHQOHPH\H \RO DoDU +XDQJ KÕ]ODQPDVÕWHN\ÕOGÕ]ÕQG|QPH\DYDúODPDVÕQGDQGDKD\DYDúROPDOÕGÕU'L÷HUWDUDIWDQGDKDE\NG|QPHKÕ]Õ
nedeniyle manyetik aktivite de daha büyüktür. *QHúLQ GDYUDQÕúÕQGDQ HNVWUDSRODV\RQ \DSDUVDN JQQ
DOWÕQGDNLG|QHPOHUHVDKLSoLIWOHULQG|QPHKÕ]ODQPDVUHVL
10
\ÕOGDQNÕVDROPDOÕGÕU
-
øOHULHYULPDúDPDVÕQGDNLoLIWOHUGúNNWOHOL; ÕúÕQoLIWOHULSDWOD\ÕFÕODUJDODNWLNúLúLPND\QDNODUÕYHNUHVHO
NPHND\QDNODUÕ\DNÕQoLIWOHULQILQDODúDPDODUÕ]HULQHRODQ%|OP¶GHLQFHOHQHFHNWLU
41
BÖLÜM 17
%h<h..h7/(/ø<$.,1dø)7/(5ø1(95ø0ø
*LULú
%\N NWOHOL oLIWOHU LOH EDú \ÕOGÕ]ÕQÕQ EDúODQJÕo =$06 NWOHVL 0
¶GHQ E\N RODQ oLIWOHUL \DQL \ÕOGÕ]
Bu etki nedeniyle baúODQJÕoWDNL NRQYHNWLI
oHNLUGH÷LQ NDWPDQODUÕ \]H\GH J|UQUOHU YH EX QHGHQOH GH DWPRVIHULN KLGURMHQ EROOX÷X GúHU Büyük
U]JDUODUÕ\OD NWOH ND\EHGHQ E\N NWOHOL \ÕOGÕ]ODUÕ DQOÕ\RUX]
NWOHOLOHU JLEL NoN NWOHOL \ÕOGÕ]ODU LoLQ GH NWOH DNWDUÕPÕ PHUNH]L KLGURMHQ \DQPDVÕ LOH KHO\XP \DQPDVÕ
VÕUDVÕQGD PH\GDQD JHOLU Bü\N NWOHOL \ÕOGÕ]ODU LoLQ U]JDUOD NWOH ND\EÕ \|UQJH |÷HOHULQLQ GH÷LúPHVLQH
neden olur (bkz. denklem 15.34).
.RQYHNWLI E|OJHQLQ VÕQÕUÕQÕ EHOLUOHPHN DPDFÕ\OD 6FKZDU]VFKLOG NULWHULQL X\JXODGÕ÷ÕPÕ]GD
G|QHP GD÷ÕOÕPÕQÕQ GLNNDWH DOÕQPDVÕ GXUXPXQ
da,
homojen bir
% YH & HYUHOHULQLQ JHQLú ELU \|UQJH G|QHPL DUDOÕ÷ÕQÕ
NDSVDGÕNODUÕ YH RQODUÕQ HYULPLQ HQ \D\JÕQ WUOHUL ROG÷X RUWD\D oÕNDU $ WUQH J|UH HYULPOHúHQ VLVWHPOHULQ
kesri küçüktür; 10 M’den NoN EDú \ÕOGÕ] NWOHOHUL LoLQ RUDQ ¶GDQ GúNWU Büyük kütleler için bu
oran daha büyüktür; O-WU \ÕOGÕ]ODU LoLQ RUDQ ¶GHQ E\NWU $QFDN H÷HU PHUNH]GHQ IÕUODWPD GLNNDWH
DOÕQÕUVD EX GXUXPGD |]HOOLNOH GH E\N NWOHOL \ÕOGÕ]ODU LoLQ $ GXUXPX GDKD |QHPOL KDOH JHOLU. Büyük
NWOHOHU LoLQ \DOQÕ]FD $ GXUXPX X\JXQdur ve en büyük kütleler için Roche loEX WDúPDVÕ ELOH PH\GDQD
JHOPH]EXVRQGXUXPGD\DQLHQE\NNWOHOL\ÕOGÕ]ODUGXUXPXQGD\ÕOGÕ]GDKD|QFHGHQ\ÕOGÕ]U]JDUODUÕ\OD
,
RODQ\NVHNGHUHFHGHQNWOHND\EÕQHGHQL\OH KLGURMHQ\DQPDVÕQÕQHUNHQHYUHOHULQGHVRODGR÷UXKDUHNHWHWPLú
olur.
% YH & GXUXPODUÕQGD EDú \ÕOGÕ]ÕQ HYULPL NWOH DNWDUÕPÕQÕQ NRUXQXPOX ROXS ROPDPDVÕQGDQ oRN ID]OD
etkilenmez. dR÷X GXUXPGD EDú \ÕOGÕ] 5RFK OREXQGDQ WDúPD\D EDúODU EDúODPD] JHULGH NDODQ KLGURMHQFH
]HQJLQ]DUIÕQoR÷X\ÕOGÕ]ÕQEDúODQJÕoWRSODPNWOHVLQLQ¶LQHXODúÕUdenklem (15.23) ile verilen dinamik
(Kelvin – HelmholW]]DPDQ|OoH÷LQGHND\EHGLOLU
t KH = 3 10 7
M2
RL
(17.1)
\ÕO
, pratik olarak, JHUL\H \DOQÕ]FD EDú
EXUDGD WP QLFHOLNOHU JQHú ELULPOHULQGHGLU .WOH DNWDUÕPÕQGDQ VRQUD
\ÕOGÕ]ÕQ oHNLUGH÷L NDOÕU %X NDOÕQWÕ HVDV RODUDN KHO\XP YH ELU PLNWDU GD D÷ÕU HOHPHQWOHUGHQ LEDUHWWLU
, evrimLQ VRQUDNL DúDPDODUÕ KHO\XP oHNLUGH÷LQ HYULPL LOH
+HO\XPXQ EX úHNLOGH EDVNÕQ ROPDVÕ QHGHQL\OH
belirlenebilir.
%\NNWOHOL\DNÕQoLIWOHULQWUOHUL
17.2.1. O-TÜRÜ YILDIZLAR, KÜTLELER VE YARIÇAPLAR
1. Kütleler
<ÕOGÕ]ODUÕQNWOHOHUL\DOQÕ]FDoGXUXPGDGR÷UXGDQEHOLUOHQHELOLU
-
<|UQJHOHULELOLQHQYHWULJRQRPHWULNÕUDNVÕPODUÕPHYFXWRODQJ|UVHOoLIWOHUGXUXUP
u,
*|UVHO ELU \|UQJH WDKPLQL \DSÕODELOHQ YH KHU LNL ELOHúHQLQ GLNLQH KÕ]ODUÕQÕQ ELOLQGL÷L J|UVHO oLIWOHU
durumu,
-
dLIWoL]JLOL|UWHQoLIWOHUGHÕúÕNYHGLNLQHKÕ]H÷ULOHULQLQDQDOL]L
O-WU \ÕOGÕ]ODU LoLQ X]DNOÕNODUÕ oRN E\N ROGX÷XQGDQ J|UVHO \|UQJH belirlenemez. Kütleleri GR÷UXGDQ
EXODELOHFH÷LPL] WHN \|QWHP oLIW oL]JLOL WD\IVDO |UWHQ oLIWOHU GXUXPXGXU Örten olmayan çiftler durumunda
\DOQÕ]FD PLQLPXP NWOH GH÷HUOHUL
( M sin 3 i) ve
D\UÕFD H÷HU \ROGDúÕQ WD\IÕ J|UQP\RUVD EX GXUXPGD GD
yaOQÕ]FDNWOHIRQNVL\RQX
f ( M ) = ( M 2 sin i ) 3 /( M 1 + M 2 ) 2
elde edilebilir.
(17.2)
42
<DUÕoDSODU
<DUÕoDSODUÕ EHOLUOHPHQLQ WHPHO \ROX ELU |UWHQ oLIWLQ KHU LNL ELOHúHQLQLQ
R1/a ve R2/a ile verilen kesirsel
\DUÕoDSODUÕQÕNXOODQPDNWÕU2QODUÕúÕNH÷ULOHULQLQDQDOL]LQGHQEXOXQDELOLUOHU(÷HULNLWD\IGDJ|UOHELOL\RUYH
ölçülebiliyorsa, aGH÷HULYHEXQGDQGDGR÷UXVDOoDSODUGR÷UXGDQKHVDSODQDELOLU
Garmany ve ark. (1980), bilinen tüm O-WU\ÕOGÕ]ODUÕQELUOLVWHVLQLYHUPLúOHUGLU2-WU\ÕOGÕ]ODULoin, kütleler
LOH \DUÕoDSODUÕQ GR÷UXGDQ KHVDSODQDELOGL÷L GXUXPODUÕQ VD\ÕVÕ oRN GúNWU g]HWOH 2-WU \ÕOGÕ]ODUÕQ
kütlelerinin 20 M’den büyük ve üst limitinin 60 – 100 MROGX÷XV|\OHQHELOLU(QE\NNWOHOHL2-türü çift
+' VLVWHPL 3ODVNHWW \ÕOGÕ]Õ ROXS NWOH IRQNVL\RQX f(M) = 12.40 M ¶GLU %XQXQOD ELUOLNWH \ROGDúÕQ
WD\IÕQÕQ PXKWHPHOHQ HWUDIÕQGDNL JD] DNÕPÕQGDQ HWNLOHQPLú ROPDVÕ QHGHQL\OH NWOH IRQNVL\RQXQXQ EX
GH÷HULQLQ\RUXPODQPDVÕVRQGHUHFH]RUGXU'H÷LúLNoDOÕúPDODUGDQEDú\ÕOGÕ]LoLQ
de 60 – 90 MDUDVÕQGDNLNWOHWDKPLQOHULHOGHHGLOPLúWLU
– 100 MYH\ROGDúLoLQ
Çizelge 17.1. O-WUWD\IVDOoLIWOHULQ\|UQJHHOHPDQODUÕ\ODNWOHYH\DUÕoDSGH÷HUOHUL
HD veya BD
1337
Tayf
Türü
O9.5
P
(gün)
3.5
12323
19820
25638/9
35921
36486
37041
37043
47129
48099
57060
O9
O9
O9.5
O9.5
O9.5
O9.0
O8.5
O7.5
O6.5
O8.5
3.1
3.4
2.7
4.0
5.7
21.0
29.1
14.4
3.1
4.4
57061
75759
93205
93206
QZ Car
93403
100213
135240
149404
150136
151564
E326331
152218
152219
152248
155775
159176
165052
166734
167771
175514
191201
193611
E228766
E228854
+40°4220
198846
199579
206267
209481
215835
O9.0
O9
O3
O9
O9
O6
O7-8
O9
O9
O5
O9.5
O8
O9
O9.5
O7
O9.5
O7
O7
O7
O8
O8.0
B0.3
B0V
O7
O6.5
O7
O9.8V
O6.5
O6
O8.5
O5.5
154.9
33.3
6.1
20.7
6.0
15.1
1.39
3.9
9.8
2.7
4.6
5.6
5.4
4.2
6.0
7.0
3.4
6.1
34.5
4.0
1.6
8.33
2.88
10.7
1.9
6.6
3.00
48.6
3.7
3.1
2.1
QXPDUDVÕ
M1sin3i
M2sin3i
10.1
12.9
18.9
9.2
21.6
8.1
f (M)
M1
M2
R1
R2
Ref.
19
18.3
23
22.5
13.9
11.5
8.9
9.5
1
2
21.7
8.4
13.0
10.0
3
40.5
58*
23.9
64*
19.1
9.0
8
4
19
23
23
30
18.6
12.3
14.8
5
6
63.3
24.5
10.1
6.4
8
52.5
23.8
31.0
15.8
17.1
7.3
11.6
6.2
8
3
34.3
36.8
12.5
13.7
8
40.2
39.6
18.0
19.7
8
28
19.1
22.1
46.4
26.9
10.7
17.5
22.5
18.6
19.0
9.6
11.4
11.0
16.2
9.2
3.5
9.8
11.3
7
8
7.5
8
3
21.8
23.0
10.7
11.6
8
0.004
0.382
0.605
1.530
15.9
9.4
12.400
0.63
20
0.38
24
17.8
39
14.3
15
1.690
0.200
10.500
5.2
23.5
3.4
15.8
1.6
14.8
2.7
8.2
1.590
0.102
0.412
13.4
10.7
24.4
22.5
10.8
2.5
28
2.7
11.4
2.2
28
2.3
13.9
14.2
34
37.3
31
16.2
13.0
14.4
23
32.7
9
16.9
0.689
0.556
43.9
0.374
18.3
6.2
23.4
6.4
2.9
19.1
Referanslar: 1.Wood (1963); 2. Hutchings and Hill (1987); 3. Popper (1980); 4. Hutchings and Cowley
(1976); 5. Sahade (1959); 6. Hutchings (1977); 7. Vitrichenko (1971); 8. Doom and de Loore (1984).
*
100 M ve 90 M’lik kütle GH÷HUOHUiGHUHI¶GHQDOÕQPÕúWÕU
43
Çizelge 17.2. Conti (1975)’e göre, O-WU\ÕOGÕ]ODUÕQNWOHYH\DUÕoDSODUÕ
Tayf Türü
03
04
05
05.5
06
06.5
M/ M
ZAMS
120
90
60
45
37
30
R/ R
V
14.5
13.5
11.8
11.0
10.2
9.6
R/ R
If
19.1
20.0
20.9
20.9
21.9
21.9
M/ M
ZAMS
28
25
23
21
19
18
Tayf Türü
07
07.5
08
08.5
09
09.5
R/ R
V
8.7
8.3
8.3
7.9
7.8
7.8
R/ R
If
22.9
22.9
23.4
24.6
24.6
24.0
O-WU \ÕOGÕ]ODU LoLQ DoÕVDO oDSODU 8QGHUKLOO YH DUN 8QGHUKLOO YH +DQEXU\ %URZQ YH DUN
WDUDIÕQGDQ HOGH HGLOPLúWLU <|UQJH HOHPDQODUÕ ELOLQHQ 2-WU WD\IVDO oLIWOHU LoLQ NWOH YH \DUÕoDS
GH÷HUOHUL dL]HOJH ¶GH YHULOPLúWLU <DUÕoDSODUÕQ GR÷UXGDQ |OoPOHUL RUWDODPDVÕ 5
olan ve 5 – 20 R
DUDVÕQGD GH÷LúHQ \DUÕoDS GH÷HUOHUL YHUPHNWHGLU 'H÷LúLN WD\I WU YH ÕúÕWPD VÕQÕIÕQGDQ 2-WU \ÕOGÕ]ODU LoLQ
&RQWL¶GHQDOÕQDQNWOHYH \DUÕoDSGH÷HUOHULdL]HOJH¶GHYHULOPLúWLU dHúLWOLÕúÕWPDVÕQÕIODUÕQGDQ2WU\ÕOGÕ]ODUÕQ\DUÕoDSODUÕdL]HOJH¶WHYHULOPLúWLU
Çizelge 17.3. O-WU\ÕOGÕ]ODULoLQ8QGHUKLOOYHDUNYH8QGHUKLOOWDUDIÕQGDQ\DSÕODQ55 tahminleri
Tayf Türü
O9.5
O9
O8.5
O8
O6.5
O6
O5
O4
O3
V
7.4
8.6
III
II
10.1
9.2
23.8
30.2
15.9
16.5
16.2
17.0
If
18.3
19.8
Ia
36.9
9.5
12.5
11.9
11.7
20.3
19.8
3. O-WU\ÕOGÕ]ODUGDoLIWOHULQVÕNOÕ÷Õ
O-WU \ÕOGÕ]ODUÕQ \DNODúÕN ¶Õ ± 7) oLIW VLVWHPGLU YH NWOH RUDQODUÕ oR÷XQOXNOD ¶WHQ E\NWU Bu
bulgu, \NVHN D\ÕUPDOÕ WD\IODUÕQÕQ DOÕQPDVÕQD RODQDN VD÷OD\DFDN RUDQGD SDUODN RODQ 67 O-türü yÕOGÕ]ÕQ oLIW
ROPD VÕNOÕ÷ÕQÕ LQFHOH\HQ *DUPDQ\ YH DUN WDUDIÕQGDQ EXOXQPXúWXU Muhtemelen, örnek içerisinde
EHOLUOHQHPHPLú RODUDN NDOan çiftler ancak bir kaç tanedir. Wolf – 5D\HW \ÕOGÕ]ODUÕQÕQ oLIW ROPD VÕNOÕ÷Õ GD 2türü sistemlerinkine benzer olup FLYDUÕQGDGÕU
olan çift sistem yoktur. dR÷X VLVWHP \DNODúÕN RODUDN LOH
güQ DUDVÕQGDNL G|QHPOHUH VDKLSWLU oRN D] VD\ÕGD VLVWHP – 100 gün DUDVÕQGD G|QHPOHUH VDKLSWLU Kütle
oranlarÕ ELU FLYDUÕQGD maksimuma sahiptir ve bu durum muhtemelen ROXúXP PHNDQL]PDVÕ\OD DoÕNODQDELOLU
%LOHúHQOHUL ROGXNoD IDUNOÕ NWOHOHUH VDKLS
3DUoDODQDUDN
ROXúDQ
gözükmektedir.
VLVWHPOHUGH
VLVWHPOHUGH
ELOHúHQOHULQ
NDEDFD
HúLW
NWOHOL
ROPDVÕQÕ
EHNOHPHN
0XKWHPHOHQ HúLW ROPD\DQ NWOHOHUH VDKLS ELOHúHQOHUH J|WUHQ PHNDQ
oDOÕúPDPDNWDGÕU
J|VWHUPHNWHGLU|UQHNGD÷ÕOÕPÕ
ùHNLO
PHYFXW
|UQHNOHU
LoLQ
NWOH
RUDQÕ
DNOD
\DWNÕQ
izmalar, büyük kütleli
YH
G|QHP
GD÷ÕOÕPÕQÕ
PJQHNVLNROGX÷XQGDQWDPDPODQPD\ÕEHNOHPHNWHGLU
q = 0.8 – FLYDUÕQGD PDNVLPXP \DSQ ELU q
q-GD÷ÕOÕPÕQÕQ PDNVLPXP
Abt ve Levy (1978)’e göre, tüm dönemler dikkate
.ÕVD G|QHPOL GL÷HU WD\I WUQGHQ oLIWOHU GH \DNODúÕN RODUDN
GD÷ÕOÕPÕQD VDKLSOHUGLU ùHNLOGHQ J|UOHFH÷L ]HUH GDKD X]XQ G|QHPOL VLVWHPOHUGH
yerinin küçük q GH÷HUOHULQH GR÷UX ND\PD H÷LOLPL YDUGÕU
-0.25
DOÕQGÕ÷ÕQGDWD\IVDOoLIWOHUq
EHQ]HULELUIUHNDQVGD÷ÕOÕPÕQDVDKLSWLUEN]ùHNLO
+LGURMHQ \DQPDVÕ VUHVLQFH NWOHOL oLIWOHULQ KHU LNL ELOHúHQL GH U]JDUODU QHGHQL\OH NWOH ND\EHGHUOHU NWOH
ND\EÕ ÕúÕWPD YH GROD\ÕVÕ\OH NWOH LOH LOLúNLOL ROGX÷XQGDQ HQ E\N NWOH ND\EÕ EDúODQJÕoWD HQ E\N NWOHOL
RODQELOHúHQGHROXU6RQXoRODUDND\UÕNHYUHVUHVLQFHNWOHRUDQÕELUGH÷HULQHGR÷UXGH÷LúLU2
-türü çiftler
44
ùHNLO (YULPOHúPHPLú NWOHOL \DNÕQ oLIWOHULQ NWOH RUDQÕ GD÷ÕOÕPÕ NÕVD G|QHPOL VLVWHPOHU *DUPDQ\ &RQWL YH
0DVVH\¶GHQDOÕQPD.ÕVDYHX]XQG|QHPOLOHULQWRSOXFDGD÷ÕOÕPÕ$EWYH/HY\¶WDUDIÕQGDQYHULOPLúWLU
HYULPOHULQHELUFLYDUÕQGDNLNWOHRUDQODUÕ\ODEDúODGÕNODUÕQGDQ
–GDKD|QFHGHEHOLUWWL÷LPL]LJLELEXRUDQ\ÕOGÕ]
-
U]JDUODUÕ\OD GDKD GD JoOHQHQ ELU NDUDNWHULVWLNWLU KHU LNL \ÕOGÕ] GD \DNODúÕN RODUDN D\QÕ WDULKoH\H VDKLSWLU
-
\DQLELOHúHQOHUDQDNROGDQQHUHGH\VHSHú SHúHHYULPOHúLUOHU%XLVH; ÕúÕQoLIWOHULQLQHYULPL LoLQVRQGHUHFH
önemli sonuçlara sahiptir.
.WOHOL \ÕOGÕ]ODU KLGURMHQL &12 oO oHYULPL LOH KHO\XPD G|QúWUUOHU hoO &12 oHYULPL GHQJH\H
larda meydana gelirler.
H÷LOLPOLGLU \DQL oHYULPGHNL WP UHDNVL\RQODU D\QÕ KÕ]
.WOHOL \ÕOGÕ]ÕQ LoLQGH EX
GHQJH\H ELU NDo RQELQ \ÕOGD \DQL QNOHHU ]DPDQ |OoHNOHULQLQ oRN NoN ELU NHVULQGH XODúÕOÕU 'HQJH
NXUXOGX÷XQGD oR÷X &12 HOHPHQWOHUL
14
1¶\H G|QúWUOU ú|\OH NL Lo QNOHHU \DQPD E|OJHOHULQGHNL 1
EROOX÷XNR]PLNEROOX÷XQ\DNODúÕNNDWÕLNHQ&LVHNDWFLYDUÕQGDELUEROOXNHNVLNOL÷LJ|VWHULU
8
helyum
12
Üçlü
α LúOHPOHUL o +H oHNLUGH÷LQL, bir & SDUoDFÕ÷ÕQD YH LNLQFLO α−\DNDODPD LúOHPOHUL GH
\DQPDVÕ EDúODU
C’u, O’e ve O’niQ ELU NÕVPÕQÕ GD Ne ve Mg’D G|QúWUU dHNLUGHNWH KLGURMHQ \DQPDVÕ VRQXQGD \ÕOGÕ] ELU
Wolf -5D\HW \ÕOGÕ]ÕQÕQ, |QFHELU:1 \ÕOGÕ]ÕQÕQ VRQUDGDELU:& \ÕOGÕ]ÕQÕQ kimyasal kompozisyonuna sahip
olur.
dHNLUGHNWHKLGURMHQ \DQPDVÕ VRQXQGD PHUNH]L VÕFDNOÕN .¶QLQ]HULQH oÕNDUYH PHUNH]LNÕVÕPGD
17.2.2. WOLF – RAYET YILDIZLARI
Wolf – 5D\HW \ÕOGÕ]ODUÕQÕQ \DNODúÕN \DUÕVÕ \DNÕQ çift sistemlere aittir ve bunODUÕQGD KHPHQ KHPHQ ¶X ELU
O-WU \ÕOGÕ] LoHULU O-WU ELOHúHQOL :ROI – 5D\HW \ÕOGÕ]ODUÕQÕQ E\N NÕVPÕ oLIW oL]JLOL oLIWOHUGLU (SB2)
böylece her ikL ELOHúHQLQ de GLNLQH KÕ] GH÷LúLPOHUL |OoOHELOPHNWHGLU Bununla birlikte, :5 ELOHúHQLQGHNL
VDOPD oL]JLOHULQLQ JHQLúOHPHVL YH EXQXQ GD \|UQJH o|]POHPHOHULQGH -30’a varan belirsizliklere yol
DoPDVÕ QHGHQL\OH oR÷X GXUXPGD WD\IVDO \|UQJHQLQ EHOLUOHQPHVL RODQDNVÕ]GÕU dLIW oL]JLOL :5 \ÕOGÕ]ODUÕQÕQ
ölçülen parametreleri ÇizelgH¶WHYHULOPLúWLU
Dönemler, O-WUoLIWOHUGHROGX÷XJLELoR÷XQOXNODJQOHUPHUWHEHVLQGHGLUMsin3iGH÷HUL:5NWOHOHULQLQ10
– 20 MFLYDUÕQGDROGX÷XQDLúDUHWHGHU <|UQJHLQLNOL÷L:5oLIWOHULQLQVDGHFHVÕQÕUOÕELUNÕVPÕLoLQ \DÕúÕN
H÷ULVLQGHQ \D GD SRODULPHWULGHQ HOGH HGLOHELOPLú YH ELOHúHQOHULQ NWOHOHUL EHOLUOHQHELOPLúWLU Elde edilen
NWOHOHU dL]HOJH ¶WH YHULOPLúWLU :5 \ÕOGÕ]ODUÕQÕQ NWOHOHUL - 5 M ’den, 40 - 50 M ¶H \D\ÕOÕUNHQ
RUWDODPD NWOH:1 \ÕOGÕ]ODUÕLoLQ M , WC türleri için de 13.5 M ’dir. 2UWDODPD NWOHRUDQÕ :52%
:1YH:&WUOHULLoLQVÕUDVÕ\ODYH¶GLU
Tek çizgili ve oldukca küçük kütle fonksiyonlu
f ( M ) = ( M 2 sin i ) 3 /( M 1 + M 2 ) 2 < 0.3
(17.3)
45
bir oRN :5 \ÕOGÕ]Õ EHOLUOHQPLúWLU YH EX GXUXP RQODUÕQ, GúN NWOHOL ELOHúHQOHUH VDKLS ROGX÷XQD LúDUHW HGHr.
Çizelge 17.5’de, bu tür sistemlerin dönem, kütle ve gökada düzlemine olan z X]DNOÕNODUÕQD LOLúNLQ YHULOHU
o
OLVWHOHQPLúWLU YöUQJH LQLNOL÷Lnin bilinmHGL÷L GXUXPODUGD 7 ’lik bir RUWDODPD GH÷HU ve görünmeyen ikinci
ELOHúHQLoLQGHM ¶OLNELUNWOHNDEXOHGLOPLúWLU
Çizelge 17.4. 2%ELOHúHQOL:ROI-5D\HW\ÕOGÕ]ODUÕQÕQNWOHOHUL
+'øVLP
Tayf Türü
Dönem
E320102
HD90657
HD94546
HD190918
CX Cep
HD193576(a)
HD193077
HD193928
HD211853
(GP Cep)
E311884
HD92740
HD186943
HD197406
HD214419(b)
CD-45°
AS422 22
HD62910
HD63099
HD94305
HD113904(c)
HD97152
HD193793
HD152270
HD68273
HD137603
HD168206(d)
WN3+O5-7
WN4+04-6
WN4+O7
WN4.5+O9.5Ia
WN5+O8V
WN5+O6
WN6+c?(ya da B ?)
WN6
WN6+O
(O+O)(ecl)
WN6+O5
WN7+abs.
WN4+O9.5V
WN7
WN7+O
WN7
WNC
WN6+WC??
WC5+O7
WC+O6-8
WC6+O9.5/B0I
WC7+O9.5-BOI
WC7+O4.5
WC7+O5-8
WC8+O9I(9HO
WC5+BOIa
WC8+O8-9III-V
8.83?
8.255
4.831
112.8
2.1269
4.2124
2.324
21.64
6.688
6.34
80.35
9.55
4.317
1.641
23.9
22?
85.37
14.7
18.82
18.431
7.886
7.9y
8.893
78.50
26.9
29.712
'Õú
(÷LP
MWR
MOB
>8
61±5(ecl)
46
15
>50
78±1
----78±1
>5.5
12±2
(7)
(15)
5-12
10
>20-80
(q=0.55)
(14)
97
24±4
(17)
(35)
12-2
26
>10-60
0
0.64
67-90
76.9
0.1
0
0
----0
67±4
65±1
------(55)
----43±3
>9
35±8
80±7
<20.
76±4
43±6
>48
16
(60)
31±1
------(10)
>15
--11±3
>17
7(+12,-3)
19(+7,-2)
(>5)
(12±1)
51±15
(q=2?)
(35)
(12.4)
2
------(35)
>32
--18±5
140
18(+34,-7)
35(+13,-3)
(>27)
24±1
merkezlik
0
0.04
0.
0.43
0
0
0
--0
DoÕVÕ
0
0
0.7
0
0.4
0
0
(26)
WR
21
31
133
151
139
138
141
153
47
22
127
148
155
145
8
9
30
48
42
79
11
70
113
Referanslar: Smith and Maeder, 1989; Schulte-Ladbeck, 1989; Van der Hucht et. al. 1988.
(a): V44&\JE&4&HSF0XVG&%6HU
Çizelge 17.5. Küçük kütle fonksiyonlu tek çizgili Wolf-5D\HW\ÕOGÕ]ODUÕ
WR kütleleri, 57o¶ONELU\|UQJHH÷LNOL÷LYH0¶OLNELU\ROGDúNWOHVLNDEXOHGLOHUHNKHVDSODQPÕúWÕU
+'øVLP
HD187282
HD50896
HD97950
HD143414
HD191765
HD192163
HD193077
HD197406
HD86161
HD96548
HD177320
HD209BAC
HD164270
*
Tayf Türü
WN4
WN5
WN6
WN6
XN6
WN6
WN6
WN7
WN8
WN8
WN8
WN8
WC9
Dönem
3.85
3.763
3.772
7.690
7.44
4.50
2.3238
4.3173
10.73
4.762
1.7616
2.3583
1.7556
f (M)
0.003
0.015
0.154
0.007
0.0055
0.00024
0.0009
0.28
0.00024
0.0005
0.0019
0.0005
0.00146
MWR
14
5.7
1.1
8.6
10
53
27
0.6*
53
36
18
36
21
.DUD'HOLN%LOHúHQOL%\N.WOHOL%LU:5<ÕOGÕ]Õ2OPD2ODVÕOÕ÷Õ
z (pc)
-324
-160
-63
-973
+55
+67
+37
+735
-110
-209
-502
+192
-242
46
Xat ¶OL ELU \ROGDúÕQÕQ
– 5D\HW \ÕOGÕ]ÕQÕQ NLP\DVDO NDrakteristiklerine
%WQ NWOHOL \DNÕQ oLIWOHU ELU 2% \ÕOGÕ]Õ LOH oHNLUGH÷LQGH KHO\XP \DNDQ
ROXúWXUGX÷X ELU GXUXPGDQ JHoHFHNWLU %X \ROGDú ELU :ROI
sahip olacak fakat bir Wolf – 5D\HW \ÕOGÕ]Õ JLEL J|UQPH\HELOHFHNWLU $QFDN \DOQÕ]FD HQ E\N NWOHOL
RODQODUGD \ÕOGÕ] U]JDUODUÕ ELU :ROI – 5D\HW WD\IÕ UHWPH\H \HWHFHN NDGDU JoO RODFDNWÕU Roche lobu
WDúPDVÕ VRQUDVÕQGDNL GúN NWOH NDOÕQWÕODUÕ KÕ]OD E]OHUHN .¶OLN HWNLQ VÕFDNOÕNODUD XODúDFDNODUGÕU
(÷HUEX \ÕOGÕ]:ROI
– 5D\HW \ÕOGÕ]ODUÕQÕQVDOPD |]HOOLNOHULQLUHWPH]LVH oHNLUGH÷LQGH KHO\XP \DNDQ \ÕOGÕ]
J|UQPH]RODUDNNDODFDNWÕU
2%1dø)7/(5ø
2% \ÕOGÕ]ODUÕ JoO D]RW YH ]D\ÕI NDUERQ oL]JLOHUL J|VWHULUOHU 2QODU JHQHOOLNOH \]H\OHULQGH KLGURMHQ
\DQPDVÕQÕQ &12 UQOHULQL J|VWHUHQ 2% \ÕOGÕ]ODUÕ RODUDN \RUXPODQÕUODU
Onlar, H-5 GL\DJUDPÕQGD =$06
Onlar,
\DNÕQÕQGD 9 ÕúÕWPD VÕQÕIÕ ROGX÷X NDGDU =$06¶ÕQ oRN X]DNODUÕQGD , ÕúÕWPD VÕQÕIÕ GD EXOXQXUODU
:DOERUQ
YH
%LVLDFFKL
/RSH]
YH
)LUPDQL
WDUDIÕQGDQ
D\UÕQWÕOÕ
RODUDN
LQFHOHQPLúOHUGLU 2%1 \ÕOGÕ]ODUÕ DUDVÕQGD oLIW ROPD VÕNOÕ÷Õ HQ D] ¶GLU %ROWRQ YH 5RJHUV EHONLGH
%100’dür.
2%1 \ÕOGÕ]ODUÕQD |UQHNOHU dL]HOJH ¶GD YHULOPLúWLU dLIW ROGX÷X GR÷UXODQDQODU LoLQ G|QHP YH
HD 163181 için
kütleler M1 = 13 M, M2 = 22 M’ dir (Hutchings, 1975); BN bLOHúHQL\ROGDúÕQGDQmGDKDSDUODNWÕUYHEX
nedenle sistemin,JHoPLúWH5RFKHOREXWDúPDVÕJHoLUGL÷LGúQOHELOLU
NWOHIRQNVL\RQODUÕYHULOPLúWLU*HQHOOLNOH 2%1 \ÕOGÕ]Õ GDKD E\N ÕúÕWPDOÕ RODQ ELOHúHQGLU
Çizelge 17.6. 2%1<ÕOGÕ]ODUÕ– OBN Çiftleri
.LPOL÷L
HD12323
HD72754
HD163181
HD193516
HD201345
E235679
HD48279
HD218195
Tayf Türü
ON9V
BN2pe
BN0.5Iae
BN0.7IV
ON9V
BN2.5Ib
f (M)
0.0033
18.8
0.043
Tayfsal çift
5.9
Dönem (gün)
3.07
33.07
12
4.01
225.2
1DUWPÕú&QRUPDO
1DUWPÕú&QRUPDO
Referans
BR
T
H
BR
BR
BR
W
W
BR: Bolton and Rogers, 1978; T: Thackery,1971; H: Hutchings, 1975; W: Walborn, 1976
17.2.4. OB KAÇAKLARI
Blaauw (1961), Vitrichenko, Gershberg ve Metik (1965), Bekenstein ve Bowers (1974), Cruz-Gonzales ve
DUN 6WRQH YH &DUUDVFR YH DUN WDUDIÕQGDQ \DSÕODQ NLQHPDWLN oDOÕúPDODUGDQ
– 40 km s-1) sahiplerdir.%XQODU³NDoDN\ÕOGÕ]ODU´
olarak isimlendirilir. O-WUNDoDNODUÕQNHVUL (Conti, Leep ve Lore, 1977) ile %49 (Stone, 1979) DUDVÕQGD
tahmin edilmektedir. %ODDXZ NDoDN \ÕOGÕ]ODUÕQ E\N NWOHOL \DNÕQ oLIW VLVWHPOHULQ RULMLQDO EDú
EXOXQGX÷X]HUHED]Õ2% \ÕOGÕ]ODUÕoRN\NVHNKÕ]ODUD
\ÕOGÕ]ÕQÕQVSHUQRYDSDWODPDVÕQGDQVRQUDNLELUHYULPDúDPDVÕROGX÷XQXLOHULVUPHNWHGLU(÷HUEXJHUoHNLVH
NDoDNODUÕQ E\N ELU NÕVPÕQÕQ VÕNÕúÕN ELU ELOHúHQ LoHUPHVL JHUHNLU %XQXQOD ELUOLNWH oLIW NDoDNODUÕQ DQFDN
küçük bir kesrinin, standart kütleli X-ÕúÕQoLIWOHULQLQG|QHPOHULRODQ–JQDUDOÕ÷ÕQGDNLG|QHPOHUHVDKLS
ROPDODUÕ QHGHQL\OH EXQODUGDNL RODVÕ VÕNÕúÕN FLVLPOHULQ EHOLUOHQHELOPH RODVÕOÕ÷Õ oRN NoNWU .DoDNODUÕQ
WD\IODUÕ QRUPDOGLU YH NLP\DVDO ELOHúLPOHULQGH ELU DQRUPDOOLN J|UOPH]
OB kaoDNODUÕQÕQ NXUDPVDO olarak
EHNOHQHQNHVUL5RFKHOREXWDúPDVÕVÕUDVÕQGDNLNWOHDNWDUÕPÕLoLQ\DSÕODQNDEXOOHUHVÕNÕFDED÷OÕGÕU(÷HUEDú
\ÕOGÕ] WDUDIÕQGDQ ND\EHGLOHQ NWOHQLQ \DOQÕ]FD ¶VL \ROGDú WDUDIÕQGDQ \Õ÷ÕúWÕUÕOPÕúVD NL EX \D\JÕQ RODUDN
kabul edLOHQGH÷HUGLUEXGXUXPGD2-WU\ÕOGÕ]ODUÕQ\DNODúÕNRODUDN¶LVÕNÕúÕNELUELOHúHQHVDKLSROPDOÕGÕU
(Meurs ve van den Heuvel, 1989)..RUXQXPOXGXUXPGDEXNHVULQGH÷HULROXU
%\NNWOHOL\DNÕQoLIWOHULQHYULPL
'DKD|QFHEHOLUWLOGL÷L]HUH%|OPNWOHDNWDUÕPÕEDú\ÕOGÕ]ÕQPHUNH]LKLGURMHQ \DQPDHYUHVLVÕUDVÕQGD
$YH\DNDEXN\DQPDVÕVÕUDVÕQGD%\DGDKHO\XPXQWNHWLOPHVLQGHQVRQUD&EDúOD\DELOLU
A durumu, son
GHUHFH NÕVD G|QHPOL VLVWHPOHU LOH VÕQÕUOÕGÕU oQN EX GXUXP 5RFK OREODUÕQÕQ NoN ROPDVÕ DQODPÕQD JHOLU
(÷HU VLVWHP ELU NDo KDIWDOÕN ELU G|QHPH VDKLS LVH EX GXUXPGD NWOH DNWDUÕPÕ DQFDN EDú \ÕOGÕ]ÕQ NÕUPÕ]Õ GHY
47
HYUHVLQH HYULPOHúPHVLQGHQ VRQUD EDúOD\DFDNWÕU <DOQÕ]FD VRQ GHUHFH E\N G|QHPOL VLVWHPOHULQ EDú
\ÕOGÕ]ODUÕ \ROGDúODUÕQD NWOH DNWDUPDGDQ NÕUPÕ]Õ GHY HYUHVLQGHQ JHoHUHN HYULPOHúHELOLUOHU
Böylece büyük
NWOHOL \DNÕQ oLIWOHULQ E\N ELU NÕVPÕ % GXUXPX NWOH DNWDUÕPÕQGDQ JHoHUHN HYULPOHúLUOHU %X QHGHQOH
, B durumu kütle
Bir örnek olarakEDúODQJÕoG|QHPLJQRODQ M+22.5 M sisteminin, 0.5
E\N NWOHOL \DNÕQ oLIWOHUGHNL NWOH DNWDUÕPÕQD LOLúNLQ HYULP KHVDSODPDODUÕQÕQ oR÷X
DNWDUÕPÕQÕGLNNDWHDOÕUODU
\Õ÷ÕúPD oDUSDQOÕ E|\OHFH EDú \ÕOGÕ]GDQ ND\ERODQ PDGGHQLQ ¶VL \ROGDú WDUDIÕQGDQ \Õ÷ÕúWÕUÕOPDNWDGÕU
Hú]DPDQOÕHYULPLùHNLO¶GHJ|VWHULOPLúWLU (YULPLQHQ|QHPOLDGÕPODUÕLVHdL]HOJH¶GHYHULOPLúWLU
:5 oLIWOHUL \D GÕú NDWPDQODUÕQ \ÕOGÕ] U]JDUODUÕ\OD DWÕOPDVÕ \ROX\OD \D GD EDú \ÕOGÕ]GDQ \ROGDúD NWOH
DNWDUÕPÕ LúOHPL\OH ROXúXUODU
Merkezi hidrojen yanPDVÕ VÕUDVÕQGD \ÕOGÕ] U]JDUODUÕ QHGHQL\OH NWOH D]DOÕU
q (=M2/M1 NWOH RUDQÕ YH G|QHP DUWDU
'DKD E\N NWOHOL \ÕOGÕ]ODUGD EX HWNL GDKD JoO ROGX÷XQGDQ
(denklem 15.34).
ùHNLO%DúODQJÕoG|QHPLJQRODQ0
+22.5 M sisteminin evrimi (de Loore ve De Greve, 1992).
dL]HOJH%DúODQJÕoG|QHPLJQRODQ0
Zaman
\ÕO
%Dú%LOHúHQLQ(YULP%DVDPD÷Õ
0
8181000
8339000
Anakol
8365000
.WOHDNWDUÕPÕQÕQLON
8367670
8371020
8376770
9136970
%Dú\ÕOGÕ]ÕQNÕUPÕ]ÕQRNWDVÕ
XC1=0
EDVDPD÷ÕQÕQEDúODQJÕFÕ
0LQLPXPÕúÕQÕPJF
+HOLXPWXWXúPDVÕ
øONNWOHND\ÕSEDVDPD÷ÕQÕQ
sonu
.DUERQWXWXúPDVÕ
+22.5 M sisteminin evrimi
Dönem
(gün)
8.94
10.11
10.17
Kütle
Nokta
25
23.26
23.18
A
B
C
Anakol
10.18
23.16
D
øONWRSODQPDQÕQ
10.32
10.96
16.30
15.18
E
F
9.69
17.85
G
øNLQFL%LOHúHQLQ
(YULP%DVDPD÷Õ
EDúODPDVÕ
øONWRSODQPD
EDVDPD÷ÕQÕQ
Kütle
Nokta
22.50
21.41
21.36
21.35
basa
mak
24.78
27.44
I
J
K
27.99
L
M
N
O
sonu
4.91
24.07
H
27.63
P
Böylece, WR çiftleri, EDú \ÕOGÕ]ÕQ KLGURMHQFH ]HQJLQ GÕú NDWPDQODUÕQÕ \D \ÕOGÕ] U]JDUODUÕ YDVÕWDVÕ\OD WÕSNÕ
kaybetmesi yoluyla ya da bu
NDWPDQODUÕ \ROGDúÕQD DNWDUPDVÕ VXUHWL\OH ROXúXUODU Büyük kütleli ZAMS sistemleriQLQ EDú \ÕOGÕzODUÕQÕQ
WHN \ÕOGÕ]ODUGD ROGX÷X JLEL \DQL \ROGDú LOH KHU KDQJL ELU HWNLOHúLP ROPDNVÕ]ÕQ
HYULPL\D6FKZDU]VFKLOGNULWHUOHULQLGLNNDWHDODQNODVLNHYULPNRGXLOH\DGDPHUNH]LIÕUODWPD\ÕLoHUHQHYULP
kodu ile hesaplanabilir.
48
q (=M2/M1 YH JHUoHN G|QHPLQEDúODQJÕo G|QHPLQH RUDQÕ P/Pi parametrelerinin, hidrojen
yanmasÕNWOHDNWDUÕPÕYH:ROI–5D\HWHYUHOHULVÕUDVÕQGDNLHYULPOHULúXúHNLOGHGLU
.WOHNWOHRUDQÕ
-
<ÕOGÕ]U]JDUODUÕHYUHVLVÕUDVÕQGDKHPEDúKHPGH\ROGDú \ÕOGÕ]ÕQNWOHOHULD]DOÕU%Dú\ÕOGÕ]ÕQ \DQLGDKD
E\NNWOHOLELOHúHQLQNWOHND\EÕQÕQGDKDE\NROPDVÕQHGHQL\OHNWOHRUDQÕ
-
büyür.
büyür, dönem
küçülür.
Wolf –5D\HWHYUHVLVÕUDVÕQGDKHO\XP\ÕOGÕ]ÕQÕQNWOHVL– 5 10-5 M\ÕO-1RUDQÕQGDD]DOÕUE|\OHFHNWOH
.WOH DNWDUÕPÕ VÕUDVÕQGD NRUXQXPOX NWOH DNWDUÕPÕ GLNNDWH DOÕQGÕ÷ÕQGD NWOH RUDQÕ
RUDQÕYHG|QHPE\U
BuQODU
JHUHN 6FKZDU]VFKLOG NULWHUOHULQLQ X\JXODQPDVÕ JHUHNVH PHUNH]L IÕUODWPDQÕQ GLNNDWH DOÕQPDVÕ
GXUXPXODUÕQGD RUWD\D oÕNDQ JHQHO H÷LOLPOHUGLU %\N NWOHOL \DNÕQ oLIWOHU
NWOH DNWDUÕPODUÕ LoLQ
Schwarzschild kriterlerinin dikkate alan
ve korunumlu ve korunumsuz
HYULP KHVDSODPDODUÕ 9DQEHYHUHQ YH DUN
WDUDIÕQGDQ YH PHUNH]L IÕUODWPDOÕ HYULP KHVDSODPDODUÕ GD 'RRP 6\EHVPD YH GH
/RRUH YH 'H *UHYH WDUDIÕQGDQ \DSÕOPÕúWÕU .ODVLN \|QWHP YH PHUNH]L IÕUODWPD LOH HOGH HGLOHQ VLVWHP
SDUDPHWUHOHUL DUDVÕQGDNL IDUNODU 'H *UHYH YH GH /RRUH ¶Q \XNDUÕGDEHOLUWLOHQKHVDSODPD VRQXoODUÕQD
.
qEDú\ÕOGÕ]ÕQ
gerçek kütlesi ve P/Pi parametrelerinLQ GH÷LúLPLQL J|VWHUPHNWHGLU .WOH DNWDUÕPÕ VÕUDVÕQGD YH NRUXQXPOX
NWOHDNWDUÕPÕGLNNDWHDOÕQGÕ÷ÕQGD VLVWHPLQ RODQ EDúODQJÕoNWOH RUDQÕ M ¶OLNELUEDú \ÕOGÕ]LoLQ
GH÷HULQH YH M ¶OLN ELU EDú \ÕOGÕ] LoLQ GH GH÷HULQH oÕNDU (÷HU WP PDGGHQLQ VLVWHPL WHUN HWWL÷L
GD\DQDUDNROXúWXUXODQùHNLO¶GHDoÕNRODUDNRUWD\DNRQPXúWXU ùHNLOVÕUDVÕ\ODNWOHRUDQÕ
YDUVD\ÕOÕUVDNWOHRUDQÕGDKDD]DUWDUYHDoÕVDOPRPHQWXPND\EÕQHGHQL\OHG|QHPNoOU
ùHNLO %\N NWOHOL \DNÕQ oLIWOHULQ NWOH RUDQÕQÕQ \ÕNDUÕGD EDú \ÕOGÕ]ÕQ NWOHVLQLQ RUWDGD YH JHUoHN G|QHPLQ
EDúODQJÕo G|QHPLQH RUDQÕQÕQ DOWWD KLGURMHQ \DQPD HYUHVLQGH % GXUXPX NWOH DNWDUÕP HYUHVLQGH YH :5 HYUHVL
VÕUDVÕQGDNLHYULPL6RO6FKZDU]VFKLOGoHNLUGHNOHULVD÷PHUNH]LIÕUODWPD
49
$WPRVIHUGHNL KLGURMHQ EROOX÷X \DNODúÕN RODUDN ¶Q DOWÕQD GúW÷QGH NWOH DNWDUÕPÕ VRQD HUHU
IÕUODWPD
KLGURMHQFH
]HQJLQ
]DUIÕQ
NWOHVLQL
D]DOWWÕ÷ÕQGDQ
¶ON
EX
HúLN
GH÷HUH
Merkezi
6FKZDU]VFKLOG
GXUXPXQGDNLQHQD]DUDQGDKD|QFHXODúÕOÕUYHE|\OHFH\ROGDúDGDKDD]NWOHDNWDUÕOPÕúROXU
35 – 40 M¶L DúDQ EDú \ÕOGÕODU LoLQ YH 3 – 5 gQ DúDQ G|QHPOHU LoLQ % GXUXPX NWOH DNWDUÕPÕ PH\GDQD
gelmez. %X \ÕOGÕ]ODU oHNLUGHNWH KLGURMHQ \DQPDVÕ VRQUDVÕQGD derhal +5 GL\DJUDPÕQÕQ PDYL NÕVPÕQD GR÷UX
\RO DOÕUODU YH NÕUPÕ]Õ GHYOHU E|OJHVLQH HYULPOHúPH]OHU øNL ELOHúHQ DVOD HWNLOHúPH] YH WHN \ÕOGÕ] gibi
HYULPOHúLUOHU 35 – 40 M ¶OLN EXHúLN GH÷HU FLYDUÕQGDNWOH DNWDUÕPÕQGDQ \ÕOGÕ] U]JDUODUÕ\ODNWOH ND\EÕQD
GR÷UX \DYDú ELU JHoLú YDUGÕU \ÕOGÕ] QH NDGDU E\N NWOHOL LVH ]DUIÕQÕQ, \ÕOGÕ] U]JDUODUÕ\OD sürüklenerek
sistemi terk eden NÕVPÕRNDGDUbüyükYH\ROGDúDDNWDUÕODQNÕVPÕGDRNDGDUNoNROXU
:5HYUHVLQLQEDúODQJÕFÕQGDNLNDOÕQWÕQÕQEDú \ÕOGÕ]ÕQ EDúODQJÕoNWOHVLQLQELUIRQNVL\RQXRODUDNLIDGHHGLOHQ
NWOHVL dL]HOJH ¶GH YHULOPLúWLU :5 \ÕOGÕ]ODUÕQÕQ PRGHOOHQPHVLQGH PHUNH]L IÕUODWPDQÕQ
dahil edilmesi,
D\QÕEDúODQJÕoNWOHVLLoLQNODVLN\|QWHPHQD]DUDQGDKDE\NELU:5\ÕOGÕ]ÕYHULU
Çizelge 17.8
α'H÷HUL
Parametrelendirme
0
Mf = 0.590 Mi – 4.40
0.25
Mf = 0.550 Mi – 3.00
1.5
Mf = 0.816 Mi – 5.237
Problem 17.1: 20, 40, 60, 80 ve 100 MNWOHOLEDú\ÕOGÕ]NDOÕQWÕODUÕQÕQNWOHDNWDUÕPÕVRQXQGDNLNWOHOHULQL
NODVLN HYULP GXUXPX YH PHUNH]GHQ IÕUODWPD GXUXPX LoLQ NDUúÕODúWÕUÕQÕ] GH÷HULQGHNLELU NWOH RUDQÕQGDQ
YH JQON ELU G|QHP GH÷HULQGHQ EDúOD\DUDN G|QHP VRQXQGDNL NWOH RUDQÕ YH G|QHP GH÷HUOHULQL
KHVDSOD\ÕQÕ]
:5 oLIWOHULQLQ NRUXQXPOX HYULP LOH HOGH HGLOHQ NWOH RUDQODUÕ J|]OHQHQ GH÷HUOHU LOH X\XPOX GH÷LOGLU
20 – 30 M
kütOHOL :5 \ÕOGÕ]ODUÕQÕ DoÕNOD\DELOPHN DPDFÕ\OD EWQ VLVWHPOHU LoLQ EDúODQJÕo NWOH RUDQODUÕQÕn 0.5’ten
NoNROGX÷Xnu kabul etmek gerekir ki bu da,DoÕNoDJ|]OHPOHULOHoHOLúHQELUGXUXPGXU(÷HUWHUVLQHRODUDN
NRUXQXPOXYDUVD\ÕPÕ\ODWDKPLQHGLOHQNWOHRUDQODUÕEWQ:5\ÕOGÕ]ODUÕLoLQROGXNoDE\NWU
EDú \ÕOGÕ]ÕQ ND\EHWWL÷L NWOHQLQ ELU NÕVPÕQÕQ VLVWHPL WHUN HWWL÷L YDUVD\ÕOÕUVD NWOH DNWDUÕPÕ VÕUDVÕQGD \ROGDú
GDKD D] NWOH \Õ÷ÕúWÕUPÕú YH E|\OHFH GH GDKD NoN ELU NWOH GH÷HULQH XODúPÕú ROXU NL EX GD :5 \ÕOGÕ]ODUÕ
LoLQJ|]OHPOHUOHGDKDL\LX\XúDQELUGXUXPGXU
:5 \ÕOGÕ]ODUÕQÕQ J|]OHQHQ G|QHPOHULQLQDoÕNODPDVÕELU SUREOHP WHúNLOHWPH]
– JQ EDúODQJÕoG|QHPOL
oLIWOHU % GXUXPX NWOH DNWDUÕP HYUHVLQH HYULPOHúHELOLUOHU VLVWHPL WHUN HGHQ PDGGH D\QÕ ]DPDQGD DoÕVDO
momentum da götürür. .XUDPVDO HYULP \ROODUÕQÕQ J|]OHPOHU LOH NDUúÕODúWÕUPDVÕQGDQ EDú \ÕOGÕ]ÕQ ND\EHWWL÷L
α = 1.5) modeller
GXUXPXQGD\DNODúÕNRUWDGHUHFHGHQPHUNH]LIÕUODWPDOÕ α PRGHOOHULoLQ\DNODúÕN
PDGGHQLQ |QHPOL ELU NÕVPÕQÕQ VLVWHPL WHUN HWWL÷L DQODúÕOÕU E\N PHUNH]L IÕUODWPDOÕ %\NNWOHOL \DNÕQoLIWOHULQHYULPLQGHPHUNH]GHQIÕUODWPDQÕQGDKLO HGLOPHVLQLQ RUWD\DNR\GX÷X|QHPOL ELU
VRQXo oHNLUGHNWH KLGURMHQ \DQPDVÕ VÕUDVÕQGD XODúÕODQ \DUÕoDSÕQ NODVLN 6FKZDU]VFKLOG GXUXPXQGD HOGH
HGLOHQGHQ GDKD E\N ROPDVÕ E|\OHFH GH $ GXUXPX LoLQ HOGH HGLOHQ PDNVLPXP
dönemin daha büyük
ROPDVÕGÕU %X LVH J|]OHQHQ :5 oLIWOHULQLQ |QHPOL ELU NÕVPÕQÕQ $ \D GD $% GXUXPODUÕQGDQ ELUL \ROX\OD
ROXúWXNODUÕDQODPÕQDJHOLU
– 5D\HW \ÕOGÕ]ÕQGDQ
böylesi bir gariplik ancak, kütle
RUDQÕQÕQ \DNODúÕN RODUDN FLYDUÕQGD ROPDVÕ GXUXPXQGD PH\GDQD JHOHELOLU çünkü bu durumda, her iki WR
evresi, yani EDú YH \ROGDúÕQ :5 HYUHOHUL, bir biUOHULQL oRN \DNÕQGDQ WDNLS HGHU. Ancak \Õ÷ÕúPD \ÕOGÕ]ÕQÕQ
'H÷LúLN HYULP DúDPDODUÕ ]LQFLUL EDúODQJÕo NWOH RUDQÕQD VÕNÕ VÕNÕ\D ED÷OÕGÕU øNL :ROI
ROXúDQ oLIW VLVWHPOHU JLEL JDULS \DSÕODUÕQ ROXúXPX ROGXNoD VÕUDGÕúÕGÕU
JHQoOHúPHVL YH |PUQQ X]DPDVÕ ELU oRN GXUXPGD EDú \ÕOGÕ]ÕQ :5 HYUHVLQLQ \ROGDúÕQ :5 HYUHVLQLQ
EDúODPDVÕQGDQGDKD|QFHVRQDH
rmesine neden olur.
50
*|]OHPOHULOHNDUúÕODúWÕUPD
%Dú \ÕOGÕ]Õ M NWOHVLQH VDKLS NWOH RUDQÕ YH EDúODQJÕo G|QHPL JQ RODQ E\N NWOHOL ELU \DNÕQ
oLIWVLVWHPLQ HYULPL=$06¶WDQ EDú \ÕOGÕ]ÕQ EH\D] FFHHYUHVLQH \RODOÕU +HULNL ELOHúHQGHKLGURMHQ \DQPD
HYUHVL VLUDVÕQGD \ÕOGÕ] U]JDUODUÕ\OD NWOH ND\EHGHU 0HUNH]L KLGURMHQLQ WNHQPHVLQGHQ NÕVD ELU VUH VRQUD
NWOHDNWDUÕPÕEDúODU.WOH DNWDUÕPÕ NRUXQXPOX RODUDNPH\GDQD JHOLU +HULNLELOHúHQLQ +5GL\DJUDPÕQGDNL
L – Log Teff YH ùHNLO ¶GHNL Mvis – Log Teff GL\DJUDPODUÕQGD J|VWHULOPLúWLU
Log L’den Mvis¶H G|QúP &RQWL ¶nin WPÕúÕQÕP G]HOWPHOHUL NXOODQÕODUDN \DSÕOPÕúWÕU Çizelge 17.9
ise sistem parametrelerinin evrimini göstermektedir.
HYULPL ùHNLO ¶GHNL /RJ
4. Bir 26 + 23.4 M VLVWHPLQLQ EDú NDOÕQ oL]JL YH \ROGDú LQFH oL]JL ELOHúHQLQLQ +5 GL\DJUDPÕQGDNL HYULP
ùHNLO \ROODUÕ+DUIOHUPHWLQLoLQGHDoÕNODQPÕúWÕU<DWD\HNVHQLQVWNÕVPÕQGDWD\IWUOHULGHEHOLUWLOPLúWLU
ùHNLO%LU0
sisteminin Mvis – Log TeffGL\DJUDPÕQGDNLHYULPL
51
Çizelge 17%DúODQJÕoG|QHPLJQRODQELU26 + 23.4 M sisteminin evrimi
HRD
106\ÕOOÕN
1RNWDODUÕ
\DúODU
A
0
B
7.97
C
8.27
D
8.28
E
8.281
F
8.282
G
8.282
H
8.282
I
8.283
J
8.283
K
8.286
L
8.291
Kütle 1
Kütle 2
26
23.4
23.92
22.86
13.70
22.84
23.69
22.84
19.17
27.35
17.22
29.30
15.66
30.95
14.69
31.83
13.79
32.72
12.89
33.62
11.62
34.88
11.42
35.31
log Teff 1
log Teff 2
4.57
4.56
4.36
4.55
4.42
4.55
4.21
4.54
4.12
4.28
4.10
4.10
4.12
4.22
4.13
4.30
4.13
4.40
4.14
4.51
4.15
4.60
4.18
4.60
log L 1
log L 2
4.89
4.78
5.25
4.82
5.29
4.85
5.28
4.87
5.06
5.77
5.12
5.12
5.16
5.78
5.22
5.77
5.27
5.73
5.33
5.65
5.42
5.40
5.46
5.29
-Mbol 1
-Mbol 2
7.53
7.24
8.44
7.36
8.54
7.44
8.51
7.49
7.96
9.74
8.11
8.11
8.21
9.76
8.36
9.74
8.49
9.64
8.64
9.44
8.86
8.81
8.96
8.64
-Mvis 1
-Mvis 2
3.9
3.95
6.10
4.32
6.00
4.33
7.5
4.40
7.50
7.80
7.60
8.40
7.20
8.34
7.40
6.40
7.79
4.50
7.94
6.19
8.16
5.56
7.76
5.39
5.21
4.60
5.13
4.59
5.05
4.59
5.03
4.58
5.00
4.59
4.57
4.53
4.46
4.50
5.22
5.30
4.86
5.31
4.65
5.32
4.56
5.32
4.46
5.35
5.36
5.40
5.44
5.48
8.36
8.56
7.46
8.59
6.94
8.61
6.71
8.64
6.46
8.68
8.71
8.81
8.91
9.01
3.90
5.06
3.86
5.06
2.96
5.11
2.46
5.14
2.21
5.16
5.06
5.06
5.31
5.06
Wolf-5D\HW(YUHVLQLQ%DúODJÕFÕ
M
8.330
N
8.454
P
8.654
11.32
35.18
7.69
35.10
5.28
Q
8.779
4.70
R
8.880
4.27
S
T
U
V
10.000
11.000
12.000
12.540
34.66
34.03
32.92
32.39
ùHNLO J|UVHO E|OJHGH EDú YH \ROGDúÕQ DUDVÕQGDNL J|UQU SDUODNOÕN IDUNODUÕQÕ J|VWHUPHNWHGLU 3DUODNOÕN
IDUNÕQÕQ m
¶GHQ D] ROGX÷X GXUXPGD KHU LNL ELOHúHQLQ GH \DOQÕ]FD J|UVHO E|OJHGH J|UQG÷ YDUVD\ÕPÕ\OD
,
KDQJL ELOHúHQLQ EDú \ROGDú \D GD KHU LNLVL GH J|UVHO E|OJHGH J|UOHELOHFH÷LQL EHOLUOH\HELOLUL] ùHNLO
DQDNROGD D\UÕN HYUH VUHVLQFH KHU LNL ELOHúHQLQ GH J|UQU ROGX÷XQX RUWD\D NR\PDNWDGÕU %Dú \ÕOGÕ]ÕQ
E]OPH HYUHVL ER\XQFD SDUODNOÕN IDUNÕ
1m’in üstündedir, E|\OHFH \DOQÕ]FD EDú \ÕOGÕ] J|UOHELOLU Kütle
Kütle
DNWDUÕPÕQÕQ EDúODPDVÕQGDQ KHPHQ VRQUD \ROGDúÕQ ÕúÕWPDVÕ DUWDU YH E|\OHFH KHU LNL ELOHúHQ GH J|UOU
DNWDUÕPÕQGDQ VRQUD KHO\XP \DNDQ \ÕOGÕ]ÕQ ÕúÕWPDVÕ DUWÕN J|UVHO E|OJHGH J|UOU RODQ \ROGDúÕQÕQNLQGHQ oRN
–
GDKDGúNWU$UWÕNVLVWHPJ|UOPH\HQELU:ROI 5D\HWELOHúHQOLELU2
-türü\ÕOGÕ]GÕU
52
ùHNLO %LU 0
çiftinin, NWOH DNWDUÕPÕQGDQ KHPHQ |QFH DNWDUÕP VÕUDVÕQGD YH VRQUDVÕQGD EDú YH \ROGDú
ELOHúHQOHULQLQ J|UVHO SDUODNOÕNODUÕ DUDVÕQGDNL IDUN $QDNROGD D\UÕN HYUH VÕUDVÕQGD KHU LNL ELOHúHQ GH J|UQUGU .ÕUPÕ]Õ
UHG SRLQW LOH PDYL QRNWD %3 EOXH SRLQW DUDVÕQGD ∆0 IDUNÕ P¶GHQ ID]ODGÕU YH E|\OHFH \DOQÕ]FD EDú \ÕOGÕ]
görülür..WOHDNWDUÕPÕQGDQKHPHQVRQUD\ROGDúÕQÕúÕWPDVÕDUWDUYHE|\OHFHKHULNLELOHúHQGHJ|UOU.WOHDNWDUÕPÕQGDQ
QRNWD 53
VRQUD KHO\XP \DNDQ \ÕOGÕ]ÕQ ÕúÕWPDVÕ DUWÕN J|UVHO E|OJHGH J|UOU GXUXPGD RODQ \ROGDúÕQ ÕúÕWPDVÕQGDQ oRN GDKD
örülmeyen bir Wolf –5D\HWELOHúHQOLELU2-WU\ÕOGÕ]GÕU
GúNWU$UWÕNVLVWHPJ
53
BÖLÜM 18
<$.,1dø)7(95ø0ø1ø1621$ù$0$/$5,
18*LULú
<DNÕQ oLIWOHULQ NDUDUOÕ QNOHHU \DQPD VUHoOHULQLQ VRQXQGDNL NDGHUOHUL EDú \ÕOGÕ]ÕQ NWOHVLQH ED÷OÕGÕU (÷HU
NDOÕQWÕ&KDQGUDVHNKDUOLPLWLQLQDOWÕQGDNDOÕ\RUVDRELUEH\D]FFHGLU(÷HU \ROGDúWDQ5RFKHOREXQXGROGXUPDVÕ
GXUXPXQGDELUNWOHDNWDUÕPÕV|]NRQXVXLVHELUSDWODPDPH\GDQDJHOHELOLUEX
na7LS,VSHUQRYDVÕ denir. (÷HU
veya bir kara delik
NDOÕQWÕ&KDQGUDVHNKDUOLPLWLQLDúÕ\RUVD7LS,,VSHUQRYDVÕROXúXUYHNDOÕQWÕELUQ|WURQ\ÕOGÕ]Õ
RODELOLU\DGDJHUL\HKLoELUNDOÕQWÕNDOPD\DELOLU
7LS ,D VSHUQRYDODUÕ ELU EH\D] FFH ND\QDNOÕGÕUODU (÷HU R ELU oLIW VLVWHPLQ \HVL LVH QRUPDO ELU \ÕOGÕ] RODQ
,
Beyaz cücenin yüzeyi öyle güçlü bir úHNLOGH ÕVÕQÕU NL
kadar güçlü nükleer reaksiyonlar meydana gelir. Bu nedenle bu tür süpernovalar çok
\ROGDúWDQ EH\D] FFHQLQ \]H\LQH PDGGH DNWDUÕODELOLU
\ÕOGÕ]Õ IHODNHWH X÷UDWDFDN
SDUODNWÕU
7LS ,, YH PXKWHPHOHQ 7LS ,E VSHUQRYDODUÕ Lo NÕVPÕQGD EWQ PDGGHQLQ GHPLUH G|QúPú ROGX÷X E\N
NWOHOLELU\ÕOGÕ]ÕQSDWODPDVÕVRQXFXQGDROXúXUODU<ÕOGÕ]E]OUYHSDWODU1RUPDORODUDN\ÕOGÕ]SDWODGÕ÷ÕQGDELU
NÕUPÕ]Õ
süper devdir.
<ÕOGÕ] \DNODúÕN RODUDN ¶VL KLGURMHQGHQ LEDUHW RODQ VH\UHOPLú ELU GÕú NDWPDQD VDKLSWLU
a hidrojen çizgileri görülür. 7LS , YH 7LS ,, VSHUQRYDODUÕQ ÕúÕN H÷ULOHUL
4.5’teJ|VWHULOPLúWLU
%X úHNLOGH SDWOD\DQ ELU \ÕOGÕ]ÕQ WD\IÕQG
DUDVÕQGDNLIDUNOÕOÕNODUùHNLO
Tayfsal gözlemlerden elde edilen verilere göre, patlayan
104 km s-1 PHUWHEHVLQGHNL KÕ]ODUOD X]D\D DWÕOÕU $WÕODQ NDWPDQODU ELU NDo JQ LoHULVLQGH
NDOÕQWÕVLVWHPLWHUNHWPLúROXUYHDUWÕN|QHPOLELUHWNLJ|VWHUemezler.
3DWODPD PH\GDQD JHOGL÷LQGH \|UQJH |÷HOHUL GH÷LúLU
\ÕOGÕ]ÕQ GÕú NÕVÕPODUÕ
%XQXQODELUOLNWHSDWODPDNUHVHORODUDNVLPHWULNGH÷LOGLU6SHUQRYDNDOÕQWÕODUÕDVOD
tam olarak küresel simetrik
GH÷LOOHUGLU YH E\N DVLPHWULOHU J|VWHULUOHU 'RSSOHU ND\PDODUÕQGDQ HOGH HGLOHQ KÕ] |OoPOHUL JHQLúOHPHQLQ Hú
\|QOGD÷ÕOPDGÕ÷ÕQÕ RUWD\D NR\PDNWDGÕU 'DKDVÕJ|NDGDG]OHPLHWUDIÕQGDNLDWDUFDODUÕQGD÷ÕOÕPÕEX \ÕOGÕ]ODUÕQ
GR÷XPODUÕ VÕUDVÕQGD HNVWUDGDQ \DNODúÕN RODUDN NP
(Gunn ve Ostriker, 1970; Ruderman, 1972).
2ODVÕ HOHNWURPDQ\HWLN HWNLOHU YH SDWOD\DQ \ÕOGÕ]ÕQ G|QPHVL
VRQXFXQGDGÕúNDWPDQODUÕQÕQDWÕOPDVÕVÕUDVÕQGDJ|
RUWD\DoÕNDQEXHNVWUDWHNPHJ|VWHUL
s-1¶OLN ELU |] KDUHNHW ND]DQGÕNODUÕQÕ RUWD\D NR\PDNWDGÕU
zlenen asimetrilerLQQHGHQLRODUDNDWDUFDQÕQGR÷XPXVÕUDVÕQGD
lir.
3DWODPDQÕQ ELU VRQXFX RODUDN EDú \ÕOGÕ]ÕQ GÕú NÕVÕPODUÕQÕQ DWÕOPDVÕ YH DWÕODQ EX NDWPDQODUÕQ GL÷HU ELOHúHQH
oDUSPDVÕ\ODoLIWVLVWHPLQ\|UQJHVLGH÷LúL
r.
9DUVD\ÕPODU
Bir patlama öncesi sistemin, \|UQJH GH÷LúLPOHUL LOH VRQ DúDPD GDYUDQÕúODUÕQÕQ KHVDSODQPDVÕ LoLQ JHQHOOLNOH
DúD÷ÕGDNLEDVLWOHúWLULFLYDUVD\ÕPODU\DSÕOÕU
1. VSHUQRYDSDWODPDVÕoLIWLQ\|UQJHG|QHPLQHJ|UHNÕVDRODQELU]DPDQGLlimi içerisinde olur;
2. SDWODPDVÕUDVÕQGDROXúDQQ|WURQ\ÕOGÕ]Õ\DNODúÕNRODUDN– 2 MFLYDUÕQGDELUNWOH\HVDKLSWLU
3. 6SHUQRYD NDEX÷XQXQ DWÕOPDVÕQGDNL DVLPHWULOHUL KHVDED NDWPDN DPDFÕ\OD, ROXúXPX VÕUDVÕQGD nötron
-1
\ÕOGÕ]ÕQÕQNDEX÷XQRUWD\DoÕNWÕ÷ÕEDú \ÕOGÕ]ÕQPHUNH]LQHJ|UH vn = 100 km s ’lik göreli ELU|]KDUHNHWND]DQGÕ÷Õ
kabul edilir. MRPHQWXPXQ NRUXQXPXQHGHQL\OH NUHVHO VLPHWULN RODUDN DWÕODQ NDWPDQODUWHUV \|QGH vs = vn Mn/
MsLOHYHULOHQELUKÕ]HOGHHGHUOHUEXUDGDMn ve MsVÕUDVÕ\ODQ|WURQ\ÕOGÕ]ÕQÕQYHNDEX÷XQNWOHVLGLU
)ÕUODWÕODQ Hú PHUNH]OL GÕú NÕVÕPODUÕQ KÕ] YH \R÷XQOXNODUÕQÕQ Hú \|QO RODUDN GD÷ÕOGÕ÷Õ YDUVD\ÕOÕU 'DKDVÕ EX
katmanlar, NDOÕQWÕ oLIW VLVWHPL WHUN HGLQFH÷H YH GROD\ÕVÕ\OH KHU KDQJL ELU |QHPOL HWNLOHUL NDOPD\ÕQFD\D Nadar bu
GXUXPXQGH÷LúPHGHQNRUXQGX÷Xkabul edilir.
%X LVH IÕUODWÕODQ NDWPDQODUÕQ NUHVHO VLPHWULVL GLNNDWH DOÕQGÕ÷ÕQGD \ROGDúÕQ \|UQJHVLQLQ Lo NÕVPÕQGDNL
JHQLúOH\HQ NDWPDQODUÕQ QRNWD NWOH RODUDN
dikkate
DOÕQDELOHFH÷L DQODPÕQD JHOLU \ROGDúÕQ \|UQJHVLQLQ GÕú
NÕVPÕQGDNLNDWPDQODUÕQVLVWHP]HULQHKHUKDQJLELUHWNLVL\RNWXU
54
+HO\XP\ÕOGÕ]ODUÕQÕQVRQDúDPDVÕ
(YULPKHVDSODPDODUÕ0
¶LQ DOWÕQGD NWOH\H VDKLS RODQKHO\XP \ÕOGÕ]ODUÕQÕQKHO\XP NDEXN \DQPDVÕ VÕUDVÕQGD
JHQLúOH\HUHN DOW GHY \D GD VSHUGHYOHUH HYULPOHúHELOHFHNOHULQL J|VWHUPHNWHGLU E|\OHFH 5RFKH OREODUÕQGDQ ELU
NHUH GDKD WDú
arak
]DUIODUÕQÕ NÕVPHQ \D GD EHONL
de tamamen kaybederler. dLIW VLVWHPOHUGH E|\OHVL HYULPOHúPH
|UQHNOHUL.HVLP¶GHYHULOPLúWLU
,
sistematik olarak inceleyelim (bkz. Nomoto, 1981; Habets, 1983).
ùLPGL KHO\XP \ÕOGÕ]ODUÕQÕQ LOHUL HYULPOHULQL KHP WHN \ÕOGÕ]ODU KHP GH ELU oLIW VLVWHPLQ ELOHúHQOHUL GXUXPX LoLQ
18.3.1. MHe < 2 M DURUMU
a)
7HN\ÕOGÕ]ODU
KabukdaKLGURMHQ\DQPDVÕVÕUDVÕQGD&2-oHNLUGH÷L\R]ODúÕUYHGÕúNDWPDQODUNÕVDELU]DPDQ|OoH÷LQGHJHQLúOHU C
\DQPDVÕ EDúODU EDúODPD] WP oHNLUGHN \DQDU NDUERQ DQL \DQPDVÕ YH VRQXQGD GD ELU VSHUQRYD PXKWHPHOHQ
7LS,VSHUQRYDVÕRODUDNSDWODU$UQHWWYHJHUL\HKLoELUNDOÕQWÕNDOPD]
b) Çift sistemler
ÇiIWVLVWHPGXUXPXQGDGHYELOHúHQLQ]DUIÕQÕQ\ROGDúÕQDDNWDUÕOPDVÕQHGHQL\OHDQL\DQPDROXúPD] vH\DOQÕ]FDELU
CO beyaz cücesi meydana gelir.
18.3.2. 2 M < MHe < 2.3 M DURUMU
çok JoOELUúHNLOGH\R]ODúPDPÕúWÕU ve kaUERQGDKDVDNLQELUúHNLOGH\DQDUDN
geride 1.2 – 1.4 MNWOHDUDOÕ÷ÕQGDNLGHMHQHUHELU2- Ne -0JoHNLUGH÷LEÕUDNÕU +HO\XPoHNLUGH÷LQGÕúÕQGDNL
NÕVÕPODUGD \DNÕOÕUoHNLUGH÷LQ NWOHVL DUWDU YH ]DUI JHQLúOHU.DOÕQWÕ – 1.4 M
kütleli bir O - Ne - Mg beyaz
cücesidir.
%XGXUXPGD&2oHNLUGHNNDOÕQWÕVÕ
a)
7HN\ÕOGÕ]ODU
- Ne - 0J oHNLUGH÷LQLQ
,
Elektron yakaODPDVSHUQRYDVÕVRQXQGDELUQ|WURQ\ÕOGÕ]ÕROXúWXUXU
.DEXNWD KHO\XP \DQPDVÕ QHGHQL\OH 2
Chandrasekhar limitine
yüksek olur ve zarf çöker.
NWOHVL DUWDU
XODúÕOGÕ÷ÕQGD PHUNH]L\H÷LQOLN0J]HULQGHHOHNWURQ\DNDODQPDVÕQD\RODoDFDNGHQOL
b) Çift sistemler
5RFKHOREXWDúPDVÕPH\GDQDJHOLUYH]DUIDWÕOÕU
18.3.3. MHe > 2.3 M DURUMU
- Ne - 0J oHNLUGH÷L, &KDQGUDVHNKDU OLPLWLQL DúDU YH EWQ oHNLrdek
Sonunda, çekirdeNOHULQ SDUoDODQPDVÕ (photodisintegration) nedeniyle
.DUERQ \DQPDVÕQGDQ VRQUD JHUL\H NDODQ 2
\DQPDVÕ HYUHOHULQGHQ JHoHUHN HYULPOHúLU
çöken ELU)HoHNLUGH÷LROXúXUYHELUQ|WURQ\ÕOGÕ]Õ\DGDELUNDUDGHOLNPH\GDQDJHOLU
a)
7HN\ÕOGÕ]ODU
Kütleleri 2.8 M¶GHQE\NRODQ\ÕOGÕzlar,ELUoHNLUGHNSDUoDODQPDVÕVSHUQRYDVÕGXUXPXQDHYULPOHúLUOHU
b) Çift sistemler
55
<DNODúÕN 0
¶GHQ E\N NWOHOL JHQLú oLIWOHU – JQ G|QHPOL oHNLUGHN SDUoDODQPDVÕ VSHUQRYDVÕ
GXUXPXQD HYULPOHúLUOHU =DUIÕQ 5RFKH OREX WDúPDVÕ\OD DWÕOPDVÕQGDQ |QFH NDEXNWD KHO\XP \DQPDVÕ \ROX\OD
E\PHVLLoLQoHNLUGHNGDKDD]]DPDQDVDKLSROGX÷XQGDQNÕVDG|QHPOLoLIWOHU
Özetle,
deEXVÕQÕU0’dir.
4 M < M1 < 8 M DUDOÕ÷ÕQGD, \DNÕQ oLIW VLVWHPOHULQ EDú \ÕOGÕ]ODUÕ WHN \ÕOGÕ]ODUGD
< M1 < 10-14 M
DUDOÕ÷ÕQGD LVH \DNÕQ oLIWOHULQ EDú \ÕOGÕ]ODUÕ ELU 2-Ne-0J EH\D] FFHVL ROXúWXUXUODUNHQ, WHN \ÕOGÕ]ODU HOHNWURQ
EDúODQJÕo NWOHVLQLQ
ROGX÷XJLELDQLNDUERQWXWXúPDVÕQDHYULPOHúPHN\HULQHELU&2EH\D]FFHVLROXúWXUXODU0
\DNDODPDo|NPHVLQHHYULPOHúLUOHUYHVRQXQGDGDQ|WURQ\ÕOGÕ]ÕROXUODU
.DUERQ \DQPDVÕQGDQ VRQUDNL 2
-Ne-0J NDOÕQWÕVÕ &KDQGUDVHNKDU OLPLWLQL DúDU YH VRQXo RODUDN GD WP oHNLUGHN
\DQPDDúDPDODUÕQGDQJHoHU(QVRQRODUDNIRWRQODoHNLUGHNSDUoDODQPDVÕ\ROX\ODo|NHQELU)HoHNLUGH÷LROXúXU
ve bir nötron\ÕOGÕ]Õ\DGDELUNDUDGHOLNPH\GDQDJHOLU
%LU oLIW VLVWHP GXUXPXQGD ]DUIÕQ ELU NÕVPÕ \D GD WDPDPÕ ND\EHGLOLU oHNLUGHN WÕSNÕ ELU WHN \ÕOGÕ]GDNL JLEL
GDYUDQÕU YHVRQXQGDELUQ|WURQ\ÕOGÕ]ÕROXúXU
Son derece büyük çekirdek kütleleri (M > 60 M, yaklaúÕN 0¶OLN ELU WRSODP NWOH\H NDUúÕOÕN JHOLU
GXUXPXQGDoHNLUGHNoLIWROXúXPo|NPHVLQHHYULPOHúLUYHPXKWHPHOHQne tek,QHGHoLIW\ÕOGÕ]GXUXPXnda geride
ELUNDOÕQWÕEÕUDNPD]
18.4. Tip II –'úNNWOHOL;-ÕúÕQoLIWOHUL/0;5%
/0;5%¶/(5ø1g=(//ø./(5ø
DúN NWOHOL ND\QDNODU JHQHOOLNOH ]RQNODPD]ODU YH oR÷XQOXNOD J|NDGD PHUNH]L \DNÕQODUÕQGD \D GD NUHVHO
NPHOHUGHEXOXQXUODU2QODUÕQELUoR÷XSDWOD\ÕFÕGÕU\DQL;-ÕúÕQ\H÷LQOL÷LELUVDQL\HLoHULVLQGHELUNDoNDGLUNDGDU
artar ve bunu onlarca saniye süren azalma evresi izler. DúN NWOHOL VLVWHPOHUGHNL EDVNÕQ ÕúÕN ND\QD÷Õ
PXKWHPHOHQ \ROGDúÕQ DWWÕ÷Õ PDGGH LOH EHVOHQHQ ELU \Õ÷ÕúPD GLVNLGLU G|NDGD úLúLPindeki kaynaklar ile küresel
NPHOHUGHNL ND\QDNODUÕQ EHQ]HUOL÷L, RQODUÕQ WHN ELU VÕQÕI ROXúWXUGXNODUÕQÕ RUWD\D NR\PDNWDGÕU 'DKDVÕ SDWOD\ÕFÕ
kaynaklarÕQ optik tayflarÕ, bir X-ÕúÕQoLIWLRODQ YH Balmer salma çizgili bir mavi süreklilik ile He II (4686 Å), N
III ve C III (4640 Å) salma çizgileri gösteren Sco X-1’i QWD\IÕQDEHQ]HPHNWHGLU
Bu tayf, NDWDNOLVPLN GH÷LúHQOHUGHNL \Õ÷ÕúPD GLVNi tayflarÕQD da benzemektedir. <ROGDúÕQ GúN ÕúÕWPDVÕ YH 6FR
X-¶LQ NÕVD G|QHPL JQ VÕNÕúÕN ROPD\DQ \ÕOGÕ]ÕQ SDWOD\ÕFÕ \ÕOGÕ]ODUÕQ J|UQPH\HQ ELOHúHQOHULne benzer
olarak ELUNÕUPÕ]ÕFFHROGX÷XQXDNODJHWLUmektedir.
18.4.2. KÜRESEL KÜME KAYNAKLARI
Küresel kümelerde X-ÕúÕQND\QDNODUÕQÕQROXúXPRUDQÕ\NVHNWLUNPHGHND\QDNJ|]OHQPLúROXSEXRUDQ,
37
J|NDGD RUWDODPDVÕQGDQ oRN GDKD \NVHNWLU Tüm gökadada, ÕúÕWPDODUÕ 10
erg s-1 GH÷HULQL DúDQ ÕúÕWPDQÕQ EX
-8
-1
GH÷HUL ×10
M \ÕO GH÷HULQGH ELU NWOH ND\EÕ RUDQÕQD NDUúÕOÕN JHOLU 100 FLYDUÕQGD X-ÕúÕQ ND\QD÷Õ
bilinmektedir.
105 – 106 \ÕOGÕ]SF3JLEL \NVHN \R÷XQOXNODUGD \DNÕQoDUSÕúPDODU YH \DNDODPDODU \ROX\ODoLIW VLVWHP ROXúXPX
J|NDGDQÕQGL÷HU \HUOerine göre GDKD \NVHNELURODVÕOÕ÷D VDKLSWLU <ÕOGÕ]ODUÕQ J|UHOL KÕ]ODUÕNoNWU YHE|\OHFH
\ÕOGÕ] \DNDODPD VÕUDVÕQGD gerekli olan az miktardaki enerji ]DWHQ LON oDUSÕúPD VÕUDVÕQGD \HWHULQFH ND]DQÕOPÕú
ROPDNWDGÕU
.UHVHO
NPH
ND\QDNODUÕ
PXKWHPHOHQ
QRUPDO
ELU
\ÕOGÕ]ÕQ
ELU
Q|WURQ
\ÕOGÕ]Õ
WDUDIÕQGDQ
yDNDODQPDVÕ\OH ROXúPXúODUGÕU 4 – 5 M DUDOÕ÷ÕQGDNL WHN \ÕOGÕ]ODU HQLQGH VRQXQGD oDUSÕúDFDNODUÕQGDQ NUHVHO
8
NPHOHUGH ROXúXPODUÕQÕQ LON \ÕOÕ LoHULVLQGH ELQOHUFH Q|WURQ \ÕOGÕ]ÕQÕQ ROXúPDVÕ EHNOHQLU Bu nötron
\ÕOGÕ]ODUÕQÕQEHOOLELUNHVULNPH\LWHUNHWPLúROVDGDNoNELURUDQKDOHQPHYFXWWXU Onlar, kümedeki ortalama
\ÕOGÕ] NWOHVLQL DúDQ NWOHOHUH VDKLSWLUOHU YH EX QHGHQOH GH NPHQLQ PHUNH]LQdH \Õ÷ÕOPÕúODUGÕU <ÕOGÕ]
\R÷XQOX÷XQXQYHoDUSÕúPDRODVÕOÕ÷ÕQÕQ\NVHNROGX÷X\HUOHUGH\ÕOGÕ]\DNDODPDVUHoOHULPH\GDQDJHOHELOLU
%LU NUHVHO NPHGHQ NDoPD KÕ]Õ \DNODúÕN RODUDN NP
s-1’dir.
5DG\R DWDUFDODUÕ GR÷XPODUÕ VÕUDVÕQGD HNVWUD ELU
LWPH ND]DQGÕNODUÕQGDQ J|UHFHOL RODUDN GDKD \NVHN KÕ]ODUD VDKLSWLUOHU
YalnÕ]FD KÕ]ODUÕ NDoPD KÕ]ÕQGDQ daha
,
NoNRODQHQ \DYDúQ|WURQ \ÕOGÕ]ODUÕNPHGHNDOÕUODUdR÷XQ|WURQ \ÕOGÕ]ÕQÕQ E\NNDoDNKÕ]ODUÕPXKWHPHOHQ
56
oLIW VLVWHPOHULQHYULPOHúPLú ELOHúHQOHULQLQ SDWODPDVÕYH VLVWHPLQGD÷ÕOPDVÕQÕQ ELU VRQXFXGXUGúN KÕ]OÕQ|WURQ
\ÕOGÕ]ODUÕLVHWHN\ÕOGÕ]ODUÕQ
evrimlerinin son evreleridir.
(YULPOHULQH oLIW VLVWHPOHUGH EDúOD\DQ NUHVHO NPHOHUGHNL Q|WURQ \ÕOGÕ]ODUÕ VLVWHPLQ GD÷ÕOPDVÕ\OD WHN \ÕOGÕ]
haline gelebilir ve kümeyi terk edebilirler.7HN \ÕOGÕ]ODUÕQNPHGHNDODQQ|WURQ \ÕOGÕ]ÕNDOÕQWÕODUÕLVHGDKDVRQUD
ELUELOHúHQ\DNDOD\DELOLUYHEXVXUHWOHGúNNWOHOL;-ÕúÕQoLIWOHULQHHYULPOHúHELOLUOHU
18.4.3 *g.$'$ùøùø0.$<1$./$5,
*|NDGDúLúLPLQGHNL\ÕOGÕ]ODUNUHVHONPHOHUGHNLQGHQGDKDE\NKÕ]ODUDVDKLSWLUOHU'DKDVÕ \ÕOGÕ]\R÷XQOX÷X
,
Chandrasekhar limiti
– oksijen beyaz cücelerinin,Q|WURQ\ÕOGÕ]ODUÕGXUXPXQDo|NHELOHFHNOHULEXOXQPXúWXUYHD\QÕ
úH\LQ \DNÕQ oLIWOHUdeki O – Ne – 0J EH\D] FFHOHUL LoLQ GH JHoHUOL ROGX÷X J|UOPHNWHGLU Sistemler genellikle
ED÷OÕVÕQÕUOÕNDOÕUODU0XKWHPHOHQ, bu X-ÕúÕQND\QDNODUÕNDWDNOLVPLNGH÷LúHQOHULQHYULPVHOUQüdürler.
oRN GDKD GúNWU EX QHGHQOH \ÕOGÕ] \DNDODPDVÕ oRN ]RUGXU IDNDW J|] DUGÕ GD HGLOHPH]
\DNÕQÕQGDNLNDUERQ
X-ÕúÕQSDWOD\ÕFÕODUÕQÕQJ|]OHmsel karakteristikleri, bunlardaDQLWHUPRQNOHHUWHSNLPHOHU\DQLQ|WURQ\ÕOGÕ]ODUÕQÕQ
\]H\OHULQGH KHO\XP ELUOHúPHOHUL ROGX÷XQX J|VWHUPHNWHGLU 'úN NWOHOL VÕIÕU \Dú DQDNRO oLIWOHUL ELU NWOH
– oksijen beyaz cücesi ile ELU QRUPDO \ÕOGÕ]GDQ
bir SDUODNOÕN
DUWÕúÕ J|VWHUmeleri NÕVD ELU VUH LoHULVLQGH ÕúÕWPD PDNVLPXPXQD XODúÕp VRQUD GD oRN GDKD \DYDú ELU úHNLOGH
ROPDN NRúXOX\OD HVNL SDUODNOÕNODUÕQDG|Qmeleri nedeniyle, birerNDWDNOLVPLN GH÷LúHQGLUOHU%H\D] FFH ELOHúHQLQ
HWUDIÕQGD ELU \Õ÷ÕúPD GLVNL YDUGÕU .WOH DNWDUÕPÕ QHGHQL\OH EH\D] FFHQLQ NWOHVL DUWDU YH EX da elektron
\DNDODPDo|NPHVLQHYHELUQ|WURQ\ÕOGÕ]ÕQÕQROXúPDVÕQDQHGHQROXU%X\ROODVLVWHPELUGúNNWOHOL;-ÕúÕQoLIWL
olabilir. Bu son durum sonraki kesimde incelenecektir.
DNWDUÕP HYUHVLQGHQ JHoPHN VXUHWL\OH ELU KHO\XP \D GD NDUERQ
ROXúDQYHG|QHPOHULVDDWFLYDUÕQGDRODQVLVWHPOHUHHYULPOHúLUOHU %XDúDPDGDNLoLIWOHU\ÕOGÕ]ODUÕQ
18.5. 'úNNNWOHOL;-ÕúÕQoLIWOHULQLQRULMLQL
(95ø00$''($.7$5,0,
-
'úN NWOHOL ; ÕúÕQ oLIWOHUL YH oR÷X NDWDNOLVPLN GH÷LúHQOHU GúN NWOHOL QRUPDO \ROGDúÕQGDQ PDGGH
çöNPú ELU \ÕOGÕ] GHMHQHUH ELU FFH ELU Q|WURQ \ÕOGÕ]Õ ya da bir kara delik) içerirler. øNL
li =$06 ELOHúHQLQGHQ EDúOD\DQ ELU HYULP VHQDU\RVX ùHNLO ¶GH J|VWHULOPLúWLU %Dú \ÕOGÕ] 5RFKH
\Õ÷ÕúWÕUPDNWD RODQ
GúN NWOH
OREXQX GROGXUPXúWXU NWOH DNWDUÕPÕ ELU RUWDN ]DUIÕQ ROXúPDVÕQD \RO DoDU YH EX ]DUI GDKD VRQUDNL DúDPDODUGD
-cücesi ile bir normal
ir. %X HYUHGH VLVWHP NDWDNOLVPLN GH÷LúHQ RODUDN DGODQGÕUÕOÕU 6RQUDNL ELU DúDPDGD DUWÕN
normal olarak \ROGDú ELOHúHQRODQ úLPGLNL EDú \ÕOGÕ]ÕQ5RFKH OREXQXGROGXUDFD÷ÕQÕYH \DUÕ-D\UÕNHYUHVUHVLQFH
\ROGDúÕQD PDGGH DNWDUDFD÷ÕQÕ GúQHELOLUL] %X DúDPDGDQ Vonra sistem, bir He- ya da CO-FFHVL LOH \ÕOGÕ]
U]JDUODUÕ\ODNWOHND\EHWPHNWHRODQELUNÕUPÕ]ÕGHYELOHúHQLoHUPHNWHGLU <ROGDú5RFKHOREXQXGROGXUXUYH&2-
JHQLúOH\HUHN J|UQPH] ROXU 2UWDN ]DUIÕQ ND\EROPDVÕQGDQ VRQUD VLVWHP ELU +H \D GD &2
\ROGDú \ÕOGÕ] LoHUPHNWHG
FFHVLQHGR÷UXRODQNWOHDNWDUÕPÕRQXQNWOHVLQLQDUWPDVÕQDQHGHQROXU
<Õ÷ÕúDQ PDGGH WDUDIÕQGDQ
kenGL &KDQGUDVHNKDU OLPLWLQL DúPD\D ]RUODQDQ EH\D] FFH bir elektron yakalama
o|NPHVLQH X÷UD\DELOLU &DQDO YH 6FKDW]PDQ YH &DQDO ,VHUQ YH /DED\ WDUDIÕQGDQ \DSÕODQ
KHVDSODPDODU
&KDQGUDVHNKDU
]RUODQDELOHFH÷LQLJ|VWHUPLúWLU
OLPLWLQH
oRN
\DNÕQ
RODQ
ELU
&2
-cücesinin bu anlamda bir çöküntüye
57
-
ùHNLO'úNNWOHOL; ÕúÕQoLIWOHULLoLQRODVÕVHQDU\R
Çift sistemlerdeki 3 – 8 M
56
51
erg mertebesinde olan
DoDELOHQ \R]ODúPÕú &- \DQPDVÕ ROXU YH PDGGH
1L¶H G|QúU Üretilen ve yDNODúÕN HQHUML EH\D] FFH\L GD÷ÕWPD\D \HWHFHN E\NONWHGLU Özel NRúXOODU DOWÕQGD NDUERQ NDEXNWD \DNÕOGÕ÷ÕQGD
NoN ELU NDOÕQWÕ NDODELOLU 7DDP DE 1RPRWR Bir CO-FFHVLQLQ EX QNOHHU SDWODPDVÕ WDP \D GD
%LUEH\D]FFHQLQNWOH\Õ÷ÕúPDVÕQDNDUúÕWHSNLVLEH\D]FFHQLQNDUÕúÕPÕQDED÷OÕGÕU
DUDOÕ÷ÕQGDNL NWOHOHUH VDKLS RODQ EDú \ÕOGÕ]ODUÕQ NDOÕQWÕODUÕ RODQ &2 EH\D] FFHOHULQGH WHUPRQNOHHU NDoD÷D \RO
NÕVPHQPXKWHPHOHQELUWLS,VSHUQRYDVÕLOHELUWXWXODELOLU
– 0J EH\D] FFHOHUL LoLQ oHNLUGHN \R÷XQOX÷X HOHNWURQ \DNDODPD HúLN
Bu da elektron –\DNDODPDo|NPHVLQHYHELUQ|WURQ\ÕOGÕ]ÕQÕQROXúPDVÕQDQHGHQROXU
(Miyaji ve ark. 1980, Sugimoto ve Nomoto, 1980).
'L÷HU WDUDIWDQ PDGGH \Õ÷ÕúWÕUDQ 1H
GH÷HULQLQ|WHVLQHDUWDELOLU
Belki de en önemli etken budur.
%H\D]FFHELOHúHQLQVRQXQXEHOLUOH\HQGL÷HUELUHWNHQ\Õ÷ÕúPDQÕQRUDQÕGÕU
,
. 10-9 M\ÕO-1¶LQ DOWÕQGDNL \Õ÷ÕúPDRUDQODUÕLoLQ EXDQL SDUODPDODUR kadar güçlü olur ki,
\Õ÷ÕúDQ PDGGHQLQ oRN E\N NÕVPÕ EHONL GH WDPDPÕ IÕUODWÕOÕU, böylece beyaz cücenin kütlesi artmaz. Büyük
-9
\Õ÷ÕúPD RUDQODUÕ M\ÕO-1 - 10-8 M\ÕO-1 LoLQ DQLSDUODPDODU]D\ÕIWÕU, \Õ÷ÕúDQPDGGHQLQ oR÷X NDOÕU YH EH\D]
cücenin kütlesi artar. 4.10-8 M\ÕO-1¶GHQE\N\Õ÷ÕúPDRUDQODUÕLoLQELUNDUERQWXWXúPDVÕROXúXU
.oN \Õ÷ÕúPD RUDQODUÕ LoLQ ELULNWLULOHQ KLGURMHQ EHOLUOL ELU EDúODQJÕo NWOHVLQL DúWÕ÷ÕQGD JoO ELU QNOHHU DQL
parlama IODú ile
\DNÕOÕU
58
.h7/($.7$5,00(.$1ø=0$/$5,
üçlü LMXRB’ler için genellikle Roche lobu
cisim, VLVWHPLQ GDKD E\N NWOHOL ELOHúHQLGLU E|\OHFH NoN
NWOHOL ELOHúHQGHQRODQ NWOH DNWDUÕPÕ NDUDUOÕ RODFDNWÕU 5RFKHOREX WDúPDVÕLoLQ LNLPHNDQL]PD YDUGÕU çekimsel
'úNNWOHOL \ÕOGÕ]ODUÕQ JoO \ÕOGÕ]U]JDUODUÕRODPD\DFD÷ÕQGDQ J
WDúPDVÕ \ROX\OD NWOH DNWDUÕPÕ
gereklidir.
6ÕNÕúÕN
ÕúÕPDLOHDoÕVDOPRPHQWXPND\EÕ\DGDQNOHHUHYULP
/0;5%¶OHU LoLQ HYULP KLND\HVL úLPGLOLN WDP RODUDN DoÕN GH÷LOGLU %L] EXUDGD ED]Õ RODVÕ GXUXPODUÕ J|]GHQ
JHoLUHFH÷L]EN]ùHNLO¶GHNLHYULPVHQDU\RVX
-
$QDNROFFHVLQGHQ5RFKHOREXWDúPDVÕ
KüçükNWOHOL\R]ODúPÕú\ÕOGÕ]GDQ5RFKHOREXWDúPDVÕ
<R]ODúPDPÕúKHO\XP\ÕOGÕ]ODUÕQGDQ5RFKHOREXWDúPDVÕ
.ÕUPÕ]ÕGHYOHUGHQ5RFKHOREXWDúPDVÕ
*|]GHQJHoLULOHFHNELUoRNGXUXPLoLQ\DUÕoDSYHNWOHDUDVÕQGDELULOLúNLJHUHNOLGLUEX
amaçla
R =γ Mδ
(18.1)
úHNOLQGHELUED÷ÕQWÕNXOODQÕODFDN
ve fDUNOÕGXUXPODULoLQSDUDPHWUHOHULQIDUNOÕGH÷HUOHULDOÕQDFDNWÕU
$QDNROFFHVLQGHQ5RFKHOREXWDúPDVÕ
ani SDWODPDODUÕ J|VWHUHQ JHoLFL ND\QDNODUGÕU &HQ ;-4, Aql
X-1 gibi). Bu ani patlamalar PXKWHPHOHQ FFH QRYDODUÕQ DQL SDWODPDODUÕ\OD benzerdir (Robinson, 1976). Bu
geçici kaynaklardaki VÕNÕúÕN ROPD\DQ FLVLP 5RFKH OREX WDúPDVÕ\OD NWOH DNWDUDQ * – . WD\I WUQGHQ GúN
%LU oRN GúN NWOHOL ; ÕúÕQ oLIWL ND\QDNODUÕ ; ÕúÕQ
NWOHOLDQDNRO\ÕOGÕ]ODUÕRODUDNJ|UQUOHU
Bir K5 V
Çizelge 1.2’den elde edilebilir: kütle = 0.69 M\DUÕoDS R ELU Q|WURQ \ÕOGÕ]ÕQÕQ NWOHVL LoLQ – 1.5 M GH÷HUL DOÕQDELOLU %X GXUXPGD NWOH RUDQÕ YH 5RFKH
%L] EXUDGD ELU . FFHVL LOH ELU Q|WURQ \ÕOGÕ]ÕQGDQ ROXúDQ ELU VLVWHPLQ HYULPLQL J|]GHQ JHoLUHFH÷L]
\ÕOGÕ]ÕQÕQ\DUÕoDSYHNWOHVLLoLQWDKPLQLGH÷HUOHU
\DUÕoDSÕEN]GHQNOHP
R
= 0.38 + 0.2 log 0.5 = 0.32
A
(18.2)
olur.
<|UQJHQLQoHNLPVHOÕúÕPD
(GR)LOHGH÷LúPHVLLoLQJHUHNOLNDUDNWHULVWLN]DPDQ|OoH÷LED÷ÕQWÕVÕQGDQHOGH
edilebilir:
J yörünge
J yörünge
=−
32 G 3
M 1 M 2 (M 1 + M 2 ) A −4
5 c5
V
−
(18.3)
ve böylece
t GR = −
J yörünge
J yörünge
=
1.22 10 9 A 4
M 1M 2 (M 1 + M 2 )
\ÕO
olur, burada M1, M2 ve AJQHúELULPOHULQGHGLU
K cücesinin Roche lobunuGROGXUGX÷XQXYDUVD\DUVDN
(18.4)
59
A=
0.83
R ≅ 2.59 R
0.32 (18.5)
elde ederiz.%XQDNDUúÕOÕNJHOHQG|QHPLVHGHQNOHP¶GHQ
log P = 1.5 log A − 0.5 log( M1 + M 2 ) − 0.936 = −0.474
(18.6)
P ≅ 0.336 gün = 8.06 saat
olur.
Problem 18.1: G|] |QQH DOÕQDQ VLVWHP LoLQ oHNLPVHO ÕúÕPD ]DPDQ |OoH÷LQL KHVDSOD\ÕS, HOGH HWWL÷LQL] GH÷HUL
QNOHHU]DPDQ|OoH÷LLOHNDUúÕODúWÕUÕQÕ]
dHNLPVHO ÕúÕPD ]DPDQ |OoH÷L QNOHHU ]DPDQ |OoH÷LQLQ \DNODúÕN RODUDN
DNWDUÕPÕWDPDPHQ5RFKHOREX
üçte biri mertebesindedir böylece kütle
nun büzülmesiyle yönetilir.
Problem 18.2: Denklem 18.2’yi, 15.16’da yerine yazarak ve α
DODUDN NWOH DNWDUÕP KÕ]Õ LoLQ ELU WDKPLQ
\DSÕQÕ]
M
M
A
2
= 2( 1 − 1) 1 −
.
A
M2
M 1 t GR
(18.7)
<DUÕoDSLOHNWOHDUDVÕQGD
úHNOLQGHELUED÷ÕQWÕNDEXOHGLOLUVH
A
1 M
= (δ − ) 1
A
3 M1
HOGHHGLOLUYH ED÷ÕQWÕODUÕQÕQ NDUúÕODúWÕUÕOPDVÕQGDQ LVHNWOHDNWDUÕPKÕ]Õ
(18.8)
M 1
M1
LoLQ\DNODúÕNELULIDGH
elde edebiliriz. $QDNROFFHOHULLoLQED÷ÕQWÕVÕQGDγ = 1 ve δ =0.5DOÕQDELOLUE|\OHFH
M 1
1
1
=
M 1 tGR M 1 / M 2 − 13 / 12
(18.9)
ya da
M 1
1
1
≈
M 1 tGR M 1 / M 2 − 1
elde ederiz.
(18.10)
60
Problem 18.3: (18.3), (18.9) ve (15.13) ED÷ÕQWÕODUÕQÕ ELUOHúWLUHUHN NWOH DNWDUÕP KÕ]ÕQÕ, \ÕOGÕ] NWOHVLQLQ ELU
fonksiyonu olarak KHVDSOD\ÕQÕ] Çizelge 1.2’den yararlanarak, γ ve δ SDUDPHWUHOHUL LoLQ \XNDUÕGD |QHULOHQ
GH÷HUOHULGR÷UXOD\ÕQÕ]
%X GXUXP ELU DQDNRO FFHVL LoLQ NWOH DNWDUÕPÕQÕQ QHGHQ ROGX÷X oHNLPVHO ÕúÕPDQÕQ
M 1 ≈ 10 −10 M\ÕO-1
PHUWHEHVLQGHROGX÷XQXJ|VWHULU
X-ÕúÕQÕúÕWPDVÕ
LX =
GM X M
R
mertebeVLQGH NWOHVL \DNODúÕN 0 FLYDUÕQGDGÕU,
böylece küçük kütleli X-ÕúÕQ ND\QD÷Õ oLIWOHULQ ;-ÕúÕQ ÕúÕWPDODUÕ \DNODúÕN RODUDN 36 erg s-1 mertebesindedir. Bu
ise küçük kütleli parlak X-ÕúÕQ ND\QDNODUÕQÕ DoÕNODPD\D \HWHUOL GH÷LOGLU %LU PDQ\HWLN \ÕOGÕ] U]JDUÕQÕQ QHGHQ
-9
RODFD÷Õ G|QPH IUHQOHPHVL NWOH DNWDUÕPÕQÕ 10
M\ÕO-1 GH÷HULQLQ ELU NDo NDWÕQD NDGDU KÕ]ODQGÕUÕ\RU RODELOLU
(Verbunt ve Zwan, 1981).
ED÷ÕQWÕVÕ\OD YHULOLU %LU Q|WURQ \ÕOGÕ]ÕQÕQ \DUÕoDSÕ NP
.oNNWOHOL<R]ODúPÕú\ÕOGÕ]ODUGDQ5RFKHOREXWDúPDVÕ
9
-
%LU NÕUPÕ]Õ FFH Q|WURQ \ÕOGÕ]Õ VLVWHPLQLQ HYULPLQL \|QOHQGLUHQ oHNLPVHO ÕúÕPD \ÕOOÕN
olurken, QNOHHU ]DPDQ
10
|OoH÷LQLQ ]DPDQ |OoH÷L bir zaman öOoH÷LQGH
\ÕO PHUWHEHVLQGHGLU .WOH DNWDUÕPÕ QHGHQL\OH \ÕOGÕ]
=$06¶DSDUDOHORODUDNDúD÷Õ\DGR÷UXHYULPOHúLU
anakoluQ HQ DOWQRNWDVÕQD
, kütlesi ∼0.1 M \DUÕoDSÕ ∼0.2 R YH ÕúÕWPDVÕ GD ∼0.01 L’dir. %|\OHFH DUWÕN ÕVÕVDO ]DPDQ |OoH÷L
|QFHNLQLQ \DNODúÕN NDWÕ NDGDU YH EX QHGHQOH GH tGR LOH KHPHQ KHPHQ D\QÕ PHUWHEHGHGLU Tc NULWLN GH÷HULQ
DOWÕQD LQHFH÷LQGHQ PHUNH]L KMLGURMHQ \DQPDVÕ GXUXU &FH \ÕOGÕ] \R]ODúÕU %X GXUXPGD NWOH- \DUÕoDS LOLúNLVL,
.WOHQLQ D]DOPDVÕ\OD ÕVÕVDO ]DPDQ |OoH÷LGHGDKDKÕ]OÕ ELU úHNLOGH DUWDU &FHELOHúHQ
XODúWÕ÷ÕQGD
\DNODúÕNRODUDN
R = 0.013(1 + X ) 5 / 3 M −1 / 3 (Paczynski 1967a) ya da
R = 0.03M −1 / 3 (denklem 18.1’deki γ =0.03 ve δ =-GH÷HUOHULLoLQ
ED÷ÕQWÕODUÕ LOHU
verilir. R ≈ M −1 / 3 LOLúNLVL NWOHVL D]DOGÕ÷ÕQGD \ÕOGÕ]ÕQ JHQLúOH\HFH÷L DQODPÕQD JHOLU Bu ise
\|UQJHQLQ JHQLúOH\HFH÷LQL LPD HGHU DNVL WDNWLUGH \R]ODúPÕú GH÷HQ ELOHúHQ 5RFKH OREXQX WDúDUGÕ %|\OHFH
|QFHOHUL GDUDOÕ\RU RODQ \|UQJH \HQLGHQ JHQLúOHU EDúND ELU GH÷LúOH G|QHP ELU PLQLPXP GH÷HUH GR÷UX NÕVDOÕU
3DF]\QVNL YH 6LHQNLHZLF] YH :HEELQN YH DUN WDUDIÕQGDQ \DSÕODQ KHVDSODPDODU EX PLQLPXP
G|QHPLQ \DNODúÕN RODUDN GN ROGX÷XQX RUWD\D NR\PXúWXU <R]ODúPÕú KHO\XP \ÕOGÕ]ÕQÕQ \DUÕoDSÕ D\QÕ NWOHOL
bir H-]HQJLQ\R]ODúPÕúFFH\ÕOGÕ]ÕQ \DUÕoDSÕQGDQoRNGDKDNoNWU\DNODúÕNRODUDN \DUÕVÕNDGDU'ROD\ÕVÕ\OD
yörüngesi de daha küçük olabilir. 5RFKH OREX WDúPD HYUHVL VÕUDVÕQGD ELU +H EH\D] FFHVLQGHQ ELU Q|WURQ
-8
-1
\ÕOGÕ]ÕQDRODQNWOHDNWDUÕPKÕ]Õ M \ÕO GH÷HULQHXODúDELOLUYHEXGH÷HUSDUODNELU;-ÕúÕQND\QD÷ÕQÕQJFQ
DoÕNOD\DELOLU
<R]ODúPDPÕúELUKHO\XP\ÕOGÕ]ÕQGDQ5RFKHOREXWDúPDVÕ
-
,VÕGHQJHVLQGHNLVDIKHO\XPGDQROXúPXú\ÕOGÕ]ODUÕQ\DNODúÕNNWOH \DUÕoDSLOLúNLVL3DF]\QVNLWDUDIÕQGDQ
, (18.1) denklemindeki γ =0.2 ve δ =0.86 GH÷HUOHULQHNDUúÕOÕN JHOPHNWHGLU Bu da
(18.8) ED÷ÕQWÕVÕQÕQ\DNODúÕNRODUDN
úHNOLQGH YHULOPLúWLUEX ED÷ÕQWÕ
61
biçiminde, \D]ÕODELOHFH÷LDQODPÕQDJHOLU
Problem 18.4: Küçük kütlHOL DQDNRO GXUXPXQGDQ EDúOD\DUDN EX GXUXP LoLQ \Õ÷ÕúPD KÕ]ÕQÕ |OoHNOHQGLULQL] A
4
4
X]DNOÕ÷ÕQÕQ \Õ÷ÕúPD KÕ]ÕQD LOLúNLQ denklemlere A úHNOLQGH JLUGL÷LQL YH E|\OHFH \Õ÷ÕúPD KÕ]ÕQÕQ kat büyük
-8
-1
RODFD÷ÕQÕGROD\ÕVÕ\OHGH0 M \ÕO PHUWHEHVLQGHRODFD÷Õ gerçe ÷LQGHQ\DUDUODQÕQÕ]
'DKD JHQLú \|UQJHOL oLIWOHU EX úHNLOGH HYULPOHúPH\HELOLUOHU RQODU EXQXQ \HULQH ELU NÕUPÕ]Õ GHY ELOHúHQOL oRN
JHQLúoLIWOHUGXUXPXQDHYULPOHúHELOLUOHU.LSSHQKDKQYHDUN
Benzer sistemler,
\ÕOGÕ] \R÷XQOX÷XQXQ oRN \NVHN ROGX÷X NUHVHO NPHOHUGHNL ELU NÕUPÕ]Õ GHYLQ ELU Q|WURQ
\ÕOGÕ]ÕWDUDIÕQGDQ\DNDODQPDVÕ\ODGDROXúDELOLU
(Sutantyo, 1975; Hills ve Day, 1976).
%LUNÕUPÕ]ÕGHYGHQ5RFKHOREXWDúPDVÕ
-
in DWDVÕ ROan sistemler muhtemelen, helezonik
ge dönemi 0.5 gün
FLYDUÕQGDNLGH÷HUOHUHLQHU<DNODúÕN M NWOHOL\ÕOGÕ]ODULoLQEXGH÷HULQDOWÕQGDNLG|QHPOHUGHHYULPEDVNÕn bir
.DWDNOLVPLN GH÷LúHQOHU LOH NoN NWOHOL ; ÕúÕQ oLIW VLVWHPOHULQ
úHNLOGHGDUDODQ\|UQJHOLELURUWDN]DUIHYUHVLER\XQFDHYULPOHúLUOHU<|UQJHGDUDOÕUYH\|UQ
úHNLOGH oHNLPVHO ÕúÕPD LOH \|QOHQGLULOLU YH EX GD \|UQJHQLQ GDUDOPDVÕQD \RO DoDU 7DDP YH DUN %X
VLVWHPOHULQ ED]ÕODUÕQGD VRQUDNL HYULPOHúPH ELU DQDNRO \ÕOGÕ]Õ \D GD ELU NoN NWOHOL \R]ODúPÕú \ÕOGÕ]ÕQ 5RFKH
OREXWDúPDVÕúHNOLQGHGLU
Daha gHQLúVLVWHPOHUGHE\NNWOHOLELOHúHQNÕUPÕ]ÕGHYGXUXPXQDHYULPOHúHELOLU(÷HUEXELOHúHQLQNWOHVLoRN
E\NGH÷LOVHELU\R]ODúPÕúKHO\XPoHNLUGH÷LJHOLúHELOLU+LGURMHQ\DQPDNDEX÷XGÕúDYHLoHUL\HGR÷UXJHQLúOHU
Böylece hidrojence zengin zarf giderek KHO\XPFD ]HQJLQOHúLUNHQ KLGURMHQ \DQPDVÕQÕQ VRQXFXQGD GDKD ID]OD
KHO\XPXQ oHNLUGH÷H HNOHQPHVLQLQ ELU VRQXFX RODUDN KHO\XP oHNLUGH÷LQ NWOHVL VUHNOL RODUDN DUWDU Enerjinin
QHUHGH\VHWDPDPÕoHNLUGHNWHUHWLOLU
Çekirdek kütlesindeki M C E\PHVLLOH\ÕOGÕ]ÕQL ÕúÕWPDVÕDUDVÕQGD
M C ≈ vL
úHNOLQGHELULOLúNLYDUGÕUJUDPPDGGHGHNLKLGURMHQ\DQPDVÕ
X
LOHVDOÕQDQHQHUML
E = mc 2 = 0.7 × 0.007(3 ×1010 ) 2 = 4.41× 1018 HUJ V −
dir, böylece L = 4.41 × 1018 M C olur;
JQHú ELULPOHULQH G|QúWUG÷P]GH YH oHNLUGHN E\PHVLQL
de
\ÕO
ELULPLQGHLIDGHHWWL÷LPL]GH
M C = 1.32 × 10 −11 L
elde ederiz.*HQLúOHPH]DPDQÕ.HOYLQ-+HOPKROW]]DPDQ|OoH÷LQGHQoRNE\NROGX÷Xndan,
R
>> t KH
R
çeNLPVHO ÕúÕWPD LKPDO HGLOHELOHFHN NDGDU Nüçüktür.
dHNLUGHN NWOHVLQLQ E\PHVL \DUÕoDSÕQ E\PHVLQH YH
ÕúÕWPDQÕQDUWPDVÕQDQHGHQROXU%XLVHGHYNROXQXQoÕNÕúÕQDNDUúÕOÕNJHOLU
62
, 0.2 M’lik bir çekirdek kütlesi için,
yaNODúÕN×108\ÕOVUHQYH3×10-9 M\ÕO-1GH÷HULQGHELUNWOHDNWDUÕPKÕ]ÕEXOPXúODUGÕU
.WOHDNWDUÕPKÕ]Õ:HEELQNYHDUNWDUDIÕQGDQKHVDSODQPÕúWÕURQODU
18.6. Kütleli X-ÕúÕQoLIWOHUL
-
.h7/(/ø; ,ù,1dø)7/(5ø1ø10;5%¶V7h5/(5ø
çift X-ÕúÕQ ND\QDNODUÕQÕQ ELU Q|WURQ \ÕOGÕ]Õ \D GD ELU NDUD GHOLN
NDUPDúÕNWD\IOÕJoO;-ÕúÕQND\QDNODUÕQÕQL\LELOLQHQELUVÕQÕIÕQÕQ\HVLGLUOHU2QODUD\QÕ]DPDQGD,JHQoÕúÕQÕPOÕ
\ÕOGÕ]ODU LOHGHLOLúNLOLGLUOHU Bunlar, WU ND\QDNODURODUDNVÕQÕIODQGÕUÕOÕUODU%X JUXS IDUNOÕ |]HOOLNOHUH VDKLS LNL
*|]OHPOHU VRQXFXQGD oR÷X EHONL GH EWQ
LoHUGLNOHULQH GDLU NDQÕWODU EXOXQPXúWXU 2QODUÕQ ELU NÕVPÕ DWDUFD oLIW ; ÕúÕQ ND\QD÷Õ ELU NÕVPÕ GD ROGXNoD
DOWJUXEDD\UÕODELOLUOHU
1. Standard sistemler: StandardVLVWHPOHU NDOÕFÕND\QDNODUGÕU \DQL;-ÕúÕQODUÕ G]HQOL ELUG|QHPOLOL÷H VDKLSWLU YH
RSWLN ÕúÕN oÕNWÕODUÕ LVH VÕNÕúÕN \ÕOGÕ]ÕQ RSWLN ELOHúHQ ]HULQGH QHGHQ ROGX÷X oHNLPVHO ER]XOPDODUÕQ \RO DoWÕ÷Õ
HOLSVRLGDO GH÷LúLPOHU J|VWHULU 2SWLN ELOHúHQ 5RFKH OREXQX QHUHGH\VH GROGXUPXúWXU YH VLVWHP G]HQOL RODUDN
tutulmalar gösterebilir. Böylesi biU NDo RQ VLVWHP ELOLQPHNWHGLU YH VRQ GHUHFH JoO VDOPD oL]JLOHUL \DUGÕPÕ\OD
RQODUÕWDQÕPODPDNNROD\GÕU
-62
Bu sistemlerin atDODUÕ 2%-\ÕOGÕ]ODUÕGÕU Bu X-ÕúÕQ ND\QDNODUÕQÕQ ELU oR÷X DWDUFDGÕU Atma
dönemleri 0.75- GN DUDVÕQGD GH÷LúLU X-ÕúÕQ VDODQ ELOHúHQLQ 'RSSOHU EHOLUOHPHOHUL YH EX ND\QDNODUÕQ
ED]ÕODUÕQGDNL J|UVHO J|]OHPOHU Q|WURQ \ÕOGÕ]Õ LOH RSWLN ELOHúHQLQLQ \|UQJHOHULQin belirlenebilmesine olanak
VD÷ODU Bu yörüngelerden yararlanÕODUDN VLVWHPLQ NWOH RUDQÕ YH ELOHúHQlerin kütleleri elde edilebilir. Nötron
\ÕOGÕ]ODUÕQÕQEHOLUOHQHQNWOHOHUL M
yöresinde iken,RSWLNELOHúHQOHULQLQNWOHOHUL0’den, 40 M’e kadar
de÷HUOHUDODELOPHNWHGLU
'|QHPOHUNÕVDROXSJQLOHJQDUDVÕQGDGÕUELUD\GDQELUD]GDKDX]XQELUG|QHPHVDKLSRODQ8
VLVWHPL ELU LVWLVQDGÕU
2. Geçici Sistemler: Bu grupta opWLN ELOHúHQOHU 5RFKH OREODUÕQÕ GROGXUPDPÕú RODQ %H \ÕOGÕ]ODUÕGÕU dR÷XQOXNOD
tutulma yoktur ve düzenOL HOLSVRLGDO GH÷LúLP J|]OHQPH] Kütleleri –standard kütleli X-ÕúÕQ oLIWOHULQNLQGHQ
GúNWU- 10 M
ile 20 M DUDVÕQGD GH÷LúLU %X JUXED \H RODQ ELU oRN FLVLPGHQ DOÕQDQ ;-ÕúÕQ DNÕODUÕ VDELW
ROPD\ÕSDQLSDWODPDODUJ|VWHUPHNWHGLU
Büyük kütleli X-ÕúÕQoLIWOHULQGHQL\LELOLQHQOHULQED]Õ|]HOOLNOHULdL]HOJH¶GHYHULOPLúWLU
Çizelge 18.1. Çok iyi bilinen X-ÕúÕQoLIWOHULVWDQGDUGND\QDNODUYHJHoLFLOHUYHRQODUÕQWHPHO|]HOOLNOHUL
;,úÕQÕ.D\QD÷Õ
4U1700-37
=HD153919
4U1900-40
=VelaX-1
=HD77581 Cyg
X-1
=4U1956+35
=HDE226868
Cen X-3
=4U1119-60
4U1538-52
SMC X-1
LMC X-4
4U0352-+30 =X
Per
Tayf Türü
%Dú\ÕOGÕ]ÕQ
<ROGDú\ÕOGÕ]ÕQ
Dönem
<|UQJHDoÕNOÕ÷Õ
O6.5f
Kütlesi
30
kütlesi
2
3.41180
A (R biriminde)
20
B0.5Ib
21.7
1.5-3
8.96
51
O9.7Iab
>25
9
5.607
43
O6.5IIIc
18
1
2.087
18.3
B0.5Iab
O9.5V-III
20±8
15
20
3.73
0.9
1.3
3.893
1.4083
27.4
16.9
O9.5
≈20
>2
580
820
Referanslar
Vanbeveren (1977)
Avni (1976)
Mason ve ark.
Tananbaum ve
Tucker (1974)
Van Paradijs
Chevalier ve
Ilovaisky (1974)
De Loore ve ark.
(1979)
63
-
.h7/(/ø; ,ù,1dø)7/(5ø1ø1(95ø0ø
Standard kütleli X-ÕúÕQoLIWOHUL
-
-
.DOÕFÕVWDQGDUGNWOHOL; ÕúÕQoLIWOHULYH%H; ÕúÕQoLIWOHUL\ÕOGÕ]U]JDUODUÕ\ODNWOHND\EÕYHNWOHDNWDUÕPÕJLEL
DUGÕúÕN VUHoOHULQ VRQXFX RODUDN ELU VSHUQRYD SDWODPDVÕQÕQ ROXúPDVÕ YH
bu suretle
o|NPú FLVLPOHULQ Q|WURQ
\ÕOGÕ]ODUÕQÕQ\DGDNDUDGHOLNOHULQROXúPDVÕ\ROX\ODGR÷UXGDQGR÷UX\DNWOHOL\DNÕQoLIWVLVWHPOHUGHQROXúXUODU
%XJQ NDEXO HGLOHQ JHQHO J|Uú LNL ÕúÕWPDOÕ ELOHúHQGHQ ROXúDQ ELU NWOHOL \DNÕQ oLIW VLVWHPLQ LON RODUDN NWOH
GH÷LúLPL YH VRQXQGDNL ELU SDWOD
mayla
ve bu suretle X-ÕúÕQ ND\QD÷Õ GXUXPXQD
Kütleli X-ÕúÕQ ND\QDNODUÕQÕQ HYULPLQH LOLúNLQ LON
VÕNÕúÕN ELOHúHQLQ ROXúPDVÕ
HYULPOHúWLNOHUL úHNOLQGHGLU YDQ GHQ +HXYHO YH +HLVH D\UÕQWÕOÕ KHVDSODPDODU GH /RRUH YH 'H *UHYH WDUDIÕQGDQ \D\ÕQODQPÕúWÕU 'DKD LOHUL ELU DúDPDGD NWOHOL
\ÕOGÕ]5RFKHOREXQXGDGROGXU
arak madde kaybeder. 6LVWHPLQG|QHPLúLGGHWOLELUúHNLOGHGúHUYHQ|WURQ\ÕOGÕ]Õ
-
KHOH]RQLNRODUDNELOHúHQLQH \DNODúÕU %X \ROOD oRNNÕVD G|QHPOL ELU oLIWLQ ROXúPDVÕ\ODLNLQFLELU ; ÕúÕQDúDPDVÕ
ROXúDELOLU 6RQXQGD \ROGDú GD SDWODU YHLNL D\UÕ Q|WURQ \ÕOGÕ]ÕQGDQ ROXúDQ ELU VLVWHP RUWD\D oÕNDU øON VSHUQRYD
SDWODPDVÕQGDQVRQUDSDWOD\DQ\ÕOGÕ]ÕQVLVWHPLQGDKDNoNNWOHOLELOHúHQLROPDVÕQGDQGROD\ÕVLVWHPED÷OÕNDOÕU
%XQXQOD ELUOLNWH LNLQFL SDWODPDQÕQ VLVWHPL GD÷ÕWPD DoÕVÕQGDQ oRN GDKD \NVHN ELU RODVÕOÕ÷D VDKLS ROPDVÕQD
UD÷PHQHQGHUELUNDoGXUXPGDVLVWHPED÷OÕNDOÕUYHLNLQ|WURQ\ÕOGÕ]ÕELUoLIWDWDUFDVLVWHPLROXúWXUXUODU
Standard
X-ÕúÕQND\QDNODUÕLoLQHYULPúHPDVÕùHNL¶GHJ|VWHULOPLúWLU
- 3 MRODQ \ÕOGÕ]ODUÕ
dikkate aliyoruz. .RUXQXPOX HYULPOHúPH \D GD RUWD GHUHFHGHQ NWOH ND\EÕ GXUXPXQGD EDú \ÕOGÕ]ÕQ o|NPH
DQÕQGDNLNDOÕQWÕVÕGDKDNoNNWOHOLELOHúHQRODFDNWÕU&HPEHU\|UQJHOLELUoLIWVLVWHPLQELOHúHQOHULDUDVÕQGDNLA
%XUDGD GR÷UXGDQoHNLUGHN o|NPHVLDúDPDVÕQD HYULPOHúWLNOHULLoLQ oHNLUGHN NWOHOHUL
X]DNOÕ÷Õ
A (1 + q) 2 q 0
=
A0 (1 + q 0 ) 2 q
(18.4)
ED÷ÕQWÕVÕQDJ|UHGH÷LúLU
DDKDNoN NWOHOLELOHúHQLQ SDWODPDVÕ, simetrik olmDVÕ KDOLQGH VLVWHPLGD÷ÕWPD\DFDN YH bir asimetrik patlama
GXUXPXQGD ELOH VLVWHP GD÷ÕOPD\DELOHFHNWLU NRUXQXPOX RODUDN HYULPOHúHQ ELU VLVWHPGHNL VÕNÕúÕN \ÕOGÕ] SUDWLN
RODUDN KHU GXUXPGD VLVWHPH ED÷OÕ NDODFDNWÕU 'H &X\SHU GH /RRUH YDQ GHQ +HXYHO De Cuyper ve ark.
1977).%WU\DGDJHo$WUNWOHDNWDUÕPÕQGDQVRQUDNLNDOÕQWÕNWOHVL
log M 1 f = −1.13 + 1.42 log M 1
X =YHZ =LoLQ9DQEHYHUHQ
log M 1 f = −1 + 1.4 log M 1
X =YHZ =LoLQ7XWXNRY YH<XQJHOVRQ
(18.5)
ED÷ÕQWÕODUÕLOHWDKPLQHGLOHELOLU
hesaplamalara, NWOH RUDQÕQÕQ
q-1 úHNOLQGHNLJ|UHOLRODUDNNoNEDúODQJÕoGH÷HUOHULLOH EDúODPDNJHUHklidir. Bununla birlikte bu seneryo,
küçük q-1 GH÷HUOL VLVWHPOHULQ DúÕUÕ GH÷PH DúDPDVÕQD GR÷UX JHOLúHFHNOHUL JHUoH÷L \]QGHQ oRN GD JHUoHNoL
görünmemektedir. Bunun nedeni, \Õ÷ÕúPD ]DPDQ |OoH÷LQLQ NWOH ND\EÕ ]DPDQ |OoH÷LQGHQ GDKD E\N ROPDVÕ
E|\OHFH DOÕFÕ \ÕOGÕ]ÕQ GD 5RFKH OREXQX GROGXUPDVÕ YH EX VXUHWOH GH RUWDN ELU ]DUI LOH oHYULOL, dH÷HQ bir
NRQILJXUDV\RQXQ RUWD\D oÕNPDVÕGÕU 'L÷HU WDUDIWDQ NWOH DNWDUÕPÕ QHGHQL\OH NoN NWOH RUDQOÕ VLVWHPOHUGHNL A
X]DNOÕ÷ÕDNWDUÕPER\XQFDoRNNoOUYHNWOHOHUHúLWOHQGL÷Lnde sistem minimum D\UÕNOÕ÷DXODúÕU
.RUXQXPOX NWOH DNWDUÕPÕ\OD LNL JQON \|UQJH G|QHPOHUL HOGH HGHELOPHN LoLQ
q-1 LoLQ D\UÕNOÕN \DUÕ\DGúHU%|\OHFH NRUXQXPOXYDUVD\ÕPÕ DOWÕQGD JQGHQ GDKD NÕVDRODUDNJ|zlenen
VSHUQRYD VRQUDVÕ \|UQJHG|QHPOHULQL DoÕNODPDN LPNDQVÕ] J|UQPHNWHGLU2UWDN ELU]DUI ROXúWXUXOGX÷XQGD L2
ya da L3¶GHQ NWOH ND\EÕ EHNOHQPHOLGLU %X \ROOD PH\GDQD JHOHQ NWOH ND\EÕ ELOHúHQOHULQ RUWDODPD \|UQJH
DoÕVDOPRPHQWXPXQGDQçok daha büyük ELU|]DoÕVDOPRPHQWXPGH÷HULQHVDKLSWLU
%LU FLYDUÕQGDNL NWOH RUDQODUÕ LoLQ H÷HU D\UÕODQ PDGGH DNÕPÕQÕQ DoÕVDO PRPHQWXPX RQXQ VLVWHPGHNL JHUoHN
için birlikte dönme bunu VD÷ODU
bu durumda L2QRNWDVÕQGDNL|]DoÕVDOPRPHQWXP|]\|UQJHDoÕVDOPRPHQWXPXQXQ\DNODúÕNRODUDNNDWÕROXU
\HULQHLOLúNLQDoÕVDOPRPHQWXPGH÷HULQHHúLWROGX÷XNDEXOHGLOLUVH|UQH÷LQ/2
64
-
ùHNLO6WDQGDUGNWOHOL; ÕúÕQoLIWOHULQLQHYULPLGH/RRUHYH'H*UHYH
Böylece
dJ
J
= 4( )
dM
M
(18.6)
J ≈ M (M, sistemin toplam kütlesi)
(18.7)
ya da
olur.
Bu evre süresince kütle
r.%X \ROODED]Õ;-ÕúÕQ YH:5oLIWOHULQLQ&HQ ;-3, SMC X-1, CX Cep (P = 1.6
6RQXoRODUDN ¶GHQ NoN NWOH RUDQOÕ VLVWHPOHU ELU RUWDN ]DUI HYUHVLQH HYULPOHúLUOHU
YHDoÕVDOPRPHQWXP ND\EHGLOL
g), CQ Cep (P
J NÕVD \|UQJH G|QHPOHUL DoÕNODQDELOLU %LU FLYDUÕQGD NWOH RUDQOÕ VLVWHPOHU NRUXQXPOX
65
RODUDN HYULPOHúHELOLUOHU YH EX GD JQ \D GD GDKD X]XQ \|UQJH G|QHPOL VSHUQRYD VRQUDVÕ oLIWOHULQ RUWD\D
oÕNPDVÕQD\RODoDU
- ve B-WU WD\IVDO oLIWOHULQ \DOQÕ]FD ¶ ¶WHQ NoN NWOH RUDQODUÕQD
sahiptir. dRN NÕVDG|QHPOL:5YH;-ÕúÕQoLIWOHULQLQ ROXúDELOPHVLLoLQEXVLVWHPOHUGHNWOHYHDoÕVDOPRPHQWXP
(YULPOHúPHPLú NÕVD G|QHPOL 2
ND\ÕSODUÕQÕQ PH\GDQD JHOPHVL EHNOHQLU 6LVWHPOHULQ oRN E\N ELU NÕVPÕ NRUXQXPOX RODUDN HYULPOHúLU YH EX GD
-
VSHUQRYDSDWODPDVÕQGDQVRQUDJQGHQGDKDX]XQG|QHPOL; ÕúÕQoLIWOHULQLQROXúPDVÕQD\RODoDU
Problem 18.4: Denklem 18.5’e uygun olarak kütle kaybedenEDúODQJÕoG|QHPLJQYHNWOHVL 25 M+ 20 M
RODQ ELU =$06 VLVWHPL LoLQ KHO\XP \ÕOGÕ]Õ NDOÕQWÕVÕQÕQ NWOH DNWDUÕPÕQGDQ VRQUD Wolf-5D\HW \ÕOGÕ]ÕQÕQ
U]JDUODUÕQHGHQL\OH0 GDKDNWOHND\EHWWL÷LQLYDUVD\DUDNVRQXoG|QHPGH÷HULQLKHVDSOD\ÕQÕ].
ùHNLO%DúODQJÕoG|QHPLJQRODQELU0
+ 10 MVLVWHPLQLQHú]DPDQOÕHYULPL(YULPDúDPDODUÕD\UÕN\DUÕ-D\UÕN
NWOHOL ELU KHO\XP \ÕOGÕ]Õ LOH 20.5 M kütleli bir
YH GH÷HHQ úHNLOGH EHOLUWLOPLúWLU +HVDSODPDODUÕQ VRQXQGD VLVWHP 0
NWOHOL ELOHúHQ LoHUPHNWHGLU 6LVWHPLQ G|QHPL JQGU %\N NWOHOL ELOHúHQ \ÕOGÕ] U]JDUODUÕ\OD NWOH ND\EHWPHNWHGLU
ama
KHO\XP \ÕOGÕ]Õ GDKD GD HYULPOHúLU YH VRQXQGD SDWOD\DUDN JHUL\H ELU Q|WURQ \ÕOGÕ]Õ NDOÕQWÕVÕ EÕUDNÕU 6LPHWULN SDWO
durumunda dönem 81 gün olur (de Loore ve ark. 1984).
18.6.3. Be X-,ù,1dø)7/(5ø1ø125ø-ø1ø
Bu tür X-ÕúÕQND\QDNODUÕ NoNEDúODQJÕo NWOHOL 20MVLVWHPOHUWDUDIÕQGDQROXúWXUXOXUODU Bir örnek olarak,
EDúODQJÕo G|QHPL JQ RODQ ELU 5 M + 10 M VLVWHPLQLQ Hú ]DPDQOÕ HYULPL ùHNLNO ¶WH J|VWHULOPLúWLU GH
Loore ve ark. 1984). 6LVWHP \DNODúÕN PLO\RQ \ÕO VRQUD \DUÕ-D\UÕN GXUXPD JHOLU YH \DNODúÕN \ÕO VRQUD
GH÷HQ HYUHVLQH HYULPOHúLU 6LVWHPGHQ NWOH DWÕOÕU VLVWHP \HQLGHQ \DUÕ-D\UÕN GXUXPD JHoHU YH \ÕO VRQUD
KHO\XPXQ\DQPD\DEDúODPDVÕ\ODLNLELOHúHQGH÷HQGXUXPDJHOLUOHU Sonuç sistem, -3.42 M NWOHOLELUEDú\ÕOGÕ]
ile 20.5 M NWOHOL ELU \ROGDú- 68 günlük bir yörünge dönemine sahiptir. 10 M¶GHQ EDúOD\DQ \Õ÷ÕúPD ELOHúHQL
sonunda 20.5 M¶H XODúÕU EX ELOHúHQ =$06¶D SDUDOHO ELU \RO ER\XQFD HYULPOHúLU <DYDú NWOH DNWDUÕP HYUHVL
EDúODGÕ÷ÕQGD HYULP \ROX =$06¶DGR÷UX NÕYUÕOÕU EXQGDQ VRQUD \ÕOGÕ]WÕSNÕ 0
NWOHOLELU =$06 \ÕOGÕ]Õ JLEL
HYULPOHúLU%XVÕUDGDEDú\ÕOGÕ]ÕQKHO\XPNDOÕQWÕVÕHYULPLQLVUGUUYHSDWODU%XHYUHGHVLVWHP\DNODúÕN0
kütleli bir Be-ELOHúHQL LOH 0 NWOHOL ELU Q|WURQ \ÕOGÕ]Õ ELOHúHQLQGHQ ROXúDQ ELU %H-X-ÕúÕQ oLIWL ROXúWXUPXú
olur.(YULPLQúHPDWLNELUJ|VWHULPLùHNLO¶WHYHULOPLúWLU
66
Be X-ÕúÕQoLIWOHULQLQROXúXPX
ùHNLO
18.7. Kütleli X-ÕúÕQoLIWOHULQLQNRUXQXPVX]HYULPOHUL
'DKD |QFH GH÷LQLOGL÷L ]HUH NRUXQXPOX YDUVD\ÕPÕ \DNÕQ oLIW VLVWHPOHULQ HWNLOHúLPOL HYULPOHULQL
yeterli bir
úHNLOGHWDQÕPOD\DELOPHN EDNÕPÕQGDQ EDVLW NDOPDNWDGÕU YH NWOH DNWDUÕP HYUHVL ER\XQFD |QHPOL RUDQGD NWOH YH
DoÕVDOPRPHQWXPND\EÕPH\GDQDJHOL\RURODELOLU'DKDVÕ\ÕOGÕ]U]JDUODUÕ\ODNWOHND\EÕGDGLNNDWHDOÕQPDOÕGÕU
q = 0.8 –¶GDQGDKDNoNNWOHRUDQODUÕLoLQVHQHU\RoRNGH÷LúPH]YHNRUXQXPOXGXUXPGDNLQe benzer evrim
örnekleri elde ederiz. $QFDNNWOHRUDQÕQÕQFLYDUÕQGDNLGH÷HUOHULQGHGXUXPIDUNOÕGÕU Böylesi bir durumda, her
LNLELOHúHQLQHYULPVHO ]DPDQ|OoH÷LSUDWLN RODUDN D\QÕGÕU E|\OHFH HYULPOHúPLú EDú \ÕOGÕ]SDWODGÕ÷ÕQGD, \ROGDúÕQ
kalan ömrü çokNÕVDGÕUùHNLO¶GHNWOHRUDQODUÕq = 0.75 ve q = 0.925 olan iki sistemin evrimiJ|VWHULOPLúWLU
øNLQFL GXUXPGD LNL :5 \ÕOGÕ]OÕ ELU HYUH ROXúXU YH EXQX ELU NÕVD :5 NDoDN HYUHVL WDNLS HGHU %Dú \ÕOGÕ]
-
SDWODPDGDQ|QFH\ROGDúELOHúHQ]DWHQ5RFKHOREXQXWDúPD\DEDúODPÕúROXUE|\OHFH2%NDoDNDúDPDVÕLOH; ÕúÕQ
ve
kabul ediOPLúWLU EX GXUXPXQ G|QHP ]HULndeki etkisi
DúDPDVÕ J|]OHQPH] %X |UQHNWH EDú \ÕOGÕ] WDUDIÕQGDQ DNWDUÕODQ PDGGHQLQ ¶VLQLQ VLVWHPL WHUN HWWL÷L
EHUDEHULQGH GH DoÕVDO PRPHQWXPXQ ¶VLQL J|WUG÷
son derece güçlüdür.
18.8. Kütleli X-ÕúÕQoLIWOHULQLQVRQXoHYULPOHUL
d(.ø06(/(ù=$0$1/,/,.9(d(.ø06(/.$5$56,=/,.
<HWHULQFH NÕVD G|QHPOHU LoLQ oHNLPVHO NXYYHWOHU VSHUQRYD ROD\ÕQGDQ VRQUDNL ELU NDo PLO\RQ \ÕO LoHULVLQGH
yörüngeQLQ oHPEHUOHúPHVLQH YH Hú]DPDQOÕ G|QPH\H QHGHQ ROXUODU Hemen hemen çember yörüngelere sahip
olan X-ÕúÕQND\QDNODUÕ60&;-1, Cen X-3 ve Her X-oHPEHUVHOOHúPHROD\ÕQÕQ|UQHNOHULGLUOHUdHPEHUVHOOHúPH
VUHFL LoLQ EHOLUOH\LFL HWNHQ \ÕOGÕ]ODUÕQ Lo NÕVÕPODUÕQÕQ DNÕúNDQOÕ÷Õ YLVNR]LWH¶GÕU Zahn (1977)’ye göre, dinamik
ER]XOPDQÕQ úLGGHWLQLQ ÕúÕQÕP \ROX\OD D]DOWÕOPDVÕ kütleli X-ÕúÕQ oLIWOHUL LoLQ JHUHNOL RODQ NÕVD ]DPDQ |OoHNOHULQL
DoÕNOD\DELOLU
67
Darwin (1908) ve Counselman (1973), (çHPEHUOHúPH YH Hú]DPDQOÕ G|QPeden sonraki) yörünge ve dolanma
DoÕVDOPRPHQWXPODUÕRUDQÕQÕQ
J orb
≤3
J rot
(18.8)
ROPDVÕ GXUXPXQGD VLVWHPLQ oHNLPVHO RODUDN NDUDUVÕ] RODFD÷ÕQÕ
ve
VÕNÕúÕN ELOHúHQLQ KHOH]RQLN ELU \|UQJH LOH
ELOHúHQLQH\DNODúDFD÷ÕQÕLVSDWODPÕúODUGÕU'RODQPDDoÕVDOPRPHQWXPX
J rot = k 2 MωR 2
(18.9)
ile verilir, burada M ve R
QRUPDO \ÕOGÕ]ÕQ NWOH YH \DUÕoDSÕ
ω RQXQ DoÕVDO KÕ]Õ YH k ise gyration (dönme)
\DUÕoDSÕGÕU<|UQJHDoÕVDOPRPHQWXPXLVH
J orb =
ω MmA 2
M +m
ED÷ÕQWÕVÕ\ODYHULOLU EXUDGD
(18.10)
m
VÕNÕúÕNELOHúHQLQ NWOHVL YH
A
LVH ELOHúHQOHU DUDVÕQGDNL X]DNOÕNWÕU
LIDGHOHULQLQED÷ÕQWÕVÕQGDNXOODQÕOPDVÕ\ODG|QPH\DUÕoDSÕ
k2 >
(18.9) ve (18.10)
k için
mA 2
3R 2 ( M + m)
(18.11)
limitini elde ederiz. Kütleleri 15 M < M < 30 M DUDVÕQGD RODQ \ÕOGÕ]ODU LoLQ k2¶QLQ GH÷HUL ∼0.075 (ZAMS)
GH÷HULQGHQPHUNH]LKLGURMHQLQWNHQPHVLGH÷HULQHGúHU'H*UHYHGH/RRUH6XWDQW\R
Problem 18.5: ÇizHOJH¶GHYHULOHQVLVWHPOHULQNULWLNGH÷HUOHULQLKHVDSOD\ÕSVRQXoODUÕk2LoLQ\XNDUÕGDYHULOHQ
GH÷HUOHULOHNDUúÕODúWÕUÕQYHEXVLVWHPOHULQoHNLPVHONDUDUOÕOÕNODUÕQDLOLúNLQVRQXoODUHOGHHGLQL]
dø)7$7$5&$/$5ø/(.$d$.$7$5&$/$5,12/8ù808
P ¶GHQ ¶H NDGDU RODQ VLVWHPOHUGH 5RFKH OREX WDúPD\D EDúODUEDúODPD] RSWLN \ÕOGÕ]ÕQ ]DUIÕ KÕ]OD JHQLúOHU YH
kütle kayÕS KÕ]Õ ∼10-3 M \ÕO-1 GH÷HULQH XODúÕU 0DGGH LQFH ELU \Õ÷ÕúPD GLVNLQGH ELULNWLULOLU %XQXQOD ELUOLNWH,
Eddington limiti JHUH÷LQFH, aktaUÕODQ NWOHQLQ ∼10-7 M\ÕO-1 GH÷HULQGHQ GDKD E\N NÕVPÕ Q|WURQ \ÕOGÕ]Õ
WDUDIÕQGDQ WXWXODPD] \DQL DNWDUÕODQ NWOHQLQ E\N ELU NÕVPÕ VLVWHPL WHUNH HGHU 'LVNLQ Lo NÕVPÕ (GGLQJWRQ
ÕúÕWPDVÕQD XODúÕU E|\OFH PDGGHQLQ DWÕOPDVÕ ÕúÕQÕP EDVÕQFÕ \ROX\OD YH oR÷XQOXN
GR÷UXOWXGDROXúXU6KDNXUD
la da disk düzlemine dik
ve Sunyayev, 1975)
$WÕODQ PDGGH EHUDEHULQGH E\N PLNWDUGD |] DoÕVDO PRPHQWXP VÕNÕúÕN FLVPLQ \|UQJH DoÕVDO PRPHQWXPX
J|WUU YH E|\OHFH \|UQJH KÕ]OÕ ELU úHNLOGH GDUDOÕU JHULGH \DOQÕ]FD E\N NWOHOL ELOHúHQLQ HYULPOHúPLú
oHNLUGH÷LQLQ NDOGÕ÷Õ VRQD GR÷UX XODúÕOPDN ]HUH \|UQJHQLQ VSLUDO ELoLPLQGHNL GDUDOPDVÕ EHNOHQLU 6RQXQGD
HYULPOHúPLú KHO\XP \ÕOGÕ]Õ ELU VSHUQRYD ROD\Õ LOH SDWODU YH H÷HU oLIW VLVWHPLP WRSODP NWOHVLQLQ \DUÕVÕQGDQ
ID]ODVÕ DWÕOÕUVD oLIW VLVWHP GD÷ÕODELOLU %X VXUHWOH SDWODPD PHUNH]LQGHQ VDQL\HGH ELU NDo \] NLORPHWUH KÕ]OD
X]DNODúDQ LNL DGHW NDoDN UDG\R DWDUFDVÕ ROXúXU %LU oRN UDG\R oLIWL ELOLQPHNWHGLU 2QODUÕQ ELU OLVWHVL ED]Õ
|]HOOLNOHUL\OHELUOLNWHdL]HOJH¶GHYHULOPLúWLU
Çizelge 18.2. Çift atarcalar
øVLP
PSR 0656+64
PSR 0820+02
PSR 1913+16
PSR 1937+215
Pyör
24sa41dk
1100 gün
7sa 75dk
--
Patma (s)
0.196
0.865
0.059
0.0015
'ÕúPHUNH]OLN
0.06
0
0.617
68
a bir atma dönemine ve 108 gauss
12
gauss mertebesindeki daha
PHUWHEHVLQGH ]D\ÕI ELU PDQ\HWLN DODQD VDKLSWLU %LOLQHQ GL÷HU oLIW DWDUFDODU LVH LVLPOL PLOLVDQL\H DWDUFDVÕ PLOLVDQL\HOLN VRQ GHUHFH NÕV
E\N PDQ\HWLN DODQODUD YH GDKD X]XQ G|QHPOHUH VDKLSWLUOHU 0LOLVDQL\H DWDUFDODUÕ PXKWHPHOHQ LNL Q|WURQ
\ÕOGÕ]ÕQÕQELUOHúPHVL\OHROXúPDNWDGÕUODU
dLIW UDG\R DWDUFDVÕ 365 PXKWHPHOHQ NWOHOHUL
∼ 1.4 M RODQ LNL Q|WURQ \ÕOGÕ]Õ LoHUPHNWHGLU
<|UQJHQLQ NoOPHVL JHQHO UHODWLYLWH NXUDPÕQD J|UH oHNLPVHO ÕúÕQÕPÕQ VDOÕQPDVÕ\OD WDKPLQ HGLOGL÷L ELoLPGH
RUWD\DoÕ
kar ve bu durum 3 108\ÕOLoHULVLQGHVLVWHPLQELUOHúPHVLQHQHGHQROXU
69
BÖLÜM 19
7(.YHdø)7<,/',=/$5,1<$3,YH(95ø002'(//(5ø
19.1. <DSÕPRGHOOHUL
%ø567$1'$5'*h1(ù02'(/ø1ø1ød<$3,6,%DKFDOOYHDUN
log Teff = 3.76, log L = 0
Mr, kütle; T ve ρVÕFDNOÕNYH\R÷XQOXNGH÷HUOHULXD÷ÕUOÕNoDKLGURMHQEROOX÷Xdur.HVLNOLoL]JLÕúÕQÕPoHNLUGH÷L
LOHNRQYHNWLIGÕú]DUIDUDVÕQGDNLVÕQÕUÕJ|VWHUPHNWHGLU
Mr
log T
Lr/L
log ρ
R / R
Χ
0
0.0099
0.0385
0.1038
0.1620
0.2100
0.2580
0.3100
0.3900
0.4700
0.5500
0.6900
0.8300
0.9264
0.9602
0.9784
7.1903
7.1703
7.1399
7.0934
7.0569
7.0334
7.0086
6.9822
6.9430
6.9030
6.8615
6.7803
6.6675
6.5315
6.4346
6.3263
0.000
0.079
0.264
0.555
0.718
0.809
0.874
0.921
0.964
0.986
0.996
1.000
1.000
1.000
1.000
1.000
2.194
2.127
2.034
1.897
1.801
1.729
1.660
1.585
1.468
1.344
1.207
0.905
0.455
-0.111
-0.471
-0.772
0.000
0.046
0.076
0.113
0.138
0.156
0.173
0.190
0.217
0.245
0.275
0.336
0.430
0.554
0.641
0.718
0.355
0.417
0.497
0.592
0.641
0.668
0.688
0.702
0.716
0.724
0.728
0.731
0.732
0.732
0.732
0.732
0.9954
1.0000
5.9777
4.2366
1.000
1.000
-1.301
-6.553
0.849
1.000
6&+:$5=6&+ø/'.5ø7(5øø/(+(6$3/$1$10
ød<$3,6,
0.732
0.732
¶/ø.%ø5+202-(1=$0602'(/ø1ø1
log Teff = 4.5941, log L = 5.0418, R = 7.201 R, Mbol = -7.864, X = 0.7, Z = 0.03.
KonvHNWLIoHNLUGH÷LQNWOHVL0¶GLU.HVLNOLoL]JLNRQYHNWLIoHNLUGHNLOHÕúÕQÕPOÕGÕúNDWPDQODUDUDVÕQGDNL
VÕQÕUÕJ|VWHUPHNWHGLU
Mr/M
log Tc
log Lr/L
log ρc
R/R
log (∇rad/∇ad)
0
0.0400
0.0853
0.1542
0.2071
0.2778
0.3215
0.3721
0.4975
0.5749
0.7663
1.0189
7.5526
7.5504
7.5485
7.5462
7.5446
7.5427
7.5416
7.5404
7.5375
7.5359
7.5320
7.5273
........
3.555
3.860
4.093
4.206
4.314
4.367
4.419
4.518
4.565
4.696
4.736
0.473
0.470
0.463
0.458
0.454
0.449
0.447
0.444
0.437
0.433
0.424
0.413
0.000
0.269
0.345
0.421
0.465
0.514
0.541
0.568
0.628
0.694
0.730
0.807
0.950
0.930
0.913
0.884
0.877
0.860
0.850
0.839
0.814
0.784
0.768
0.730
70
1.5532
2.3424
3.0605
5.1221
6.5549
8.3171
12.6712
15.3354
7.5183
7.5062
7.4960
7.4683
7.4496
7.4265
7.3650
7.3221
4.842
4.925
4.967
5.019
5.031
5.038
5.337
5.337
0.392
0.363
0.339
0.280
0.243
0.200
0.067
-0.031
0.937
1.089
1.203
1.469
1.624
1.794
2.173
2.403
0.660
0.573
0.506
0.353
0.272
0.191
0.055
0.006
18.9169
21.9517
25.0006
27.7135
28.5000
30.0000
7.2558
7.1895
7.1015
6.9737
6.9098
4.5900
5.337
5.337
5.337
5.337
5.337
5.337
-0.178
-0.336
-0.596
-0.976
-1.182
-12.000
2.728
3.037
3.533
3.988
4.249
7.201
-0.034
-0.070
-0.093
-0.119
-0.093
........
19.1.36&+:$5=6&+ø/'.5ø7(5øø/(+(6$3/$1$10¶/ø.%ø5+202-(1=$0602'(/ø1ø1
ød<$3,6,
log Teff = 4.627, log L = 5.315, log Tsurf = 4.557, R = 8.487 R, Mbol = -8.548, X = 0.7, Z = 0.03.
.RQYHNWLIoHNLUGH÷LQNWOHVL0 ’dir. Kesikli çizgi, konvekti IoHNLUGHNLOHÕúÕQÕPOÕGÕúNDWPDQODUDUDVÕQGDNL
VÕQÕUÕJ|VWHUPHNWHGLU
Mr/M
log Tc
log Lr/L
log ρc
R/R
log (∇rad/∇ad)
0
0.0400
0.0976
0.2044
0.3175
0.4917
0.6566
0.7581
1.0088
1.5406
2.0342
5.1868
10.8218
15.1384
20.3504
24.2644
7.5687
7.5663
7.5644
7.5616
7.5592
7.5559
7.5531
7.5514
7.5476
7.5405
7.5344
7.5010
7.4470
7.4043
7.3456
7.2928
........
3.702
4.064
4.359
4.526
4.863
4.781
4.782
4.829
5.038
5.107
5.266
5.310
5.315
5.315
5.315
0.396
0.389
0.384
0.376
0.369
0.360
0.352
0.347
0.337
0.318
0.303
0.223
0.104
0.025
-0.121
-0.243
0.000
0.284
0.383
0.492
0.572
0.664
0.734
0.772
0.853
0.991
0.110
1.555
2.099
2.439
2.832
3.145
10.451
9.887
9.387
8.925
8.292
7.902
7.219
6.422
5.833
5.214
3.091
1.583
1.321
1.094
1.050
1.000
30.2375
35.2456
37.2063
38.0860
39.0724
39.7021
39.9600
7.1935
7.0644
6.9808
6.9224
6.8179
6.6658
6.4107
5.315
5.315
5.315
5.315
5.315
5.315
5.315
-0.472
-0.792
-1.110
-1.305
-1.631
-2.148
-2.930
3.688
4.353
4.771
5.047
5.527
6.168
7.013
0.865
0.829
0.789
0.815
0.779
0.808
0.858
71
19.1.4. ROXBURGH .5ø7(5øø/(+(6$3/$1$10¶/ø.%ø5+202-(1=$0602'(/ø1ø1ød
YAPISI
log Teff = 4.59, log L = 5.257, log Tsurf = 4.557, R = 9.416 R, Mbol = -8.40, X = 0.7, Z = 0.03.
.RQYHNWLIoHNLUGH÷LQNWOHVL0
VÕQÕUÕJ|VWHUPHNWHGLU
¶GLU.HVLNOLoL]JLNRQYHNWLIoHNLUGHNLOHÕúÕQÕPOÕGÕúNDWPDQODUDUDVÕQGDNL
Mr/M
0.0000
0.0231
0.1599
1.0666
6.3386
24.4712
31.8283
log Tc
7.5082
7.5066
7.5025
7.4874
7.4324
7.2444
7.0960
log Lr/L
.........
3.383
4.181
4.859
5.223
5.257
5.257
log ρc
0.193
0.189
0.179
0.142
0.027
-0.419
-0.728
R/R
0.000
0.276
0.529
1.012
1.936
3.635
4.415
log (∇rad/∇ad)
15.996
15.990
15.976
15.922
15.729
15.050
14.587
35.9454
39.9900
39.9999
40.0000
6.9791
6.1892
5.4209
4.5123
5.257
5.257
5.257
5.257
-1.065
-3.564
-6.141
-12.000
5.074
8.216
9.188
9.455
14.121
1.0854
7.856
0.000
19.2. 7HN\ÕOGÕ]ODULoLQHYULPPRGHOOHUL
g, çekim; Tc ve ρcVÕFDNOÕNYH\R÷XQOX÷XQPHUNH]GHNLGH÷HUOHULGLU
<DúODUPLO\RQ\ÕOELULPLQGHYHULOPLúWLU
19.2.1. ÖBEK I YILDIZLARI –%h<h.0(5.(=ø),5/$70$l = α.Hp ; α = 1
M = 1.2 M, X = 0.7, Z = 0.02 Chiosi ve ark. (1987)
<Dú
0
801.488
1625.39
2417.61
4287.25
4728.40
4740.35
4768.50
4885.65
4987.07
5030.63
5047.00
5108.61
5122.68
5131.03
5137.13
5138.97
log L/ L
log Teff
log g
log Tc
log ρc
Χc
0.326
0.369
0.416
0.464
0.556
0.768
0.703
0.650
0.900
1.200
1.400
1.500
2.002
2.297
2.599
2.999
3.189
3.816
3.816
3.815
3.810
3.778
3.795
3.754
3.727
3.702
3.690
3.681
3.675
3.645
3.625
3.603
3.573
3.558
4.443
4.402
4.349
4.283
4.063
3.917
3.818
3.766
3.416
3.066
2.829
2.708
2.085
1.710
1.322
0.798
0.549
7.2155
7.2354
7.2586
7.2835
7.3522
7.4987
7.4887
7.5593
7.5492
7.5235
7.5395
7.5518
7.6361
7.6803
7.7334
7.8136
7.8547
1.9794
2.0297
2.0765
2.1173
2.243
3.03334
3.7985
4.2662
4.8958
5.0877
5.1761
5.2163
5.4366
5.5326
5.6335
5.782
5.8627
0.700
0.599
0.501
0.400
0.101
0.000
0
0
0
0
0
0
0
0
0
0
0
M = 1.5 M, X = 0.7, Z = 0.02 Chiosi ve ark. (1987)
<Dú
0
579.907
1150.3
1974.21
2735.46
2738.44
2741.12
2746.38
log L/ L
log Teff
log g
log Tc
log ρc
Χc
0.738
0.791
0.847
0.942
1.205
1.055
1.012
1.099
3.885
3.881
3.872
3.839
3.816
3.749
3.73
3.712
4.404
4.336
4.245
4.017
3.661
3.545
3.511
3.354
7.2754
7.2923
7.3108
7.3435
7.543
7.5388
7.5691
7.6171
1.9211
1.9427
1.9606
2.0057
2.8594
3.5296
3.7613
4.0529
0.7
0.604
0.499
0.3010
0
0
0
0
72
2755.5
2765.95
2771.03
2780.27
2784.53
2790.63
2800.37
2803.44
2804.45
1.402
1.799
2.000
1.854
2.000
2.200
2.611
2.802
2.877
3.694
3.670
3.657
3.667
3.658
3.644
3.614
3.599
3.594
2.976
2.485
2.233
2.419
2.235
1.979
1.450
1.199
1.101
7.7019
7.7935
7.8391
7.9102
7.9066
7.8942
7.8915
7.9024
7.9756
4.4237
4.774
4.9375
5.223
5.3006
5.4002
5.5784
5.6585
5.6804
0
0
0
0
0
0
0
0
0
M = 2 M, X = 0.7, Z = 0.02 Chiosi ve ark. (1987)
<Dú
0
326.237
579.747
960.011
1263.96
1266.42
1268.66
1272.92
1273.49
1274.44
1280.66
1321.98
1374.56
1416.58
1418.71
1418.96
1420.75
1429.74
1443.19
1445.92
1447.9
1448.15
1448.67
1449.03
1449.08
log L/ L
log Teff
log g
log Tc
log ρc
Xc/Yc
1.228
1.298
1.363
1.481
1.656
1.522
1.798
2.465
2.560
2.387
1.810
1.751
1.808
1.997
2.200
2.122
2.047
2.105
2.408
2.608
2.905
3.002
3.200
3.288
3.307
3.98
3.974
3.964
3.921
3.849
3.724
3.691
3.641
3.634
3.648
3.691
3.697
3.697
3.682
3.666
3.672
3.678
3.673
3.649
3.633
3.61
3.602
3.586
3.579
3.578
4.420
4.326
4.220
3.933
3.470
3.104
2.693
1.829
1.704
1.932
2.683
2.767
2.709
2.458
2.192
2.293
2.392
2.317
1.918
1.654
1.265
1.135
0.873
0.757
0.732
7.3256
7.3395
7.353
7.3824
7.5304
7.6338
7.74
7.9653
8.035
8.0425
8.0526
8.0642
8.0986
8.2211
8.2455
8.2015
8.1091
8.1099
8.1468
8.1396
8.0908
8.0773
8.0373
8.0054
8.0005
1.7883
1.7933
1.7988
1.8291
2.262
3.5484
4.0396
4.754
4.793
4.5359
4.4193
4.3396
4.259
4.5591
4.845
4.9289
5.0465
5.1821
5.5317
5.7087
5.9537
5.9967
6.0851
6.1411
6.1475
0.7
0.599
0.501
0.29
0.001
0
0
0.98
0.979
0.972
0.949
0.802
0.404
0.011
0
0
0
0
0
0
0
0
0
0
0
M = 3 M, X = 0.7, Z = 0.02 Chiosi ve ark. (1987)
<Dú
log L/ L
log Teff
log g
log Tc
log ρc
Xc/Yc
0
104.416
227.232
321.77
398.08
424.186
428.629
429.117
429.544
429.844
430.001
430.429
434.237
460.441
463.855
463.863
463.876
463.913
465.175
1.902
1.968
2.072
2.173
2.269
2.316
2.470
2.236
2.595
2.807
2.919
3.005
2.602
2.506
2.718
2.726
2.731
2.694
2.761
4.099
4.094
4.08
4.05
3.982
3.945
4.016
3.707
3.658
3.64
3.632
3.624
3.659
3.679
3.652
3.651
3.651
3.655
3.647
4.400
4.312
4.152
3.932
3.565
3.366
3.500
2.498
1.942
1.657
1.511
1.396
1.940
2.113
1.794
1.783
1.776
1.828
1.733
7.3766
7.3871
7.4041
7.4254
7.4628
7.51
7.6512
7.7485
7.8743
7.963
8.0104
8.0822
8.1022
8.1949
8.338
8.3347
8.3202
8.2959
8.2129
1.5763
1.5703
1.5726
1.5897
1.6632
1.8075
2.4675
3.435
3.8898
4.1685
4.306
4.185
3.992
4.006
4.5301
4.5545
4.5784
4.6308
5.0882
0.7
0.608
0.47
0.31
0.11
0.19
0
0
0
0
0.98
0.97
0.901
0.1
0
0
0
0
0
73
466.92
467.909
468.198
468.498
468.619
468.706
468.733
468.736
3.011
3.327
3.503
3.803
4.001
3.921
4.089
4.100
3.625
3.600
3.586
3.562
3.549
3.554
3.545
3.545
1.396
0.979
0.744
0.349
0.100
0.200
0.005
0.018
8.2536
8.3185
8.3354
8.2942
8.2143
8.1358
8.1068
8.1034
5.3714
5.6757
5.8494
6.1699
6.4017
6.6541
6.7247
8.1034
0
0
0
0
0
0
0
0
M = 5 M, X = 0.7, Z = 0.02 Chiosi ve ark. (1987)
<Dú
log L/ L
log Teff
log g
log Tc
log ρc
Xc/Yc
0
32.6348
60.3164
92.938
119.289
120.591
120.671
120.68
120.729
120.798
120.825
120.888
120.971
123.484
126.624
128.198
128.212
128.216
128.221
128.344
128.515
128.629
128.659
128.673
128.679
2.712
2.789
2.87
3.011
3.184
3.238
3.312
3.272
3.244
3.115
3.401
3.603
3.724
3.405
3.452
3.497
3.527
3.542
3.556
3.699
3.904
4.101
4.222
4.402
4.463
4.236
4.232
4.223
4.193
4.100
4.136
4.171
4.162
4.016
3.667
3.625
3.608
3.598
3.629
3.702
3.622
3.618
3.617
3.615
3.602
3.585
3.569
3.565
3.556
3.554
4.358
4.266
4.147
3.887
3.343
3.431
3.498
3.502
2.947
1.680
1.226
0.954
0.793
1.240
1.482
1.115
1.072
1.051
1.031
0.835
0.563
0.304
0.162
0.052
0.122
7.4308
7.4414
7.4546
7.4806
7.5646
7.6405
7.7304
7.7303
7.7929
7.9032
7.9485
8.0486
8.1348
8.1696
8.2209
8.3761
8.401
8.4074
8.4028
8.4189
8.5101
8.5914
8.5634
8.4149
8.3387
1.2975
1.2928
1.2874
1.3055
1.5124
1.7308
2.2045
2.3533
2.8427
3.2947
3.449
3.7669
3.7512
3.5317
3.5617
4.0079
4.1124
4.171
4.2189
4.8225
4.3841
6.0799
6.51
6.8788
7.0239
0.7
0.599
0.486
0.296
0.021
0.001
0
0
0
0
0
0
0.972
0.701
0.223
0.001
0
0
0
0
0
0
0
0
0
M = 9 M, X = 0.7, Z = 0.02 Chiosi ve ark. (1987)
<Dú
log L/ L
log Teff
log g
log Tc
log ρc
Xc/Yc
0
8.64708
16.8651
26.5255
34.5502
35.0071
35.0247
35.0273
35.0299
35.0557
35.9597
36.5093
36.9585
36.9733
36.9742
36.9908
36.9992
37.0154
37.0195
3.577
3.654
3.746
3.898
4.101
4.129
4.101
4.004
4.352
4.524
4.282
4.337
4.350
4.393
4.401
4.498
4.584
4.690
4.707
4.378
4.376
4.369
4.342
4.243
4.247
3.799
3.627
3.587
3.575
3.601
3.784
3.59
3.586
3.585
3.577
3.572
3.566
3.565
4.315
4.23
4.111
3.852
3.253
3.241
1.476
0.887
0.376
0.157
0.503
1.162
0.392
0.331
0.32
0.191
0.085
0.044
0.064
7.4852
7.4954
7.5086
7.5348
7.6212
7.8961
8.0422
8.0638
8.0855
8.1952
8.2383
8.2770
8.4120
8.4746
8.4863
8.5728
8.6183
8.7388
8.8343
0.996
0.99
0.9872
1.0052
1.2131
2.3793
2.9697
3.0441
3.1163
3.2652
3.16
3.2245
3.6037
3.8043
3.8468
4.3552
4.5916
5.2874
5.8423
0.7
0.607
0.494
0.302
0.022
0
0
0
0.98
0.969
0.514
0.214
0.004
0
0
0
0
0
0
74
19.2.2. ÖBEK I YILDIZLARI –g1(0/ø.219(.7ø)FIRLATMA: l = α.Hp ; α = 1.5 -1 1.75; Roxburgh
M = 6 M, X = 0.7, Z = 0.03 Doom (1987)
<Dú
M/M
- M
log L/L
log Teff
Χat
Mcc
Χc/Yc
0.0000
1.1903
2.0266
3.2399
4.8807
6.9954
9.6120
12.7389
16.6400
21.3344
26.4344
31.1333
35.5172
39.0643
42.3994
45.3914
48.1764
50.7548
55.4573
59.0801
62.3067
65.2278
67.9515
69.0181
69.5051
69.7308
69.8946
69.9393
69.9460
69.9560
69.9626
69.9829
69.9895
69.9962
69.9995
70.0062
70.0128
70.0228
70.0295
6.0000
NML (kütle
2.9730
2.9730
2.9750
2.9810
2.9890
3.0050
3.0140
3.0310
3.0530
3.0790
3.1090
3.1380
3.1690
3.1930
3.2180
3.2410
3.2610
3.2800
3.3170
3.3460
3.3720
3.3950
3.4200
3.4360
3.4490
3.4610
3.4870
3.5270
3.5450
3.5310
3.4950
3.4840
3.4880
3.4870
3.4850
3.4770
3.4650
3.4420
3.4220
4.2660
4.2660
4.2650
4.2650
4.2640
4.2630
4.2620
4.2600
4.2570
4.2530
4.2490
4.2440
4.2380
4.2320
4.2260
4.2190
4.2120
4.2050
4.1880
4.1710
4.1540
4.1360
4.1200
4.1180
4.1210
4.1260
4.1430
4.1680
4.1750
4.1690
4.1490
4.0610
4.0270
3.9900
3.9910
3.9270
3.8770
3.7780
3.6700
0.7000
2.4000
2.3300
2.3400
2.3400
2.3200
2.31
2.2800
2.2600
2.2000
2.1800
2.1000
2.0500
1.9700
1.9200
1.8600
1.7800
1.7300
1.7100
1.6000
1.4800
1.3900
1.3200
1.2100
1.1700
1.1600
1.1600
1.1600
1.0300
0.7600
0.7600
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.7000
0.6960
0.6930
0.6790
0.6690
0.6560
0.6400
0.6180
0.5910
0.5580
0.5270
0.4990
0.4580
0.4250
0.3940
0.3940
0.3340
0.2710
0.2140
0.1600
0.1070
0.0480
0.0230
0.0110
0.0050
0.0010
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
ND\EÕ\RN
6.0000
0.7000
75
M = 10 M, X = 0.7, Z = 0.03 Doom (1987)
<Dú
M/M
0.0000
0.2276
0.4305
0.7491
1.2134
1.8398
2.6461
3.6429
4.8322
6.8142
8.9101
10.8589
12.6354
14.2517
17.0242
19.2400
20.1640
22.3847
23.5933
25.0516
25.8907
27.0125
27.2854
27.3565
27.3642
27.3672
27.3688
27.3704
27.3736
27.3767
27.3791
27.3815
27.3839
27.3863
27.3887
27.3895
10
10
-M
NML
log L/L
3.7160
3.7160
3.7100
3.7130
3.7190
3.7280
3.7400
3.7550
3.7730
3.8050
3.8400
3.9750
3.9090
3.9410
3.9970
4.0530
4.0730
4.1320
4.1650
4.2070
4.2320
4.2730
4.2940
4.3210
4.3400
4.3560
4.3690
4.3690
4.3360
4.3090
4.3040
4.3060
4.3090
4.3080
4.3020
4.0640
log Teff
4.3870
4.3870
4.3970
4.3870
4.3970
4.3870
4.3860
4.3850
4.3830
4.3800
4.3770
4.3740
4.3700
4.3650
4.3550
4.3410
4.3340
4.3120
4.2950
4.2690
4.2510
4.2270
4.2290
4.2540
4.2680
4.2770
4.2810
4.2800
4.2590
4.2150
4.1680
4.1080
4.0310
3.9260
3.7510
3.5930
Χat
Mcc
Χc/Yc
0.7000
4.9300
4.7700
4.8700
4.8700
4.8600
4.8400
4.8200
4.7600
4.7500
4.6300
4.5800
4.4600
4.4100
4.2800
4.1800
4.0000
3.8900
3.7200
3.5900
3.4300
3.3300
3.1600
3.1300
3.0600
2.9100
2.2900
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.7000
0.6980
0.6960
0.6930
0.6880
0.6800
0.6700
0.6570
0.6410
0.6130
0.5800
0.5470
0.5140
0.4810
0.4190
0.3540
0.3240
0.2440
0.1940
0.1270
0.0840
0.0220
0.0050
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.7000
76
M = 20 M, X = 0.7, Z = 0.03; α = 1.5 Prantzos ve ark. (1987)
<Dú
M/M
-M
log L/L
log Teff
Χat
Mcc
Χc/Yc
0.0000
0.1546
0.4541
0.6944
1.0039
1.8443
2.6067
3.5196
4.3706
5.1230
5.7840
6.3970
6.9527
7.4351
7.8351
8.1843
8.7780
9.2394
9.9342
10.0730
10.1986
10.3160
10.7062
11.0719
11.2561
11.2834
11.2969
11.3101
11.3104
11.3118
11.3138
11.3150
11.3160
20.0000
19.9900
19.9700
19.9500
19.9200
19.8400
19.7600
19.6500
19.5300
19.4000
19.2800
19.1500
19.0200
18.8900
18.7700
18.6500
18.4200
18.2100
17.7200
17.6300
17.5400
17.1800
16.7300
16.4500
16.4000
16.3800
16.3600
16.3600
16.3600
16.3600
16.3500
16.3500
16.3500
7.72E-8
7.61E-8
7.90E-8
8.25E-8
8.68E-8
9.99E-8
1.14E-8
1.33E-7
1.55E-7
1.77E-7
2.01E-7
2.20E-7
2.52E-7
2.82E-7
3.14E-7
3.48E-7
4.19E-7
4.94E-7
6.66E-7
7.15E-7
7.61E-7
8.10E-7
1.03E-6
1.42E-6
1.67E-6
1.64E-6
1.62E-6
1.66E-6
1.68E-6
1.83E-6
2.29E-6
2.69E-6
3.31E-6
4.5730
4.5740
4.5790
4.5870
4.5970
4.6270
4.6550
4.6890
4.7240
4.7560
4.7840
4.8090
4.8340
4.8570
4.8770
4.8960
4.9280
4.9550
4.9980
5.0070
5.0150
5.0230
5.0520
5.0820
5.1040
5.1090
5.1140
5.1340
5.1370
5.1550
5.1800
5.1820
5.1780
5.5200
4.5200
4.5180
4.5170
4.5160
4.5160
4.5140
4.5050
4.5000
4.5000
4.4900
4.4860
4.4780
4.4710
4.4630
4.4550
4.4380
4.4210
4.3840
4.3730
4.3640
4.3660
4.3150
4.2580
4.2380
4.2490
4.2590
4.2790
4.2910
4.2730
4.2300
4.1750
4.0970
0.7000
0.7000
0.7000
0.7000
0.7000
0.7000
0.7000
0.7000
0.7000
0.7000
0.7000
0.7000
0.7000
0.7000
0.7000
0.7000
0.7000
0.7000
0.7000
0.7000
0.7000
0.7000
0.7000
0.7000
0.7000
0.7000
0.7000
0.7000
0.7000
0.7000
0.7000
0.7000
0.7000
12.7200
12.9100
12.9100
12.9100
12.8900
12.8800
12.6800
12.4700
12.2500
11.9100
11.1600
11.6300
11.6300
11.4500
11.2100
11.1400
11.0700
10.8000
10.3310
10.2710
10.2130
0.7000
0.6960
0.6870
0.6790
0.6690
0.6390
0.6100
0.5720
0.5340
0.4970
0.4620
0.4270
0.3930
0.3620
0.3340
0.3080
0.2610
0.2220
0.1560
0.1420
0.1290
0.1170
0.0740
0.0300
0.0070
0.0040
0.0020
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
77
M = 40 M, X = 0.7, Z = 0.03; α = 1.5 Prantzos ve ark. (1987)
<Dú
M/M
-M
log L/L
log Teff
Χat
Mcc
Χc/Yc
0.0000
0.1537
0.2499
0.3917
0.5680
0.7865
1.1048
1.4842
2.0537
2.5516
2.9816
3.3591
3.6630
3.9588
4.1702
4.3708
4.6966
4.8516
4.9890
5.1114
5.2257
5.4254
5.5168
5.6967
5.8970
6.0244
6.2314
6.3157
6.3886
6.4002
6.4010
6.4016
6.4024
6.4028
6.4040
6.4061
6.4063
6.4085
6.4101
6.4192
6.4277
6.4348
6.4412
6.4486
6.4925
6.5208
6.5528
6.5923
6.6077
6.6401
6.6605
6.6955
6.7074
6.7822
6.7870
40.0000
39.9300
39.8800
39.8200
39.7300
39.6100
39.4600
39.1800
38.7800
38.3800
37.9900
37.5900
37.2300
36.8700
36.5400
36.2300
35.6500
35.3400
35.0400
34.7500
34.4600
33.9000
33.6100
32.9900
32.1800
31.6200
30.6500
30.2400
29.8900
29.8400
29.8300
29.8200
29.8200
29.8100
29.8000
28.3600
28.2900
28.1600
28.0700
27.5200
27.0100
26.5800
26.2000
25.7600
23.1200
21.4200
19.5000
17.1300
16.2100
14.2600
13.0400
10.9400
10.2300
5.7400
4.0000
4.68E-7
4.68E-7
4.84E-7
5.02E-7
5.28E-7
5.61E-7
5.99E-7
6.48E-7
7.59E-7
8.52E-7
9.90E-7
1.10E-6
1.25E-6
1.36E-6
1.50E-6
1.64E-6
1.93E-6
2.09E-6
2.27E-6
2.44E-6
2.63E-6
3.03E-6
3.25E-6
3.73E-6
4.31E-6
4.50E-6
4.88E-6
4.87E-6
4.56E-6
6.49E-6
7.56E-6
8.03E-6
8.67E-6
9.41E-6
1.66E-5
5.43E-4
6.00E-5
6.00E-5
6.00E-5
6.00E-5
6.00E-5
6.00E-5
6.00E-5
6.00E-5
6.00E-5
6.00E-5
6.00E-5
6.00E-5
6.00E-5
6.00E-5
6.00E-5
6.00E-5
6.00E-5
6.00E-5
6.00E-5
5.2730
5.2720
5.2760
5.2830
5.2920
5.3050
5.3200
5.3410
5.3720
5.4010
5.4280
5.4530
5.4730
5.4930
5.5110
5.5270
5.5540
5.5670
5.5790
5.5910
5.6010
5.6220
5.6310
5.6520
5.6750
5.6910
5.7180
5.7340
5.7510
5.8370
5.8590
5.8680
5.8770
5.8810
5.8970
5.9110
5.9150
5.9310
5.9450
5.8960
5.8190
5.7980
5.7770
5.7670
5.7070
5.6590
5.5750
5.5220
0.4800
5.3980
5.3350
5.2080
5.1560
4.6580
4.4700
4.6110
4.6110
4.6100
4.6090
4.6080
4.6060
4.6040
4.6170
4.5960
4.5930
4.5860
4.5810
4.5730
4.5670
4.5610
4.5540
4.5390
4.5310
4.5220
4.5140
4.5060
4.4900
4.4810
4.4670
4.4570
4.4670
4.4900
4.5140
4.5620
4.5540
4.5310
4.5220
4.5070
4.4850
4.3110
4.2950
4.6130
4.6170
4.6040
4.7060
4.7190
4.7220
4.7220
4.7220
4.7100
4.6990
4.6820
4.6700
4.6610
4.6430
4.6300
4.6000
4.5890
4.4720
4.4000
0.7000
0.7000
0.7000
0.7000
0.7000
0.7000
0.7000
0.7000
0.7000
0.7000
0.7000
0.7000
0.7000
0.7000
0.7000
0.7000
0.7000
0.7000
0.7000
0.7000
0.7000
0.7000
0.7000
0.6990
0.6890
0.6680
0.6080
0.5750
0.5400
0.5390
0.5390
0.5380
0.5380
0.3700
0.5360
0.3810
0.3730
0.3560
0.3360
0.2630
0.2070
0.1400
0.0040
0.0040
0.7800
0.7190
0.7170
0.6320
0.6020
0.5420
0.5090
0.4530
0.4360
0.3490
0.3360
31.6600
31.9300
31.8400
31.7400
31.6200
31.2500
31.0700
30.8800
30.3000
29.9100
29.4200
29.1300
28.8100
28.5200
28.2600
28.0600
27.6900
275300
27.3700
27.2300
27.1000
26.8700
26.7800
26.5800
26.3400
26.1900
25.8900
25.7500
25.7100
0.0000
0.0200
3.1400
9.8800
13.6900
22.6500
23.7800
23.9700
23.1500
23.8800
24.6000
25.0100
24.7500
24.7700
24.3500
21.7600
20.0800
18.2000
15.7800
14.8600
12.9500
11.7400
9.6000
8.8800
4.4400
3.1800
7.0000
0.6920
0.6860
0.6770
0.6650
0.6510
0.6320
0.6000
0.5550
0.5130
0.4740
0.4380
0.4060
0.3750
0.3480
0.3240
0.2820
0.2610
0.2420
0.2240
0.2070
0.1760
0.1620
0.1310
0.0970
0.0740
0.0340
0.0170
0.0020
0.0000
0.0000
0.9700
0.9700
0.9700
0.9690
0.9660
0.9660
0.9630
0.9610
0.9430
0.9230
0.9140
0.8990
0.8820
0.8480
0.7810
0.6540
0.5790
0.5520
0.4980
0.4660
0.4180
0.4030
0.3300
0.3000
78
M = 60 M, X = 0.7, Z = 0.03; α = 1.5 Prantzos ve ark. (1987)
<Dú
M/M
-M
log L/L
log Teff
Χat
Mcc
Χc/Yc
0.1256
0.3215
0.4665
0.6465
0.8615
1.6434
2.0141
2.3233
2.5968
2.8898
3.0756
3.4525
3.6088
4.0021
4.2543
4.4367
4.5687
4.7614
4.8953
5.0004
5.0084
5.0099
5.0116
5.0126
5.0143
5.0252
5.0296
5.0357
5.0433
5.0472
5.0557
5.0764
5.0901
5.1197
5.1461
5.1823
5.2392
5.2899
5.3325
5.3826
5.4253
5.4624
5.4905
5.5139
5.5160
59.8700
59.6400
59.4600
59.2300
58.9400
57.7000
57.0200
56.3800
56.7500
55.7490
54.4500
53.2100
52.6200
50.8900
49.5900
48.5500
47.7800
46.6200
45.7900
45.1400
45.0900
45.0800
45.0300
44.9700
44.8700
44.2200
43.9600
43.5900
43.1400
42.9000
42.3900
41.1500
40.3300
38.5500
36.9700
34.7900
31.3800
28.3400
25.7800
22.7800
20.2200
17.9900
16.3100
14.9000
14.7700
1.11E-6
1.20E-6
1.26E-6
1.32E-6
1.42E-6
1.71E-6
1.96E-6
2.17E-6
2.41E-6
2.77E-6
3.03E-6
3.62E-6
3.94E-6
4.81E-6
5.55E-6
5.81E-6
5.90E-6
6.15E-6
6.22E-6
5.90E-6
5.74E-6
6.54E-6
6.00E-5
6.00E-5
6.00E-5
6.00E-5
6.00E-5
6.00E-5
6.00E-5
6.00E-5
6.00E-5
6.00E-5
6.00E-5
6.00E-5
6.00E-5
6.00E-5
6.00E-5
6.00E-5
6.00E-5
6.00E-5
6.00E-5
6.00E-5
6.00E-5
6.00E-5
6.00E-5
5.6200
5.6300
5.6390
5.6490
5.6650
5.7120
5.7390
5.7630
5.7790
5.8070
5.8220
5.8560
5.8690
5.9090
5.9460
5.9630
5.9810
6.0080
6.0290
6.0530
6.0920
6.1520
6.1760
6.1810
6.1420
6.1170
6.1110
6.1060
6.1030
6.1000
6.0930
6.0830
6.0750
6.0470
6.0330
5.9960
5.9530
5.8890
5.8390
5.7850
5.7000
5.6390
5.5860
5.5530
5.5690
4.6490
4.6460
4.6440
4.6420
4.6400
4.6350
4.6290
4.6250
4.6180
4.6100
4.6040
4.5930
4.5870
4.5840
4.5890
4.6040
4.6240
4.6530
4.6830
4.7360
4.7960
4.8270
4.7350
4.7280
4.7550
4.7750
4.7790
4.7840
4.7880
4.7900
4.7910
4.4900
4.7900
4.7840
4.7820
4.7750
4.7650
4.7550
4.7450
4.7340
4.7170
4.7040
4.6960
4.6930
4.6980
0.7000
0.7000
0.7000
0.7000
0.7000
0.7000
0.7000
0.7000
0.7000
0.7000
0.7000
0.6990
0.6990
0.6540
0.6040
0.5540
0.4700
0.4140
0.3420
0.2890
0.2850
0.2840
0.2810
0.2770
0.2690
0.2250
0.0230
0.1650
0.1060
0.0660
0.0000
0.8760
0.8580
0.7810
0.7120
0.6070
0.4610
0.3470
0.2600
0.1970
0.1160
0.0760
0.0420
0.0230
0.0210
52.0500
51.7590
51.3040
51.1420
51.9340
49.3040
48.4230
47.8410
47.8410
47.4030
46.6930
46.2940
45.7050
45.3910
44.5810
43.8870
43.4170
43.2190
42.8060
42.4580
27.9650
0.0930
25.1000
39.2480
41.7150
42.0050
42.0130
41.9290
41.7630
41.6510
41.1830
39.9530
39.0970
37.4490
35.8030
33.7460
30.2180
27.2770
24.7030
21.6940
19.1840
16.8310
15.1000
13.2740
10.8520
0.6910
0.6740
0.6620
0.6450
0.6250
0.0544
0.5020
0.4640
0.4290
0.3890
0.3620
0.3050
0.2790
0.2110
0.1630
0.1260
0.0990
0.0560
0.0260
0.0020
0.0000
0.0000
0.9690
0.9680
0.9650
0.9470
0.9370
0.9210
0.8980
0.8860
0.8600
0.8000
0.7600
0.6790
0.6090
0.5190
0.3910
0.2900
0.2150
0.1490
0.0860
0.0470
0.0210
0.0010
0.0000
79
M = 80 M, X = 0.7, Z = 0.03; α = 1.5 Prantzos ve ark. (1987)
<Dú
M/M
-M
log L/L
log Teff
Χat
Mcc
Χc/Yc
0.0000
0.1142
0.1900
0.2925
0.4246
0.5865
0.7852
1.4952
1.7614
2.0253
2.3109
2.5306
2.7320
2.9547
3.2032
3.4022
3.8650
4.1352
4.3768
4.3817
4.3830
4.3855
4.3865
4.3899
4.3917
4.4046
4.4127
4.4307
4.4707
4.5076
4.5635
4.6007
4.6360
4.6851
4.7282
4.7596
4.8005
4.8045
4.8050
4.8060
80.0000
79.7900
79.6500
79.4400
79.1600
78.8000
78.3300
76.3900
75.5600
74.6600
73.5600
72.6200
71.6700
70.5000
69.0600
67.8000
64.6300
62.5400
60.5100
60.4300
60.3500
60.2000
60.1400
59.9700
59.8800
59.1100
58.6200
57.5400
55.1400
52.9200
49.5700
47.3400
45.2200
42.2700
39.6900
37.8000
35.2100
35.1100
35.0800
35.0200
1.89E-6
1.91E-6
1.98E-6
2.06E-6
2.15E-6
2.15E-6
2.45E-6
2.96E-6
3.27E-6
3.59E-6
4.11E-6
4.49E-6
4.91E-6
5.57E-6
6.05E-6
6.61E-6
7.05E-6
8.10E-6
7.37E-6
6.00E-5
6.00E-5
6.00E-5
6.00E-5
6.00E-5
6.00E-5
6.00E-5
6.00E-5
6.00E-5
6.00E-5
6.00E-5
6.00E-5
6.00E-5
6.00E-5
6.00E-5
6.00E-5
6.00E-5
6.00E-5
6.00E-5
6.00E-5
6.00E-5
5.8480
5.9480
5.8500
5.8560
5.8630
5.8730
5.8890
5.9370
5.9570
5.9730
5.9950
6.0160
6.0350
6.0560
6.0850
6.1050
6.1570
6.2000
6.2490
6.3700
6.3960
6.4110
6.3740
6.2580
6.3010
6.2970
6.2930
6.2890
6.2700
6.2520
6.2330
6.2090
6.1840
6.1600
6.1296
6.1080
6.0940
6.1010
6.1080
6.1280
406670
4.6660
4.6680
4.6660
4.6640
4.6610
4.6590
4.6530
4.6490
4.6440
4.6360
4.6320
4.6310
4.6270
4.6340
4.6390
4.6880
4.7140
4.8130
4.7830
4.7530
4.8160
4.8120
5.0120
4.8230
4.8300
4.8310
4.8310
4.8300
4.8260
4.8260
4.8200
4.8180
4.8130
4.8090
4.8080
4.8110
4.8150
4.8180
4.8260
0.7000
0.7000
0.7000
0.7000
0.7000
0.7000
0.7000
0.7000
0.7000
0.7000
0.7000
0.7000
0.6870
0.6570
0.6210
0.5810
0.4060
0.2850
0.1510
0.1450
0.1390
0.1300
0.1280
0.1220
0.1180
0.0590
0.0000
0.9070
0.8230
0.7040
0.5320
0.4320
0.3850
0.2340
0.1700
0.1040
0.1510
0.0430
0.0410
0.0400
71.9000
71.6630
71.6670
71.4410
71.0330
70.6030
69.7680
67.7370
66.8680
66.2150
65.3680
64.7470
64.1890
63.5770
62.8630
62.1550
60.7490
59.2960
58.3610
37.1730
45.3360
52.5240
56.5870
59.1570
58.1090
57.8080
57.3740
56.2930
53.9340
51.7670
48.4050
46.3280
44.2570
41.2340
38.7740
36.7930
34.1190
33.1140
32.1400
0.0000
7.000
0.6900
0.6820
0.6720
0.6580
0.6400
0.6180
0.5300
0.4930
0.4560
0.4130
0.3780
0.3440
0.3050
0.2590
0.2190
0.1250
0.0610
0.0000
0.0000
0.0000
0.9590
0.9560
0.9520
0.9480
0.9090
0.8810
0.8200
0.8740
0.5820
0.4320
0.3440
0.2680
0.1740
0.1050
0.0580
0.0060
0.0010
0.0000
0.0000
80
19.2.3.ÖBEK I YILDIZLARI –.hdh.0(5.(=øFIRLATMA I=aHP; α=0.25
M = 1 M; X = 0.7; Z = 0.02; Maeder ve Meynet (1988)
<$ù
M/M
− M
log L/L
log Teff
7.000+06
3.249+09
5.670+09
7.277+09
8447+09
9.197+09
9.701+09
1.039+10
1.098+10
1.158+10
1.173+10
1.191+10
1.197+10
1.195+10
1.226+10
1.235+10
1.243+10
1.248+10
1.253+10
1.257+10
1.260+10
1.263+10
1.265+10
1.267+10
1.268+10
1.270+10
1.271+10
1.273+10
1.274+10
1.274+10
1.275+10
1.275+10
1.276+10
1.276+10
1.276+10
1.277+10
1.277+10
1.277+10
1.277+10
1.277+10
1.277+10
1.277+10
1.277+10
1.000
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
I
1
l
1
1
0.999
0.999
0.998
0.998
0.997
0.996
0.994
0.993
0.992
0.99
0.988
0.985
0.982
0.969
0.962
0.953
0.941
0.926
0.905
0.877
0.837
0.784
NML
NML
NML
NML
NML
NML
NML
NML
NML
NML
NML
NML
NML
NML
NML
NML
NML
NML
NML
NML
-10.968
-10.813
-10.658
-10.5
-10.343
-10.108
-10.19
-9.862
-9.704
-9.536
-9.373
-9.197
-9.043
-8.876
-8.45
-8.28
-8.095
-7.918
-7.744
-7.746
-7.342
-7.145
-6.945
-0.207
-0.075
0.006
0.069
0.118
0.156
0.186
0.234
0.080
0.322
0.327
0.321
0.319
0.318
0.428
0.517
0.622
0.712
0.820
0.921
1.023
1.122
1.221
1.321
1.42
1.564
1.517
1.717
1.815
1.915
2.015
2.115
2.215
2.315
2.56
2.66
2.76
2.86
2.96
3.06
3.16
3.26
3.346
3.739
3.751
3.757
3.759
3.759
3.758
3.757
3.755
3.750
3.734
3.725
3.710
3.704
3.700
3.678
3.676
3.673
3.671
3.668
3.666
3.663
3.66
3.656
3.653
3.648
3.639
3.643
3.631
3.626
3.617
3.612
3.602
3.598
3.590
3.563
3.555
3.540
3.529
3.520
3.501
3.481
3.468
3.446
Xat
0.700
0.700
0.700
0.700
0.700
0.700
0.700
0.700
0.700
0.700
0.700
0.700
0.700
0.700
0.698
0.696
0.692
0.689
0.686
0.684
0.682
0.681
0.681
0.681
0.681
0.681
0.681
0.681
0.681
0.681
0.681
0.681
0.681
0.681
0.681
0.681
0.681
0.681
0.681
0.681
0.681
0.681
0.681
Mcc
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Xc/Yc
0.700
0.472
0.279
0.143
0.031
0.002
0.000
0.98
0.98
0.98
0.98
0.98
0.98
0.98
0.98
0.98
0.98
0.98
0.98
0.98
0.98
0.98
0.98
0.98
0.98
0.98
0.98
0.18
0.98
0.98
0.98
0.98
0.98
0.98
0.98
0.98
0.98
0.98
0.98
0.98
0.98
0.98
0.98
M = 1.3 M; X = 0.7; Z = 0.02; α = 0.25; Maeder ve Meynet (1988)
<$ù
2.000+007
4.510+009
6.777+009
7.630+009
8.038+009
8.114+009
8.123+009
8.128+009
8.153+009
M/M
1.300
1.3
1.3
1.3
1.3
1.3
1.3
1.3
1.3
− M
NML
NML
NML
NML
NML
NML
NML
NML
NML
log L/L
0.401
0.477
0.579
0.611
0.631
0.709
0.781
0.763
0.763
log Teff
3.816
3.797
3.791
3.776
3.764
3.778
3.79
3.777
3.755
Xat
0.700
0.700
0.700
0.700
0.700
0.700
0.700
0.700
0.700
Mcc
0.075
0.2054
0.1664
0.1404
0.1131
0.0962
0.0546
0
0
Xc/Yc
0.682
0.473
0.28
0.143
0.03
0.002
0
0.98
0.98
81
8.179+009
8.193+009
8.206+009
8.219+009
8.235+009
8.283+009
8.315+009
8.343+009
8.368+009
8.393+009
8.414+009
8.433+009
8.449+009
8.459+009
8.470+009
8.474+009
8.478+009
8.484+009
8.491+009
8.497+009
8.503+009
8.507+009
8.511+009
8.514+009
8.517+009
8.519+009
8.521+009
8.523+009
8.524+009
8.524+009
8.527+009
8.527+009
8.528+009
8.529+009
8.529+009
1.3
1.3
1.3
1.3
1.3
1.3
1.3
1.3
1.299
1.299
1.299
1.298
1.298
1.297
1.297
1.297
1.296
1.295
1.295
1.294
1.293
1.291
1.29
1.287
1.285
1.281
1.278
1.273
1.266
1.258
1. 247
1.234
1.216
1.193
1.168
NML
NML
NML
NML
NML
-11.545
-11.384
-11.232
-11.077
-10.914
-10.753
-10.601
-10.435
-10.277
-10.117
-10.029
-9.984
-10.082
-9.917
-9.758
-9.592
-9.426
-9.269
-9.097
-8.932
-8.763
-8.608
-8.435
-8.262
-8.091
-7.911
-7.732
-7.531
-7.346
-7.21
0.737
0.713
0.684
0.658
0.646
0.744
0.845
0.942
1.041
1.144
1.246
1.344
1.448
1.547
1.646
1.7
1.729
1.67
1.768
1.867
1.967
2.066
2.166
2.266
2.366
2.466
2.56
2.66
2.76
2.86
2.96
3.06
3.16
3.26
3.331
3.74
3.73
3.72
3.71
3.7
3.685
3.68
3.677
3.673
3.67
3.665
3.662
3.658
3.653
3.648
3.645
3.643
3.647
3.639
3.634
3.627
3.622
3.615
3.605
3.598
3.589
3.582
3.572
3.561
3.551
3.539
3.527
3.505
3.492
3.481
0.700
0.700
0.700
0.700
0.700
0.698
0.695
0.692
0.69
0.687
0.685
0.685
0.685
0.685
0.685
0.685
0.685
0.685
0.685
0.685
0.685
0.685
0.685
0.685
0.685
0.685
0.685
0.685
0.685
0.685
0.685
0.685
0.685
0.685
0.685
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0.98
0.98
0.98
0.98
0.98
0.98
0.98
0.98
0.98
0.98
0.98
0.98
0.98
0.98
0.98
0.98
0.98
0.98
0.98
0.98
0.98
0.98
0.98
0.98
0.98
0.98
0.98
0.98
0.98
0.98
0.98
0.98
0.98
0.98
0.98
1.5M X = 0.7 - Z = 0.02 - α=0.25 - Maeder ve Meynet, 1988
•
<$ù
M
Log( M )
Log L
Log Teff
Xat
Mcc
Xc-Yc
8.500+006
1.5
NML
0.577
3.821
0.314
0.699
0.700
3.338+009
1.5
NML
0.758
3.835
0.258
0.474
0.700
4.586+009
1.5
NML
0.845
3.818
0.2025
0.282
0.700
5.076+009
1.5
NML
0.872
3.795
0.1725
0.143
0.700
5.333+009
1.5
NML
0.891
3.78
0.1335
0.028
0.700
5.390+009
1.5
NML
0.976
3.801
0.114
0.002
0.700
5.397+009
1.5
NML
1.037
3.817
0.0675
0
0.700
5.404+009
1.5
NML
1.021
3.783
0
0.98
0.700
5.415+009
1.5
NML
1.002
3.76
0
0.98
0.700
82
5.425+009
1.5
NML
0.968
3.745
0
0.98
0.700
5.432+009
1.5
NML
0.92
3.729
0
0.98
0.700
5.437+009
1.5
NML
0.883
3.719
0
0.98
0.700
5.441+009
1.5
NML
0.855
3.709
0
0.98
0.700
5.445+009
1.5
NML
0.848
3.703
0
0.98
0.700
5.460+009
1.5
NML
0.94
3.688
0
0.98
0.698
5.470+009
1.5
NML
1.046
3.683
0
0.98
0.695
5.480+009
1.5
-10.99
1.147
3.679
0
0.98
0.691
5.489+009
1.5
-10.839
1.242
3.675
0
0.98
0.688
5.498+009
1.5
-10.684
134
3.67
0
0.98
0.686
5.507+009
1.5
-10.52
1.443
3.666
0
0.98
0.685
5.515+009
1.499
-10.365
1.541
3.662
0
0.98
0.684
5.523+009
1.499
-10.203
1.642
3.656
0
0.98
0.683
5.530+009
1.498
-10.04
1.741
3.649
0
0.98
0.683
5.535+009
1.498
-9.96
1.791
3.647
0
0.98
0.683
5.538+009
1.497
-9.878
1.841
3.644
0
0.98
0.683
5.542+009
1.497
-9.803
1.888
3.641
0
0.98
0.683
5.547+009
1.496
-10.058
1.734
3.651
0
0.98
0.683
5M X = 0.7- Z = 0.02- Maeder ve Meynet, 1988
<$ù
M
•
Log( M )
Log L
Log Teff
Xat
Mcc
Xc-Yc
1.250+06
5.000
NML
2.720
4.244
0.700
1.520
0.697
4.900+07
5.000
NML
2.851
4.219
0.700
1.310
0.476
7.565+07
5.000
NML
2.958
4.188
0.700
1.025
0.280
8.868+07
5.000
NML
3.019
4.155
0.700
0.840
0.140
9.636+07
5.000
NML
3.065
4.130
0.700
0.705
0.032
9.842+07
5.000
NML
3.110
4.159
0.700
0.635
0.002
9.881+07
5.000
NML
3.156
4.191
0.700
0.390
0.000
9.886+07
5.000
NML
3.117
4.159
0.700
0.000
0.000
9.898+07
5.000
NML
3.166
4.057
0.700
0.000
0.000
9.907+07
5.000
NML
3.131
3.946
0.700
0.000
0.000
9.912+07
5.000
NML
3.084
3.862
0.700
0.000
0.000
9.916+07
5.000
NML
3.023
3.766
0.700
0.000
0.981
9.918+07
5.000
NML
2.979
3.707
0.700
0.000
0.981
9.920+07
5.000
NML
2.924
3.662
0.700
0.000
0.981
9.920+07
5.000
NML
2.924
3.662
0.700
0.000
0.981
9.950+07
4.997
-7.793
3.454
3.588
0.690
0.300
0.973
1.045+08
4.952
-8.314
3.160
3.631
0.690
0.406
0.859
83
1.054+08
4.948
-8.324
3.168
3.641
0.690
0.416
0.790
1.063+08
4.944
-8.302
3.214
3.666
0.690
0.420
0.749
1.068+08
4.941
-8.315
3.248
3.698
0.690
0.425
0.740
1.073+08
4.939
-8.365
3.272
3.740
0.690
0.430
0.754
1.212+08
4.837
-7.960
3.445
3.674
0.690
0.624
0.309
1.235+08
4.810
-7.891
3.460
3.651
0.690
0.635
0.186
1.243+08
4.798
-7.850
3.453
3.625
0.690
0.662
0.104
1.250+08
4.788
-7.816
3.455
3.610
0.690
0.661
0.050
1.260+08
4.769
-7.635
3.553
3.586
0.690
0.095
0.000
9M X = 0.7 - Z = 0.02 - α=0.25 - Maeder ve Meynet, 1988
<$ù
•
M
Log(- M )
Log L
Log Teff
Xat
Mcc
Xc-Yc
7.301+005
9.000
NML
3.603
4.390
0.700
3.438
0.692
1.360+007
9.000
NML
3.756
4.369
0.700
2.970
0.472
2.089+007
8.999
-9.691
3.873
4.342
0.700
2.484
0.285
2.494+007
8.997
-9.252
3.949
4.310
0.700
2.132
0.148
2.808+007
8.995
-3.894
4.015
4.279
0.700
1.718
0.024
2.861+007
8.994
-8.905
4.048
4.312
0.700
1.664
0.001
2.870+007
8.994
-8.921
4.079
4.338
0.700
1.007
0.000
2.872+007
8.994
-8.850
4.061
4.303
0.700
0.000
0.000
2.874+007
8.994
-8.239
4.093
4.147
0.700
0.000
0.000
2.875+007
8.994
-7.936
4.069
3.995
0.700
0.000
0.000
2.876+007
8.993
-7.669
4.026
3.842
0.700
0.000
0.000
2.876+007
8.993
-7.450
3.992
3.743
0.700
0.000
0.981
2.877+007
8.993
-7.175
3.910
3.633
0.700
0.000
0.981
2.877+007
8.993
-7.149
3.876
3.616
0.700
0.000
0.981
2.877+007
8.993
-7.149
3.876
3.616
0.700
0.000
0.981
2.880+007
8.995
-6.535
4.321
3.539
0.686
0.773
0.975
3.007+007
8.705
-6.762
4.127
3.574
0.686
1.149
0.776
3.020+007
8.681
-6.771
4.176
3.611
0.686
1.163
0.750
3.022+007
8.679
-6.824
4.190
3.649
0.686
1.163
0.744
3.050+007
8.663
-7.526
4.232
3.899
0.686
1.195
0.636
3.091+007
8.656
-7.878
4.260
4.001
0.686
1.264
0.562
84
3.225+007
8.628
-7.699
4.298
3.981
0.686
1.493
0.268
3.309+007
8.578
-6.717
4.294
3.694
0.686
1.535
0.055
3.312+007
8.571
-6.633
4.287
3.636
0.686
1.534
0.048
3.315+007
8.563
-6.604
4.247
3.573
0.686
1.533
0.038
3.331+007
8.518
-6.451
4.339
3.539
0.686
0.009
0.000
20M X = 0.7 - Z = 0.02 - α=0.25 - Maeder, 1990
<$ù
•
M
-log(- M )
Log L
Log Teff
Qcc
Xat
Xc
logTc
Log ρc
0.016
19.993
7.387
4.639
4.552
0.543
0.7
0.695
7.564
0.709
0.156
19.93
7.303
4.69
4.544
0.522
0.7
0.622
7.562
0.679
0.295
19.853
7.214
4.743
4.537
0.499
0.7
0.541
7.565
0.668
0.416
19.771
7.123
4.795
4.527
0.476
0.7
0.46
7.572
0.470
0.516
19.686
7.028
4.843
4.516
0.45
0.7
0.382
7.58
0.678
0.604
19.593
6.929
4.89
4.499
0.425
0.7
0.301
7.591
0.695
0.68
19.492
6.821
4.935
4.477
0.401
0.7
0.219
7.603
0.721
0.729
19.409
6.74
4.967
4.456
0.382
0.7
0.159
7.615
0.750
0.772
19.323
6.657
4.997
4.429
0.362
0.7
0.1
7.629
0.791
0.799
19559
6.6
5.017
4.409
0.349
0.7
0.061
7.645
0.736
0.827
19.183
6.542
5.040
4.392
0.335
0.7
0.018
7.679
0.939
0.839
19.149
6.532
5.055
4.41
0.329
0.7
0.002
7.736
1.109
0.H42
19.141
6.537
5.088
4.461
0.227
0.7
0
7.89
1.607
0.842
19.14
6.535
5.084
4.454
0.052
0.7
0.981
7.934
1.786
0.843
19.138
6.34
5.114
4.316
0
0.7
0.981
8.107
2.450
0.843
19.135
6.103
5.134
4.155
0.109
0.7
0.979
8.206
2.748
0.844
19.132
5.777
5.151
4.007
0.19
0.7
0.978
8.215
2.749
0.844
19.123
5.435
5.168
3.86
0.208
0.7
0.977
8.218
2.748
0.845
19.078
5.234
5.184
3.7
0.212
0.7
0.972
8.225
2.762
0.847
18.956
5.461
5.153
3.557
0.229
0.7
0.956
8.247
2.821
0.847
18.947
5.452
5.161
3.552
0.218
0.7
0.954
8.248
2.823
85
0.847
18.937
5.444
5.168
3.55
0.219
0.7
0.950
8.253
2.837
0.851
18.809
5.432
5.177
3.549
0.228
0.7
0.901
8.258
2.843
0.856
18.633
5.421
5.183
3.549
0.237
0.7
0.850
8.253
2.819
0.861
18.439
5.414
5.187
3.548
0.244
0.7
0.802
8.262
2.838
0.869
18.128
5.402
5.195
3.548
0.256
0.7
0.752
8.262
2.824
0.882
17.588
5.379
5.206
3.547
0.277
0.7
0.699
8.265
2.816
0.892
17.151
5.357
5.217
3.546
0.295
0.7
0.649
8.272
2.823
0.903
16.684
5.345
5.224
3.546
0.312
0.7
0.600
8.276
2.822
0.908
16.424
5.334
5.230
3.546
0.324
0.7
0.552
8.282
2.832
0.913
16.196
5.329
5.233
3.546
0.335
0.7
0.500
8.287
2.839
0.918
15.952
5.313
5.241
3.545
0.353
0.7
0.452
8.299
2.868
0.925
15.638
5.302
5.246
3.545
0.367
0.7
0.401
8.305
2.878
0.929
15.424
5.296
5.248
3.545
0.378
0.7
0.351
8.311
2.890
0.936
15.043
5.282
5.255
3.545
0.393
0.7
0.301
8.319
2.902
0.939
14.900
5.278
5.257
3.545
0.401
0.7
0.268
8.324
2.914
0.945
14.557
5.263
5.262
3.546
0.417
0.7
0.200
8.338
2.947
0.950
14.288
5.251
5.267
3.546
0.430
0.7
0.150
8.351
2.982
0.955
14.026
5.252
5.272
3.543
0.441
0.693
0.100
8.367
3.027
0.973
12.984
5.200
5.289
3.547
0.479
0.653
0.051
8.402
3.115
0.975
12.840
5.187
5.295
3.546
0.484
0.642
0.031
8.423
3.174
0.978
12.667
5.159
5.307
3.546
0.489
0.618
0.010
8.462
3.291
0.980
12.486
5.072
5.348
3.542
0
0.571
0
8.606
3.731
0.980
12.457
4.992
5.377
3.54
0
0.554
0
8.701
4.052
0.981
12.415
4.971
5.389
3.539
0
0.550
0
8.801
4.527
0.981
12.402
4.962
5.396
3.541
0
0.547
0
8.840
4.861
0.981
12.400
4.926
5.410
3.54
0
0.545
0
8.889
5.132
0.981
12.400
4.921
5.412
3.54
0
0.544
0
8.942
5.32
0.981
12.400
4.893
5.412
3.54
0
0.544
0
8.957
5.39
0.981
12.400
4.904
5.401
3.539
0
0.544
0
8.972
5.525
0.981
12.400
4.884
5.400
3.539
0
0.543
0
9.027
5.823
86
40M X = 0.7 - Z = 0.02 - α=0.25 – Maeder, 1990
<$ù
0.01
0.079
0.145
0.206
0.261
0.308
0.350
0.378
0.405
0.421
0.443
0.446
0.449
0.449
0.449
0.450
0.450
0.450
0.450
0.450
0.450
0.452
0.453
0.454
0.458
0.459
0.463
0.466
0.467
0.469
0.471
0.474
0.476
0.479
0.482
0.485
0.489
0.493
0.498
0.505
0.508
0.511
0.514
0.514
0.515
0.515
0.515
0.515
0.515
0.515
0.515
•
M
39.981
39.859
39.693
39.482
39.208
38.85
38.356
37.877
37.237
36.732
35.888
35.771
35.658
35.653
35.643
35.636
35.626
35.604
35.525
35.474
34.111
26.703
23.642
22.735
22.407
22.303
20.786
19.467
18.657
17.333
15.938
14.161
12.489
11.191
10.148
9.23
8.42
7.693
6.986
6.288
6.009
5.748
5.572
5.534
5.497
5.492
5.489
5.488
5.488
5.487
5.487
-log(- M )
6.835
6.679
6.538
6.390
6.213
6.038
5.844
5.694
5.553
5.475
5.388
5.387
5.403
5.401
5.317
5.145
4.743
4.21
3.882
3.788
3.419
3.407
3.493
4.71
5.188
4.398
4.398
4.398
4.142
4.222
4.008
4.138
4.276
4.396
4.502
4.606
4.705
4.803
4.908
5.023
5.072
5.122
5.157
5.164
5.172
5.173
5.174
5.174
5.174
5.174
5.174
Log L
5.369
5.414
5.458
5.5
5.539
5.576
5.61
5.634
5.658
5.674
5.697
5.702
5.725
5.723
5.726
5.735
5.739
5.739
5.717
5.724
5.812
5.827
5.827
5.827
5.824
5.819
5.762
5.695
5.669
5.628
5.575
5.49
5.405
5.33
5.263
5.198
5.136
5.075
5.011
4.942
4.914
4.893
4.942
5.008
5.127
5.147
5.167
5.17
5.173
5.178
5.195
Log Teff
4.652
4.643
4.643
4.623
4.606
4.584
4.553
4.519
4.470
4.427
4.362
4.374
4.444
4.439
4.311
4.167
4.000
3.855
3.713
3.681
3.669
3.688
3.717
4.044
4.351
4.433
4.75
4.83
4.724
4.748
4.647
4.686
4.726
4.759
4.788
4.814
4.839
4.862
4.887
4.914
4.927
4.945
4.991
5.024
5.043
5.045
5.047
5.048
5.048
5.049
5.057
60M X = 0.7 - Z = 0.02 - α=0.25 - Maeder, 1990
Qcc
0.705
0.677
0.651
0.624
0.593
0.566
0.542
0.523
0.505
0.493
0.481
0.48
0.388
0.271
0.222
0.226
0.297
0.329
0.37
0.378
0.397
0.522
0.605
0.628
0.659
0.667
0.742
0.788
0.786
0.782
0.793
0.75
0.733
0.719
0.701
0.688
0.676
0.666
0.649
0.636
0.632
0.624
0
0
0
0
0
0
0
0
0
Xat
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.653
0.581
0.536
0.327
0.322
0.322
0.227
0.001
0
0.981
0.697
0.559
0.482
0.456
0.425
0.391
0.354
0.319
0.278
0.23
0.209
0.191
0.176
0.173
0.171
0.17
0.17
0.17
0.17
0.169
0.169
Xc
0.695
0.62
0.542
0.462
0.381
0.301
0.221
0.162
0.101
0.061
0.007
0.002
0
0.981
0.981
0.98
0.98
0.98
0.979
0.979
0.975
0.95
0.927
0.898
0.802
0.781
0.7
0.626
0.599
0.55
0.494
0.452
0.4
0.349
0.3
0.25
0.2
0.15
0.1
0.05
0.031
0.01
0
0
0
0
0
0
0
0
0
logTc
7.606
7.602
7.605
7.611
7.619
7.628
7.640
7.650
7.665
7.680
7.740
7.779
7.992
8.049
8.149
8.200
8.228
8.235
8.239
8.239
8.246
8.287
8.295
8.3
8.305
8.299
8.312
8.318
8.318
8.32
8.321
8.321
8.322
8.324
8.327
8.331
8.337
8.345
8.357
8.379
8.394
8.427
8.571
8.701
8.8
8.824
8.877
8.899
8.91
8.922
9.053
Log ρc
0.487
0.460
0.452
0.456
0.468
0.488
0.517
0.547
0.593
0.640
0.823
0.940
1.596
1.792
2.131
2.299
2.387
2.408
2.417
2.417
2.433
2.551
2.573
2.585
2.591
2.568
2.602
2.624
2.637
2.662
2.69
2.726
2.77
2.812
2.853
2.897
2.946
3.001
3.071
3.173
3.235
3.347
3.802
4.261
4.778
4.945
5.23
5.282
5.343
5.536
6.223
87
•
<$ù
M
0.080
0.562
1.070
1.532
1.971
2.338
2.722
2.956
3.169
3.331
3.453
3.473
3.491
3.492
3.494
3.495
3.495
3.496
3.497
3.498
3.499
3.499
3.556
3.586
3.616
3.646
3.667
3.682
3.701
3.727
3.75
3.776
3.801
3.829
3-862
3.895
3.933
3.976
4.025
4.087
4.116
4.154
4.182
4.187
4.192
4.193
4.194
4.194
4.194
4.194
4.194
59.966
59.784
59.491
59.070
58.409
57.489
55.753
54.018
51.948
50.177
48.373
47.978
47.697
47.687
47.65
47.644
46.243
45.394
44.239
41.695
39.783
39.771
37.495
36.291
35.089
33.887
33.061
32.460
27.561
20.486
17.152
14.720
13.009
11.574
10.330
9.376
8.509
7.735
7.050
6.361
6.090
5.779
5.580
5-544
5.507
5.502
5.498
5.498
5.498
5.497
5.497
-log(- M )
6.514
6.338
6.151
5.939
5.12
5.497
5.219
5.065
4.979
4.932
4.701
4.746
4.826
4.814
4.894
4.768
2.375
3.282
2.611
2.738
2.926
4.398
4.398
4.398
4.398
4.398
4.398
4.398
3.392
3.732
3.928
4.095
4.231
4.356
4.481
4.587
4.693
4.797
4.898
5.011
5.058
5.115
5.155
5.163
5.170
5.171
5.172
5.172
5.172
5.172
5.172
Log L
Log Teff
Qcc
Xat
Xc
logTc
Log ρc
5.729
5.766
5.803
5.838
5.872
5.900
5.931
5.951
5.971
5.989
6.006
6.010
6.022
6.026
6.030
6.032
6.046
6.058
6.063
6.113
6.120
6.151
6.130
6.119
6.091
6.044
6.036
6.031
5.935
5.746
5.63
5.519
5.436
5.357
5.278
5.212
5.146
5.081
5.019
4.953
4.927
4.898
4.942
5.005
5.124
5.145
5.167
5.171
5.173
5.177
5.178
4.693
4.683
4.673
4.658
4.638
4.612
4.558
4.499
4.404
4.279
4.136
4.158
4.208
4.202
4.234
4.162
4.007
3.781
3.746
3.811
3.828
4.416
4.572
4.687
4.789
4.829
4.872
4.895
4.446
4.561
4.624
4.674
4.714
4.749
4.783
4.810
4.837
4.861
4.885
4.913
4.925
4.944
4.992
5.024
5.044
5.046
5.049
5.05
5.05
5.051
5.056
0.773
0.750
0.726
0.696
0.664
0.638
0.616
0.605
0.600
0.595
0.598
0.601
0.584
0.549
0.394
0.370
0.405
0.452
0.485
0.574
0.550
0.531
0.679
0.721
0.767
0.810
0.832
0.840
0.826
0.805
0.784
0.756
0.739
0.726
0.707
0.690
0.679
0.666
0.651
0.638
0.636
0.63
0
0
0
0
0
0
0
0
0
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.648
0.647
0.583
0.543
0.499
0.364
0.329
0.211
0.207
0.193
0.192
0.186
0.083
0
0.639
0.586
0.552
0.515
0.479
0.45
0.413
0.379
0.344
0.308
0.271
0.229
0.21
0.188
0.171
0.168
0.165
0.165
0.165
0.165
0.165
0.165
0.165
0.695
0.622
0.542
0.463
0.379
0.3
0.209
0.148
0.087
0.038
0.003
0.001
0
0.981
0.981
0.981
0.98
0.98
0.98
0.979
0.977
0.977
0.905
0.853
0.803
0.753
0.699
0.656
0.61
0.552
0.501
0.45
0.4
0.351
0.299
0.251
0.2
0.149
0.101
0.05
0.031
0.01
0
0
0
0
0
0
0
0
0
7.623
7.621
7.623
7.629
7.636
7.645
7.658
7.669
7.686
7.71
7.777
7.828
7.973
8.019
8.149
8.165
8.21
8.234
8.243
8.249
8.252
8.255
8.305
8.3 13
8.316
8.321
8.33
8.333
8.328
8.324
8.323
8.323
8.323
8.325
8.328
8.332
8.338
8.346
8.358
8.381
8.396
8.428
8.575
8.7
8.8
8.824
8.879
8.905
8.913
8.925
9.037
0.374
0.355
0.348
0.353
0.368
0.389
0.427
0.464
0.516
0.591
0.796
0.948
1.388
1.527
1.954
2.006
2.151
2.228
2.256
2.274
2.281
2.288
2.43
2.448
2.454
2.469
2.496
2.509
2.539
2.619
2.671
2.718
2.761
2.804
2.85
2.894
2.944
3.001
3.07
3.173
3.235
3.349
3.812
4.247
4.767
4.937
5.24
5.313
5.371
5.522
6.236
85M X = 0.7 - Z = 0.02 - α=0.25 – Maeder, 1990
<$ù
0.7001
0.4574
0.8801
0.127
•
M
84.917
84.544
83.861
82.821
-log(- M )
6.122
5.913
5.694
5.462
Log L
6.004
6.034
6.065
6.092
Log Teff
4.719
4.709
4.969
4.68
Qcc
0.819
0.793
0.767
0.744
Xat
0.7
0.7
0.7
0.7
Xc
0.695
0.622
0.54
0.46
logTc
7.635
7.635
7.636
7.642
Log ρc
0.283
0.271
0.266
0.274
88
0.162
0.1936
0.2229
0.2381
0.2639
0.2778
0.2855
0.2955
0.2993
0.2994
0.2996
0.2997
0.2999
0.3
0.3011
0.3016
0.3026
0.3041
0.3079
0.3106
0.3122
0.3146
0.3153
0.3173
0.3192
0.3213
0.3236
0.3261
0.3288
0.3317
0.335
0.3386
0.3426
0.3471
0.3522
0.3587
0.3614
0.3651
0.3686
0.3691
0.3696
0.3697
0.3697
0.3697
0.3698
0.3698
0.3698
81.169
78.489
74.163
71.013
65.094
61.912
60.098
56.089
54.582
54.534
54.455
54.416
54.352
54.29
53.879
53.658
53.279
52.648
51.128
50.077
49.431
48.461
43.481
29.358
23.076
19.065
16.205
14.031
12.397
11.102
9.969
9.017
8.187
7.463
6.802
6.145
5.909
5.628
5.392
5.36
5.33
5.325
5.321
5.321
5.32
5.32
5.32
5.207
4.959
4.73
4.654
4.631
4.652
4.398
4.398
4.398
4.398
4.398
4.398
4.398
4.398
4.398
4.398
4.398
4.398
4.398
4.398
4.398
3.11
3.218
3.346
3.606
3.81
3.989
4.147
4.283
4.402
4.519
4.629
4.734
4.836
4.937
5.049
5.091
5.145
5.192
5.198
5.205
5.206
5.207
5.207
5.207
5.207
5.208
6.117
6.14
6.161
6.174
6.199
6.213
6.221
6.228
6.243
6.256
6.292
6.307
6.321
6.327
6.33
6.332
6.333
6.326
6.29
6.275
6.272
6.268
6.208
5.971
5.82
5.697
5.59
5.484
5.4
5.324
5.25
5.18
5.114
5.051
4.988
4.923
4.9
4.875
4.924
4.991
5.104
5.127
5.148
5.152
5.156
5.157
5.167
4.654
4.618
4.559
4.511
4.546
4.577
4.555
4.641
4.761
4.784
4.711
4.645
4.571
4.449
4.426
4.394
4.565
4.717
4.867
4.909
4.923
4.39
4.428
4.432
4.52
4.586
4.643
4.688
4.728
4.761
4.791
4.819
4.845
4.868
4.892
4.918
4.93
4.948
5.005
5.032
5.05
5.053
5.055
5.056
5.05d
5.057
5.061
0.719
0.703
0.705
0.713
0.731
0.741
0.748
0.775
0.769
0.665
0.673
0.688
0.694
0.705
0.719
0.729
0.741
0.765
0.823
0.848
0.86
0.869
0.864
0.835
0.811
0.795
0.782
0.747
0.73
0.718
0.701
0.683
0.671
0.658
0.645
0.632
0.629
0.623
0
0
0
0
0
0.022
0.034
0
0
0.7
0.7
0.7
0.692
0.523
0.436
0.394
0.295
0.254
0.253
0.25
0.249
0.247
0.246
0.245
0.243
0.216
0.201
0.157
0.088
0.051
0.001
0
0.672
0.636
0.598
0.558
0.52
0.483
0.456
0.419
0.384
0.347
0.312
0.274
0.233
0.216
0.197
0.177
0.174
0.172
0.171
0.171
0.171
0.171
0.171
0.171
Qcc
Xat
0.38
0.301
0.221
0.177
0.097
0.053
0.029
0.002
0
0.981
0.98
0.979
0.978
0.977
0.972
0.97
0.964
0.95
0.899
0.851
0.801
0.722
0.701
0.651
0.602
0.551
0.502
0.451
0.4
0.349
0.299
0.25
0.2
0.15
0.101
0.049
0.031
0.01
0
0
0
0
0
0
0
0
0
7.648
7.657
7.667
7.675
7.694
7.712
7.729
7.803
8.047
8.17
8.25
8.255
8.258
8.26
8.277
8.286
8.296
8.306
8.316
8.329
8.336
8.341
8.336
8.327
8.324
8.322
8.321
8.321
8.322
8.324
8.326
8.33
8.336
8.344
8.356
8.38
8.395
8.428
8.602
8.71
8.799
8.825
8.889
8.923
8.955
8.954
9.024
0.291
0.317
0.354
0.379
0.441
0.497
0.552
0.782
1.519
1.893
2.148
2.166
2.174
2.179
2.227
2.256
2.284
2.309
2.335
2.375
2.4
2.417
2.429
2.517
2.581
2.636
2.684
2.729
2.773
2.815
2.859
2.904
2.954
3.01
3.08
3.184
3.243
3.36
3.914
4.311
4.792
4.972
5.263
5.344
5.457
5.55
6.195
120M X = 0.7 - Z = 0.02 - α=0.25 - Maeder, 1990
<$ù
0.0700
0.3981
0.7522
ø
1.3872
1.5460
1.9403
2.1383
2.2475
2.4323
2.5522
2.6521
•
M
119.727
118.596
116.534
113.364
108.306
104.231
93.500
88.366
85.475
78.086
73.287
69.288
-log(- M )
5.585
5.356
5.136
4.916
4.658
4.537
4.590
4.582
4.398
4.398
4.398
4.398
Log L
6.252
6.275
6.295
6.313
6.329
6.337
6.362
6.377
6.387
6.401
6.408
6.408
Log Teff
4.739
4.727
4.712
4.693
4.663
4.044
4.665
4.675
4.636
4.674
4.711
4.780
0.854
0.825
0.802
0.782
0.775
0.780
0.802
0.810
0.814
0.844
0.872
0.904
0.694
0.62
0.54
0.461
0.382
0.338
0.222
0.159
0.123
0.059
0.021
0.001
Xc
0.700
0.700
0.700
0.700
0.700
0.692
0.506
0.424
0.378
0.252
0.164
0.091
logTc
7.649
7.647
7.648
7.652
7.659
7.663
7.677
7.688
7.696
7.718
7.748
7.834
Log ρc
0.206
0.194
0.192
0.204
0.227
0.244
0.297
0.335
0.361
0.438
0.535
0.805
89
2.6955
2.6971
2.6981
2.6996
2.7007
2.7007
2.7027
2.7038
2.7053
2.7234
2.7356
2.7477
2.7598
2.774
2.7772
2.8136
2.8346
2.8565
2.8806
2.9088
2.9425
2.9787
3.0149
3.06
3.1126
3.1701
3.2409
3.316
3.3558
3.3987
3.4448
3.4516
3.4575
3.4584
3.459
3.459
3.4591
3.4592
3.4593
67.555
67.493
67.452
67.390
67.348
67.348
67.266
67.225
67.163
66.438
65.952
65.467
64.982
64.415
59.673
26.266
20.919
17.537
15.067
13.074
11.379
10.071
9.086
8.146
7.309
6.608
5.941
5.395
5.152
4.920
4.698
4.667
4.64
4.636
4.634
4.634
4.633
4.633
4.633
4.398
4.398
4.398
4.398
4.398
4.398
4.398
4.398
4.398
4.398
4.398
4.398
4.398
2.8008
2.5768
3.4602
3.7114
3.8999
4.0673
4.2192
4.3673
4.5024
4.6159
4.7347
4.8527
4.9637
5.0819
5.1884
5.2386
5.2902
5.3416
5.3493
5.3554
5.3567
5.3574
5.3575
5.3575
5.3576
5.3577
6.415
6.423
6.430
6.430
6.429
6.429
6.429
6.429
6.429
6.436
6.434
6.433
6.432
6.431
6.39
5.899
5.754
5.639
5.537
5.432
5.335
5.248
5.174
5.097
5.019
4.946
4.871
4.807
4.777
4.753
4.79
4.883
5.024
5.051
5.069
5.071
5.073
5.076
5.091
4.878
4.903
4.925
4.930
4.931
4.931
4.932
4.933
4.934
4.951
4.955
4.959
4.962
4.278
4.158
4.47
4.554
4.613
4.665
4.708
4.748
4.748
4.812
4.84
4.866
4.889
4.913
4.936
4.949
4.966
5.023
5.057
5.072
5.072
5.072
5.072
5.072
5.072
5.078
0.849
0.881
0.849
0.878
0.880
0.880
0.876
0.876
0.875
0.868
0.876
0.883
0.885
0.891
0.860
0.825
0.806
0.785
0.769
0.738
0.717
0.698
0.682
0.667
0.652
0.636
0.622
0.609
0.605
0.599
0
0
0
0
0
0
0
0
0
0
0.981
0.98
0.979
0.978
0.978
0.977
0.976
0.975
0.95
0.902
0.852
0.803
0.747
0.738
0.651
0.6
0.551
0.502
0.449
0.399
0.349
0.303
0.251
0.200
0.151
0.100
0.051
0.030
0.010
0
0
0
0
0
0
0
0
0
0.060
0.058
0.058
0.057
0.056
0.056
0.055
0.054
0.053
0.040
0.031
0.019
0.009
0.001
0.000
0.676
0.637
0.6
0.563
0.525
0.483
0.445
0.414
0.382
0.346
0.311
0.268
0.231
0.215
0.198
0.179
0.175
0.175
0.175
0.175
0.175
0.174
0.174
0.174
8.076
8.164
8.246
8.262
8.264
8.264
8.267
8.268
8.271
8.333
8.339
8.342
8.345
8.348
8.336
8.324
8.321
8.319
8.318
8.318
8.318
8.32
8.322
8.326
8.331
8.339
8.352
8.374
8.392
8.424
8.583
8.703
8.797
8.829
8.878
8.895
8.904
8.909
9.036
1.535
1.799
2.046
1093
2.099
2.099
2.109
2.114
2.123
2.312
2.330
2.339
2.348
2.358
2.341
2.542
2.604
2.655
2.701
2.746
2.794
2.839
2.882
2.931
2.985
3.045
3.121
3.223
3.292
3.407
3.917
4.380
4.901
5.130
5.369
5.416
5.462
5.574
6.338
g%(.,,<,/',=/$5,ødø1(95ø002'(//(5ø
1.2M X = 0.7 - Z = 0.001 – Chiosi ve ark., 1987
L / L
<$ù
Log Teff
Log g
logTc
Log ρc
Xc
0
0.553
3.914
4.607
7.2513
2.024
0.7
555.693
0.606
3.92
4.578
7.2736
2.0796
0.602
697.646
0.656
3.925
4.552
7.2955
2.144
0.507
1569.73
0.74
3.935
4.505
7.3424
2.3156
0.305
2108.44
0.828
3.931
4.401
7.396
2.3661
0.203
2552.08
2709.94
0.907
1.032
3.911
3.953
4.244
4.288
7.4539
7.5543
2.4783
3.0288
0.045
0
2723.76
1.103
3.900
4.004
7.4905
3.8369
0
2767.8
1.127
3.848
3.773
7.4833
4.1519
0
2804.98
1.141
3.801
3.568
7.5321
4.3584
0
2910.06
1.203
3.732
3.230
7.6148
4.9439
0
90
2923.97
1.253
3.729
3.168
7.6143
4.994
0
2935.75
1.301
3.726
3.111
7.6147
5.0349
0
2956.45
1.401
3.722
2.994
7.6189
5.1062
0
2973.5
1.500
3.718
2.877
7.6264
5.1669
0
2987.74
1.601
3.713
2.759
7.6366
5.2217
0
3009.13
1.806
3.704
2.517
7.6627
5.3197
0
3049.08
2.598
3.665
1.569
7.7991
5.686
0
1.5M X = 0.7 - Z = 0.001 – Chiosi ve ark., 1987
L / L
<$ù
Log Teff
Log g
Log ρc
logTc
Xc
0
0.959
4.002
4.653
7.3158
2.0076
0.7
293.582
1.012
4.007
4.62
7.3377
2.0590
0.601
547.091
1.066
4.011
4.583
7.3635
2.1152
0.498
705.535
1.106
4.012
4.545
7.3807
2.1376
0.442
832.289
1.141
4.011
4.506
7.3936
2.1464
0.4
1054.11
1.201
4.004
4.417
7.4168
2.1773
0.3
1244.24
1.265
3.988
4.291
7.4406
2.2020
0.196
1476.49
1.366
3.955
4.057
7.5011
2.3408
0.03
1500.74
1.389
3.961
4.058
7.5284
2.4279
0.01
1512.56
1.503
3.990
4.059
7.6331
3.4367
0
1518.2
1.553
3.800
3.249
7.7367
4.2307
0
1523.7
1.505
3.732
3.026
7.8484
4.6625
0
1531.76
1.705
3.718
2.771
7.9014
5.0090
0
1539.77
1.903
3.708
2.533
7.8981
5.1935
0
1550.78
2.200
3.693
2.176
7.8862
5.3845
0
1553.88
2.300
3.688
2.056
7.8860
5.4391
0
1559.02
2.500
3.678
1.814
7.8926
5.5417
0
1563.19
2.600
3.673
1.694
7.9122
5.6426
0
1564.03
2.645
3.671
1.641
7.9941
5.6472
0
2M X = 0.7 - Z = 0.001 – Chiosi ve ark., 1987
<$ù
0
193.737
352.181
478.935
599.759
774.84
788.153
788.291
788.807
789.79
790.298
790.638
L / L
1.442
1.514
1.587
1.660
1.747
1.931
2.056
1.992
2.092
2.023
2.198
2.305
Log Teff
4.102
4.104
4.102
4.096
4.082
4.015
4.089
4.060
3.948
3.731
3.708
3.702
Log g
4.693
4.630
4.551
4.454
4.310
3.858
4.027
3.977
3.429
2.632
2.365
2.230
logTc
7.3853
7.4056
7.4241
7.4411
7.4617
7.5414
7.6903
7.6813
7.7255
7.8290
7.8846
7.9194
Log ρc
1.9397
1.9591
1.9714
1.9826
1.9972
2.1600
2.8480
3.1107
3.5543
4.0270
4.2238
4.3426
Xc
0.7
0.6
0.503
0.409
0.293
0.029
0
0
0
0
0
0
91
791.247
792.358
804.946
819.858
844.926
857.503
858.403
863.483
865.034
865.45
866.297
866.628
866.791
2.487
2.503
2.205
2.301
2.400
2.500
2.436
2.696
2.908
3.001
3.302
3.500
3.616
3.691
3.690
3.717
3.748
3.792
3.698
3.706
3.683
3.670
3.664
3.646
3.634
3.626
2.006
1.987
2.390
2.418
2.497
2.019
2.118
1.764
1.500
1.385
1.011
0.763
0.617
7.9811
8.0566
8.0794
8.0951
8.1412
8.3172
8.1772
8.1994
8.2366
8.2499
8.2691
8.2493
8.2144
4.5404
4.4064
4.1913
4.1149
4.0649
4.6474
4.9542
5.3233
5.5082
5.5850
5.8396
6.0248
6.1596
0.999
0.990
0.884
0.707
0.271
0
0
0
0
0
0
0
0
3M X = 0.7 - Z = 0.001 – Chiosi ve ark., 1987
<$ù
L / L
Log Teff
Log g
Log ρc
logTc
Xc
0
53.5686
136.195
191.156
265.255
299.64
302.514
302.684
2.082
2.136
2.239
2.329
2.503
2.636
2.679
2.740
4.215
4.215
4.211
4.203
4.165
4.116
4.149
4.182
4.681
4.627
4.511
4.388
4.060
3.732
3.821
3.890
7.4481
7.4571
7.4744
7.4904
7.5294
7.6004
7.6774
7.7546
1.7613
1.7587
1.7547
1.7564
1.7841
1.9468
2.1750
2.6359
0.7
0.637
0.518
0.412
0.191
0.02
0.001
0
302.845
302.999
303.051
2.780
2.805
2.792
4.049
3.855
3.745
3.320
2.519
2.095
7.8017
7.8747
7.9010
3.2706
3.6051
3.7030
0
0
0
303.161
303.233
303.445
304.259
310.493
320.455
320.860
320.892
321.26
321.979
322.247
2.904
3.001
3.169
3.100
3.004
3.101
3.093
3.134
3.206
3.498
3.704
3.689
3.682
3.671
3.675
3.749
3.803
3.686
3.684
3.672
3.632
3.64
1.755
1.630
1.418
1.506
1.894
2.015
1.556
1.509
1.387
1.016
0.759
7.9581
7.9936
8.1001
8.1065
8.1381
8.2804
8.3656
8.3346
8.3041
8.3779
8.4375
3.8986
4.0177
4.0831
3.9571
3.7704
3.9864
4.3434
4.4357
4.9459
5.4445
5.7513
0
0
0.994
0.96
0.705
0.017
0
0
0
0
0
322.403
322.505
322.565
322.581
3.900
4.102
4.301
4.100
3.627
3.618
3.612
3.619
0.514
0.276
0.052
0.281
8.4465
8.3367
8.1926
8.1609
6.0751
6.4434
6.7712
6.8695
0
0
0
0
322.592
4.204
3.614
0.158
8.1399
6.9185
0
5M X = 0.7 - Z = 0.001 – Chiosi ve ark., 1987
<$ù
0
L / L
2.848
Log Teff
4.336
Log g
4.622
logTc
7.5050
Log ρc
1.5021
Xc
0.7
92
29.3855
2.947
4.335
4.52
7.5191
1.4918
0.588
45.0853
3.012
4.332
4.443
7.5291
1.4863
0.512
76.3984
94.3404
3.205
3.404
4.308
4.242
4.154
3.689
7.5631
7.6346
1.4950
1.6277
0.288
0.041
96.5833
3.508
4.298
3.812
7.8220
2.2850
0
96.6807
3.603
3.886
2.067
8.0047
3.4284
0
96.6997
3.563
3.681
1.288
8.0465
3.5709
0.999
96.7099
3.712
3.663
1.068
8.0697
3.6429
0.999
96.7633
3.845
3.653
0.893
8.1481
3.6394
0.991
96.931
3.800
3.657
0.953
8.1530
3.5705
0.962
97.7112
3.727
3.670
1.081
8.1678
3.4770
0.858
100.676
3.796
4.061
2.573
8.2375
3.4663
0.217
101.612
3.829
3.827
1.603
8.3578
3.7987
0.006
101.658
3.793
3.670
1.013
8.4168
4.0307
0
101.672
3.849
3.665
0.938
8.4029
4.1823
0
101.854
4.104
3.639
0.577
8.5514
5.3091
0
101.904
4.200
3.633
0.457
8.6189
5.7773
0
101.939
101.943
4.306
4.415
3.626
3.627
0.326
0.221
8.6415
8.5773
6.639
6.8791
0
0
101.945
4.433
3.627
0.200
8.5377
6.9641
0
9M X = 0.7 - Z = 0.001 – Chiosi ve ark., 1987
L / L
<$ù
Log Teff
Log g
Log ρc
logTc
Xc
0
3.720
4.460
4.501
7.5674
1.2057
0.7
13.2998
18.7534
26.4075
30.4512
30.5095
30.5181
30.5311
30.6063
31.6887
32.0844
32.1000
32.1030
32.1296
32.1337
3.822
3.908
4.091
4.252
4.301
4.354
4.311
4.500
4.510
4.534
4.544
4.567
4.685
4.708
4.457
4.450
4.413
4.377
4.332
4.203
3.663
3.643
4.164
3.801
3.643
3.641
3.632
3.631
4.388
4.272
3.944
3.638
3.409
2.839
0.722
0.455
2.527
1.051
0.408
0.377
0.226
0.198
7.5819
7.5959
7.6336
7.7655
8.0232
8.0966
8.1998
8.2065
8.2782
8.4230
8.4905
8.5012
8.6362
8.6646
1.2000
1.2000
1.2412
1.5963
2.7171
3.0138
3.2395 .
3.1574
3.1747
3.5854
3.8178
3.9115
4.6741
4.8172
0.523
0.418
0.196
0.003
0
0.999
0.995
0.95
0.244
0.004
0
0
0
0
$1$.2/g1&(6ø(95ø0
1 M.h7/(/ø%ø5<,/',=,1$QDNRO|QFHVLHYULPL)LJXHLUHGRXQSXEOLVKHG
=DPDQ\ÕO
Log Teff
Log L/L
R/R
Log Tc
Log ρc
1.11595e+4
3.5777
1.3879
11.3560
5.8350
-2.1947
2.05936e+4
3.5796
1.3442
10.7100
5.8596
-2.1208
93
2.56673e+4
3.5805
1.3231
10.4130
5.8714
-2.0854
3.800676+4
4.48850e+4
6.07290e+4
6.54482e+4
8.03167e+4
9.09827e+4
1.16655e+5
1.58I41e+5
1.89778e+5
2.01401e+5
3.01187e+5
4.15419e+5
3.5823
3.5832
3.5849
3.5853
3.5865
3.5872
3.5887
3.5904
3.5914
3.5917
3.5937
3.5949
1.2775
1.2549
1.2086
1.1962
1.1601
1.1366
1.0869
1.0210
0.9792
0.9652
0.8665
0.7838
9.8040
9.5170
8.9590
8.8160
8.4140
8.1640
7.6620
7.0510
6.6920
6.5770
5.8220
5.2660
5.8963
5.9094
5.9349
5.9417
5.9614
5.9742
6.0011
6.0363
6.0585
6.0659
6.1177
6.1605
-2.0093
-1.9717
-1.8952
-1.8748
-1.8156
-1.7773
-1.6968
-1.5912
-1.5247
-1.5025
-1.3472
-1.2189
5.01631e+5
6.94507e+5
7.92080e+5
9.05225e+5
1.03750e+6
1.60251e+6
2.06874e+6
2.95811e+6
3.22337e+6
3.54167e+6
4.75824e+6
5.25140e+6
3.5955
3.5961
3.5963
3.5963
3.5962
3.5954
3.5944
3.5923
3.5917
3.5910
3.5884
3.5875
0.7335
0.6443
0.6075
0.5697
0.5306
0.4039
0.3284
0.2206
0.1943
0.1655
0.0749
0.0446
4.9580
4.4640
4.2770
4.0950
3.9170
3.4010
3.1330
2.7950
2.7190
2.6400
2.4070
2.3350
6.1861
6.2309
6.2492
6.2678
6.2867
6.3472
6.3822
6.4307
6.4417
6.4534
6.4876
6.4985
-1.1419
-1.0075
-0.9528
-0.8970
-0.8399
-0.6584
-0.5529
-0.4056
-0.3695
-0.3299
-0.2032
-0.1597
5.843 19e+6
3.5864
0.0120
2.2600
6.5099
-0.1124
6.44960e+6
8.05052e+6
8.94532e+6
1.00191e+7
1.13076e+7
1.63394e+7
2.09588e+7
3.27097e+7
4.03184e+7
5.76286e+7
7.90291e+7
9.01548e+7
1.04564e+8
3.5854
3.5832
3.5822
3.5811
3.5801
3.5784
3.5791
3.5875
3.5964
3.6251
3.6687
3.6901
3.7089
-0.0182
-0.0846
-0.1158
-0.1485
-0.1823
-0.2769
-0.3303
-0.3890
-0.3910
-0.3270
-0.1771
-0.1071
-0.0910
2.1930
2.0530
1.9910
1.9260
1.8610
1.6830
1.5780
1.4190
1.3590
1.2820
1.2460
1.2240
1.1430
6.5204
6.5430
6.5536
6.5648
6.5766
6.6134
6.6407
6.6998
6.7353
6.8176
6.9308
6.9941
7.0619
-0.0676
0.0342
0.0843
0.1390
0.1985
0.3910
0.5332
0.8252
0.9850
1.3113
1.6537
1.7811
1.8646
1.09508e+8
3.7116
-0.0980
1.1050
7.0765
1.8753
1.197636+8
3.7123
-0.1620
1.0370
7.0936
1.8840
(95ø0
M+ 8.1 M - P=3.133 g (Packet, 1988)
Evre
6
<Dú \ÕO
M1
Log L1
Log Teff 1
M2
Log L2
Log Teff 2
P (g)
ZAMS
0.00
9.00
3.58
4.46
5.40
2.82
4.24
1.62
ZAMS
Red point prim.
Blue point prim.
Begin RLOFI->2
0.00
2.61
2.72
2.73
9.00
9.00
9.00
9.00
3.58
3.85
3.91
3.92
4.36
4.27
4.31
4.26
8.10
8.10
8.10
8.10
3.43
3.65
3.66
3.66
4.33
4.26
4.26
4.26
3.13
3.13
3.13
3.13
94
Mass ratio reversal
Min.Lumimosity
Max.Lumimosity
He ignition prim.
End RLOF-min R
0.18
0.50
0.55
2.03
2.71
8.55
4.06
3.25
1.73
1.51
3.75
2.54
2.77
3.76
3.93
4.22
3.84
3.84
3.91
3.92
8.55
13.03
13.84
15.37
15.58
3.88
4.38
4.40
4.40
4.43
4.29
4.44
4.46
4.47
4.48
3.11
8.16
13.28
64.61
92.81
Max.Luminosity
Min.Lum- min. R
2.76
2.91
1.51
1.51
3.95
3.07
4.07
4.73
15.58
15.58
4.43
4.49
4.48
4.47
92.81
92.81
End He burn. prim.
Min L- Min R
Begin RLOFl->2
3.32
3.33
3.36
1.51
1.51
1.51
3.67
3.54
4.08
4.82
4.83
3.95
15.58
15.58
15.58
4.62
4.63
4.64
4.42
4.41
4.41
92.81
92.81
92.81
Xat=0
3.36
1.43
4.12
3.95
15.85
4.67
4.42
107.58
(95ø0
M+ 5.4 M - P=2.983 g (Packet, 1988)
Evre
6
<Dú \ÕO
M1
Log L1
Log Teff 1
M2
Log L2
Log Teff 2
P (g)
ZAMS
0.00
9.00
3.58
4.36
5.40
2.82
4.23
2.98
Red point prim.
2.68
9.00
3.85
4.27
5.40
2.91
4.21
2.98
Blue point prim.
2.93
9.00
3.91
4.31
5.40
2.92
4.21
2.98
Begin RLOF1->2
2.93
9.00
3.92
4.26
5.40
2.92
4.21
2.98
Begin contact
2.941
7.97
3.22
4.11
6.42
4.06
4.35
2.55
Mass ratio rev.
2.945
7.20
2.91
4.04
7.20
4.15
4.36
2.46
End contact
2.949
5.95
1.71
3.77
8.45
4.33
4.39
2.69
MinL
2.951
5.52
1.71
3.76
8.87
4.33
4.40
2.91
He ignition prim.
1.69
1.71
3.77
4.01
12.68
4.12
4.45
33.11
End RLOF
2.33
1.52
3.95
4.03
12.87
4.14
4.45
45.34
Min luminosity
3.09
1.52
3.08
4.73
12.87
4.18
4.45
45.34
End He bur.prim.
3.50
1.52
3.68
4.82
12.87
4.28
4.43
45.34
Begin RLOF1->2
3.54
1.52
4.08
4.06
12.87
4.29
4.43
45.34
End computations
3.57
1.21
4.15
4.00
13.19
4.37
4.45
84.31
Benzer belgeler
View/Open - Hakkari Üniversitesi
LOH EDúOD\DQ VUHo 0DUWLQ /XWKHU King¶H kadar X]DQPÕú YH DUGÕQGDQ GLQ VDYDúODUÕQD
G|QúPúWU :HVWIDO\D $QODúPDVÕ LOH de \HQL ELU G]HQLQ WHPHOOHULQLQ DWÕOPDVÕQÕ
VD÷ODPÕúWÕU. Ki...
L İ P P E İ Ç İ N E V İ Ç İ Ş İ D D E T E K A R Ş I
úLGGHWVRQXFXEHGHQVHO\DUDODQPD
V|]NRQXVX\VDNDQÕWROPDVÕLoLQIRWRJUDI
oHNLOHFHNWLU
øIDGHQL]HúLQL]WDUDIÕQGDQEDVNÕDOWÕQGD
NDOPDPDQÕ]LoLQHúLQL]GHQD\UÕELU
RUWDPGDDOÕQDFDNWÕU(÷HU...
Charlotte Anderson`ın Notlarından Alıntıdır
ELUKDOGHQEDûNDELUKDOHG|QûWUOHELOLU
HHU|øUHQFLQLQGQ\DQÖQNHQGLVLQLDQODPD\HWHQHøLJHOLûHFHNWLU
%XJHOLûLPHQL\LDQODGÖøÖPÖ] ûH\olan, insan bedenine (QHUML7HNQLNOHULQLX\JXODPD\Ö
|...
Abonelik Telefon
&R÷UDIL1XPDUD8OXVDOQXPDUDODQGÕUPDSODQÕQGDUDNDPODUÕFR÷UDILDQODPWDúÕ\DQYHúHEHNHVRQODQPD
QRNWDVÕQDoD÷UÕQÕQ\|QOHQGLULOPHVLQLVD÷OD\DFDNúHNLOGH\DSÕODQGÕUÕODQQXPDUD\Õ
&R÷UDIL2OPD...
Kolektifin Sesi - Yeni Demokrat Gençlik
GH RQODUÕ \DUDWDQ VLVWHPL GH HQ GHULQGHQ VDUVDQ NDOÕFÕHWNLOHU\DUDWDQúH\NLWOHOHULQVLVWHPLQoL]GL÷LVÕQÕUODU
GÕúÕQGDNLo|]PDUD\ÕúÕGÕU1HGHQEXROVDJHUHNVUHNOL
RODUDN NLWOHOHULQ...
NATURALBOND TEKNİK KATALOöU
1DWXUDOERQGX\JXODQÕUNHQED÷ODQWÕHOHPDQODUÕQÕQU]JDU\NQHGLUHQoOLROPDVÕJHUHNPHNWHGLU
.RQXLOHLOJLOLRODUDNGLNNDWHGLOPHVLJHUHNHQKXVXVODUDúD÷ÕGDYHULOPLúWLU
• %D÷ODQWÕLoLQDoÕODFD...
Technotes - Sulama Rehberi
(OFLKD]ÕQÕQED÷ÕPVÕ]SURJUDPÕYDUGÕU$%&+HUELUSURJUDPÕNHQGL
VXODPDJQOHULEDúODQJÕoVDDWOHULYHVXODPDVUHOHULRODQD\UÕELUNRQWURO
FLKD]ÕRODUDNGúQHELOLUVLQL]hoOSURJU...