tour Zams
Transkript
dø)7<,/',=/$5,1(95ø0ø DERS NOTLARI (Çeviri) Orijinal Kitap STRUCTURE AND EVOLUTION OF SINGLE AND BINARY STARS Ed: C.W.H. de Loore and C. Doom Kluwer, 1992 Çeviren 3URI'UgPHU/WIL'H÷LUPHQFL 2005 1 dLIW<ÕOGÕ]ODUÕQ(YULPL BÖLÜM 15 dø)7<,/',=/$5,1(95ø0ø *(1(/%$.,ù *LULú <ÕOGÕ] HYULPLQL EHOLUOH\HQ SDUDPHWUHOHU RODQ NWOH YH NLP\DVDO ELOHúLP GÕúÕQGD \DNÕQ oLIWOHULQ HYULPLQL EHOLUOH\HQoSDUDPHWUHGDKDYDUGÕUVLVWHPLQWRSODPNWOHVLM (=M1+M2NWOHRUDQÕq (=M2 /M1 ) ve yörünge dönemi P<DNÕQoLIWOHULoLQHYULPKHVDSODPDODUÕ=$06¶GDNLLNLELOHúHQOHEDúODWÕODELOLUEXGXUXPGDVLVWHP EX o SDUDPHWUH LOH WDQÕPODQÕU .WOH YH DoÕVDO PRPHQWXP DNWDUÕPÕQÕQ ROGX÷X VLVWHPOHULQ ELOHúHQOHUL DUDVÕQGDNL HWNLOHúLPOHULQ VRQXFXQGD EX o SDUDPHWUH HYULP VÕUDVÕQGD VUHNOL GH÷LúLU (YULPOHúPHPLú VLVWHPOHUELOHúHQOHUDUDVÕQGDNLRODVÕHWNLOHúLPGHQ|QFH ile HYULPOHúPLúVLVWHPOHUDUDVÕQGDD\UÕP\DSDELOLUL] nmak istHQGL÷LQGH RQODUÕQ kütlelerinin (M), NWOH RUDQODUÕQÕQ q) ve dönemlerinin (P GD÷ÕOÕPÕ KDNNÕQGD ILNLU VDKLEL ROPDN JHUHNLU (WNLOHúHQ oLIWOHULQ ELOLQHQ VÕQÕIODUÕ HYULPVHO WDULKoHOHUL DoÕVÕQGDQ \RUXPOD %LOPHPL]JHUHNHQúH\EDúODQJÕoGD÷ÕOÕPIRQNVL\RQX F ( M , q, P) d (ln M ) d (ln q ) d (ln P) dir. %X SDUDPHWUH X]D\Õ M-q-P X]D\Õ \DNÕQ oLIW \ÕOGÕ]ODUÕ ED]Õ GR÷DO NDWHJRULOHUH D\ÕUÕU NoN YH RUWD NWOHOL oLIWOHUNWOHOL VLVWHPOHUKÕ]OÕ HYULP J|VWHUHQ \D GDJ|VWHUPH\HQVLVWHPOHU LOHDQDNROHWNLOHúLPOHUL \D GDLOHUL HYUHOHUGHNL HWNLOHúLPOHUL J|VWHUHQ VLVWHPOHU (WNLOHúPH\HQ YH HWNLOHúHQ VLVWHPOHU in gözlemleri, parametre X]D\ÕQÕQGH÷LúLNNÕVÕPODUÕQDD]\DGDoRNHWNLHGHU iyle F’nin belirlenmesi zordur. Bununla onunun, %HOOL WUGHQ oLIWOHULQ EHOLUOHQPHVLQL ]RUODúWÕUDQ VHoLP HWNLOHUL QHGHQ ELUOLNWH|EHN,WUoLIWOHUHLOLúNLQLQFHOHPHOHUGD÷ÕOÕPIRQNVL\ F ( M , q, P) d (ln M ) d (ln q ) d (ln P) = F ( M )d (ln M ).V (q )d (ln q).W ( P)d (ln P) úHNOLQGH M-, q- ve P-GD÷ÕOÕP IRQNVL\RQODUÕQÕQoDUSÕPÕRODUDN \D]ÕODELOHFH÷LQL RUWD\D NR\PXúWXU EXUDGD M, E\NNWOHOLELOHúHQLQNWOHVLGLU %Dú \ÕOGÕ]ODUÕQ NWOHOHULQH LOLúNLQ GD÷ÕOÕP WHN \ÕOGÕ]ODUÕQNLQH EHQ]HPHNWHGL RODQODULoLQEXGD÷ÕOÕP6DOSHWHUIRQNVL\RQX r ve 0.9 M’den büyük kütleli F ( M )d (ln M ) = M −2.35 d (ln M ) ile temsil edilebilir, burada ME\NNWOHOLELOHúHQLQNWOHVLGLU .WOHRUDQÕGD÷ÕOÕPÕ V(q), q FLYDUÕQGDPDNVLPXPDVDKLSWLU V(q)’nun, küçük q (=M2/M1) GH÷HUOHULQHGR÷UX KÕ]OD D]DOGÕ÷Õ \|QQGHNL WDKPLQOHU IDUNOÕGÕU *HQHO RODUDN NDEXO HGLOHQ NWOH RUDQÕ GD÷ÕOÕPÕQÕQ VHoLP HWNLOHULQGHQHWNLOHQPLúROPDVÕYHGD÷ÕOÕPÕQoRNGDKDG]ROPDVÕRODVÕGÕU '|QHPGD÷ÕOÕPÕ]HULQH\DSÕODQGH÷LúLNoDOÕúPDODUORJDULWPLNG|QHPDUDOÕ÷ÕEDúÕQDoLIWOHULQVD\ÕVÕQÕQKHPHQ KHPHQ VDELW ROGX÷X NRQXVXQGD X\XúPD KDOLQGHGLUOHU ùHNLO ¶GD NWOHQLQ ELU IRQNVL\RQX RODUDN X\JXQ minimuma NDUúÕOÕNJHOHQG|QHPOHULoLQNDEXOHGLOHELOLUELUGD÷ÕOÕP W ( P )d (ln P ) = 0.006d (ln P ) úHNOLQGHDOÕQDELOLU ùHNLOHYULPOHúPHPLúVLVWHPOHULoLQ9DQ6LQDYH'H*UHYHWDUDIÕQGDQHOGHHGLOGL÷L]HUHVLVWHP EDúÕQD WRSODP NWOHQLQ J|]OHQHQ GD÷ÕOÕPÕQÕ J|VWHUPHNWHGLU ¶GDQ 0 ¶H NDGDU RODQ DUDOÕNWD J|]OHQPHOHUL]RUROGX÷XQGDQGúNÕúÕWPDJHULWD\IWU\DOQÕ]FDELUNDoVLVWHPJ|UOPHNWHGLU - 4 M DUDOÕ÷ÕQGDELUPDNVLPXPYDUGÕU'DKDE\NNWOHOHULoLQKHUELUDUDOÕNEDúÕQDORJDULWPLNRODUDNELULP 2 dLIW<ÕOGÕ]ODUÕQ(YULPL RODQ VLVWHPOHULQ VD\ÕVÕ DUDOÕN EDúÕQD oDUSDQÕ NDGDU D]DOPDNWDGÕU %X diyagramdan, beklenen Salpeter GD÷ÕOÕPÕQDVDSPDQÕQQHGHQLVHoLPHWNLOHULGLU (YULPOHúPHPLú \ÕOGÕ]ODUÕQ ¶ÕQGDQ ID]ODVÕ ¶GHQ GDKD E\N NWOH RUDQODUÕQD VDKLSWLU VLVWHPOHULQ \DNODúÕN¶LLVHELUoLYDUÕQGDELUNWOHRUDQÕQDVDKLSWLUg]HOOLNOH¶GHQNoNNWOHRUDQOÕKLoELUVLVWHP EXOXQDPDPÕúWÕU(YULPOHúPHPLúVLVWHPOHULQNWOHRUDQODUÕQÕQGD÷ÕOÕPÕùHNLO¶GHJ|VWHULOPLúWLU Abt ve Levy (1976), F3 – G2V ve B2 – % WD\I DUDOÕ÷ÕQGDNLWD\IVDOoLIWOHUHLOLúNLQ ELU LQFHOHPHOHULQGHQELU G|QHP GD÷ÕOÕPÕ HOGH HWPLúOHUGLU ùHNLO +LVWRJUDP DGHW ELOLQHQ \D GD WDKPLQ HGLOHQ G|QHP LOH ROXúWXUXOPXúWXU ùHNLO(YULPOHúPHPLú\DNÕQoLIWVLVWHPOHULQWRSODPNWOHOHULQLQGD÷ÕOÕPÕ9DQ6LQDYH'H*UHYH ùHNLO (YULPOHúPHPLú oLIW VLVWHPOHULQ NWOH RUDQODUÕQÕQ GD÷ÕOÕPÕ 3RSRY KLVWRJUDP – DUDOÕNODUÕQGDNLGD÷ÕOÕPÕQÕJ|VWHUPHNWHGLU DUDVÕQGDGDKDLQFHELUGD÷ÕOÕPGDYHULOPLúWLU . q’nun 0.2 birim 3 dLIW<ÕOGÕ]ODUÕQ(YULPL ùHNLO dLIWOHULQ \|UQJH G|QHPOHULQLQ IUHNDQVÕ $oÕN JUL U enkli bölge, bilinen görsel yörünge |÷HOL sistemleri J|VWHUPHNWH YH G] oL]JLOHU LOH EHOLUOHQPLú RODQ WD\IVDO oLIWOHU E|OJHVL 6% LOH J|VWHULOHQ LOH oDNÕúPDNWDGÕU 7DUDOÕ bölgedeki (CPM ile gösterilen) çiftlerin, ortak öz hareketlerinden belirlenen dönemleri oldukça belirsizdir. 'D÷ÕOÕPJ|UHOLRODUDN G]GU YHWHN PDNVLPXPOXGXU'D÷ÕOÕP \ÕOFLYDUÕQGDELUPHG\DQDVKLSWLUYH¶GHQ 106JQHNDGDURODQDUDOÕNWDGDKDKRPRMHQGLU$EWYH/HY\¶\HJ|UHWD\IVDOoLIWOHULOHJ|UVHOoLIWOHUDUDVÕQGDNL oDNÕúPD, i NL PRGOX ELU GD÷ÕOÕPÕQ ROXúPDmasÕ DoÕVÕQGDQ yeterlidir. (÷HU E|\OH ROVD\GÕ G|QPH\OH JHQLúOHPLú oL]JLOHULQ X]XQ G|QHPOL ELU oRN WD\IVDO oLIWLQ EHOLUOHQPHVLQL HQJHOOHGL÷L YH \ÕOGÕ]ODUÕQ oR÷X LoLQ E\N ek gerekir ve bu dXUXPGD LNL PRGOX ELU GD÷ÕOÕP EHNOHQLUGL '|QHPGHNL DUDOÕN 8 oDUSDQÕ NDGDUGÕU YH EX GD oLIW ROXúXPXQGDQWHN ELU ROXúXPVUHFLQLQ VRUXPOX ROGX÷XQXLQDQÕOPD] \DSPDNWDGÕU+XDQJEN]$EWYH /HY y, 1976). X]DNOÕNODUÕQNÕVD G|QHPOL ELU oRN J|UVHOoLIWLQ EHOLUOHQPHVLQH HQJHO ROGX÷X|Q WU oLIWOHUL LQFHOHP , olan çiftlerdir *HQHO RODUDN JQHú FLYDUÕQGD J|]OHQHQ $QDNRO \ÕOGÕ]ODUÕQÕQ \DNODúÕN ¶X oLIWWLU |Q WU \ÕOGÕ]ODUÕQ \DNODúÕN ¶Õ NWOH RUDQODUÕ \DQL \ROGDúÕQ NWOHVLQLQ EDú \ÕOGÕ]ÕQNLQH RUDQÕ ¶GHQ E\N \ÕOGÕ]ODUÕQ \DNODúÕN ¶VLQLQ oLIW \D GD oRNOX VLVWHP ROGX÷X V|\OHQHELOLU dR÷X GXUXPGD LNL ELOHúHQ \HWHULQFH D\UÕNWÕU YH ELOHúHQOHU ELU ELUOHULQGHQ HWNLOHQPHGHQ HYULPOHúLUOHU )DNDW GL÷HU GXUXPODUGD sistemin EDúODQJÕo SDUDPHWUHOHULQH ED÷OÕ RODUDN ELU ELOHúHQLQ \DNÕQOÕ÷Õ ELU \ÕOGÕ]ÕQ E\\HELOHFH÷L JHOLúHELOHFH÷L PHVDIH\L VÕQÕUOD\DELOLU YH HYULP VÕUDVÕQGD \ÕOGÕ]ODU DUDVÕQGD HWNLOHúLP RODELOLU dLIW HYULPL LoLQ HQ |QHPOL GXUXPODUNWOHDNWDUÕPHYUHOHULLOHVLVWHPGHNLELOHúHQOHUGHQELULQLQVSHUQRYDRODUDNSDWODPDVÕQÕQ\DODoWÕ÷Õ eWNLOHUGLU%X GXUXPGDVLVWHP \D GD÷ÕOÕU \DGDELU ELOHúHQHVDKLS RODQoLIWOHUGHELOHúHQOHUGHQ ELULQLQNWOHVL NWOHDNWDUDQ\ROGDúÕQGDQ\Õ÷ÕúDQNWOH\OHE\\HELOLUE|\OHFHELOHúHQLQHYULPLGH÷LúLU+LGURMHQLQLoHGR÷UX DNÕúÕ GDKD VRQUDNL HYUHOHUGH KHO\XPXQ NDUERQ RNVLMHQLQ YG QHGHQL\OH \ÕOGÕ] JHQoOHúLU YH HYULPL E\N RUDQGDGH÷LúLU\DúDPVUHVLGH÷LúLUHYULPVUHFLGH÷LúHELOLUYHHYULPLQLQVRQVDIKDVÕEDúODQJÕoNWOHVLQGHQ EHNOHQHQGHQWDPDPHQIDUNOÕRODELOLU <ÕOGÕ]ODUDLOLúNLQHQ|QHPOL IL]LNVHOSDUDPHWUHRODQ NWOH\DOQÕ]FD ELU oLIWVLVWHPLQELOHúHQOHULLoLQ GR÷UXELU úHNLOGH EHOLUOHQHELOHFH÷LQGHQ oLIW VLVWHPOHU oRN |QHPOLGLU %HOLUOL NRúXOODUGD |UWHQ oLIWOHU ELOHúHQOHULQ JHRPHWULN D\UÕQWÕODUÕQÕQ EHOLUOHQHELOPHVLQH RODQDN YHULUOHU øNLQFL ELU \ÕOGÕ]ÕQ YDUOÕ÷Õ oRN JoO ELU HWNL\H VDKLSWLU ELOHúHQ Lo \DSÕVÕQD ED÷OÕ RODUDN ELU GHIRUPDV\RQD X÷UD\DELOLU gUWHQ oLIWOHU GH ELOH EX WU ELU ER]XOPD\ÕJ|]OHPHNNROD\GH÷LOGLU%XQXQODELUOLNWHEXROD\ÕQ\DQ etkileri gözlemlenebilir: bozulma, çekim LYPHVLQL YH \|UQJH\L GH÷LúWLUHELOLU <ÕOGÕ] \DSÕVÕQÕQ ER]XOPDVÕQD LOLúNLQ ELU oRN EHOLUWL YH ELU ELOHúHQLQ YDUOÕ÷ÕQÕQ \ÕOGÕ]DWPRVIHULQH HWNLOHULKHPHQKHPHQELU \]\ÕOGDQEHULELOLQPHNWHGLU%XWUEHOLUWLOHUH|UQHN RODUDNHNVHQG|QPHVL\DQVÕPDHWNLOHULYHoLIWVLVWHPOHUGHNLJD]DNÕPODUÕQÕQYDUOÕ÷ÕJ|VWHULOHELOLU%XROJXODU \ÕOGÕ]PRGHOOHULQLQ\DSÕVÕQÕQWHVWHGLOPHVLQHRODQDNVD÷ODUODU <DNÕQ ELU ELOHúHQLQ ELU \ÕOGÕ]ÕQ HYULP VUHFLQL WHPHOOL RODUDN GH÷LúWLUHELOHFH÷L JHUoH÷L \ÕOÕQGD 2WWR SWUXYH WDUDIÕQGDQ β /\UDH¶QLQ WXWXOPDODU VÕUDVÕQGDNL NDUDNWHULVWLN WD\IVDO GDYUDQÕúODUÕQÕQ ELU DoÕNODPDVÕ RODUDNELOHúHQOHUDUDVÕQGDNLJD]DNÕúÕQÕ|QHUPHVLYHEHQ]HUROD\ODUÕQGL÷HU|UWHQoLIWOHUGHJ|]OHQPHVL\OHDoÕN ELUúHNLOGHDQODúÕODELOPLúWLU Tek izROH ELU \ÕOGÕ]ÕQ EDúWDQ VRQD kadar olan HYULPL JHUoHNWH o|NHQ ELU EXOXWWDQ VRQ DúDPD\D yani o|NPú , ELU FLVLP Q|WURQ \ÕOGÕ]Õ EH\D] FFH \D GD ELU NDUDGHOLN HYUHVLQH NDGDU VUHNOL ELU E]OPHGLU <ÕOGÕ] KHU ELULQGHVÕUDVÕ\ODKLGURMHQKHO\XPYHNDUERQXQWNHWLOGL÷LDUGÕúÕNQNOHHU\DQPDHYUHOHULQLGHYUH\HVRNDUDN 4 dLIW<ÕOGÕ]ODUÕQ(YULPL bu yok edici sonGDQ NDoÕQPD\D \D GD HQ D]ÕQGDQ ELU VUH HUWHOHPH\H oDOÕúÕU +LGURMHQ \DQPDVÕQGDQ HOGH HGLOHQ UHDNVL\RQ UQOHUL VRQUDNL \DQPD HYUHOHULQGH \DNÕW RODUDN NXOODQÕOÕU EX \DNÕWODU nükleer UHDNVL\RQODUÕQ PH\GDQD JHOPHVL LoLQ VÕFDNOÕN YH \R÷XQOX÷XQ \HWHULQFH \NVHN ROGX÷X \ÕOGÕ] PHUNH]LQGH \D GD PHUNH]H \DNÕQ \HUOHUGH \DNÕOÕU WNHWLOLU <ÕOGÕ]ÕQ PHUNH]L NÕVPÕQGD DUG DUGÕQD \DNÕWODU WNHWLOGLNoH oHNLUGH÷L EHVOH\HQ QNOHHU UHDNVL\R suretiyle nlar, \ÕOGÕ]ÕQ GÕú NÕVÕPODUÕQGDQ RODQ HQHUML ND\ÕSODUÕQÕ NDUúÕODPDN \RN ROXU %X GXUXPGD oHNLUGHN RQX oHYUHOH\HQ NDWPDQODUÕQ D÷ÕUOÕ÷Õ\OD VÕNÕúÕU YH E|\OHFH \R÷XQOX÷X DUWDU 1NOHHU \DQPD \HUL oHNLUGHN HWUDIÕQGDNL ELU NDEX÷D ND\DU $\UÕFD , çekirdekteki madde VÕNÕúPÕúWÕU UHWLOHQ HQHUML ÕúÕQÕP PHNDQL]PDODUÕ\OD \ÕOGÕ]ÕQ ]DUIÕQD WDúÕQÕU dHNLUGH÷LQ |] HQWURSLVL GúHU dHNLUGH÷LQVÕFDNOÕ÷Õ P addenin durumuna yani elektron \R]ODúPDVÕQD QHNDGDU \DNÕQROGX÷XQDED÷OÕRODUDN GúHELOLU\DGDDUWDELOLU(÷HUoHNLUGH÷LQVÕFDNOÕ÷ÕYH\R÷XQOX÷X\HWHULQFH\NVHNELUGXUXPDJHOLUVHVRQUDNL QNOHHU \DNÕW \DQPD\D EDúODU YHE|\OHFH \HQLELU QNOHHUUHDNVL\RQoHYULPLEDúODPÕúROXU<ÕOGÕ]ÕQEX \HQL GXUXPDX\XPXVDNLQÕOÕPOÕELUúHNLOGHROXUJHoLúKHPHQKHPHQGHQJHKDOLQGHROXúXU(÷HUE|\OH ROPD]VD oHNLUGH÷LQ |] HQWURSLVL HOHNWURQXQ \R]ODúPDVÕQÕ VD÷OD\DFDN NDGDU NoN ROXU %X GD \R]ODúPÕú oHNLUGH÷LQ derece güçlü bir nükleer yanmaya neden olur. Artan bu enerji üretimine tepki olarak da GÕú NÕVÕPODU JHQLúOHU ÕúÕQÕPOD HQHUML DNWDUÕPÕQÕQ Jc EX NDGDU ID]OD HQHUML\L GÕú NÕVÕPODUD HWUDIÕQGDNL ELU NDEXNWD VRQ WDúÕPD\D \HWPH] YH LoHUL\H GR÷UX GÕú QNOHHU \DQPD NDEX÷XQD NDGDU XODúDELOHQ GHULQ ELU \]H\ NRQYHNWLI katmanÕROXúXU%XJHQLúOHPH\ÕOGÕ]ÕHR diyagraPÕQGDNÕUPÕ]ÕGHYOHUE|OJHVLQHGR÷UXJ|WUU ø]ROH \ÕOGÕ]ODUOD LOJLOHQGL÷LPL] VUHFH \ÕOGÕ]ÕQ JHQLúOHPHVL G]HQOLGLU )DNDW oLIW \ÕOGÕ]ODU GXUXPXQGD EDú kütleli, HYULPOHúPekte olan bir \ÕOGÕ]ÕQ ; anakoldDNLoHNLUGHNWHKLGURMHQLQWNHQGL÷LDQGDNLYHKHO\XPYH \ÕOGÕ]ÕQ JHOLúPHVL \ROGDúÕQ YDUOÕ÷ÕQGDQ GROD\Õ HQJHOOHQLU 0 \DUÕoDSÕùHNLO¶WHJ|VWHULOPLúWLUùHNLO NDUERQ\DQPDHYUHOHULQGHNL\DUÕoDSODUÕJ|VWHUPHNWHGLU Hidrojen yanma evresinin sonunda, 40 M¶GHQ NoN RODQ \ÕOGÕ]ODUÕQ \DUÕoDSODUÕ RQODUÕQ =$06 \DUÕçDSODUÕQÕQ – NDWÕ NDGDUGÕU EX \]GHQ E|\OHVL \ÕOGÕ]ODUGD EDúODQJÕo NWOH RUDQÕ YH GRODQPD G|QHPOHULQH ED÷OÕ RODUDN NWOH DNWDUÕPÕ RODELOLU %X HWNL NDEXNWD KLGURMHQ \DQPD HYUHVLQLQ VRQXQGD YH yum yakma evresinde çok daha belirgindir. Daha büyük kütleli konvektif IÕUODWPDQÕQ overshoot LQJ E\NO÷QH ED÷OÕGÕU dRN E\N NWOHOL \ÕOGÕ]ODUÕQ JoO konvektif IÕUODWPD LOH hesaplanan modellerinde, konvektif çekirdek o derece büyüktür ki, hidrojen yakma evresinin sona \DUÕoDSÕQ NDWÕQD NDGDU oÕNWÕ÷Õ KHO \ÕOGÕ]ODUGD LVH EX KHU ]DPDQ UDVWODQDQ ELU GXUXP GH÷LOGLU YH HWNL E\N |OoGH PHUNH]GHQ HUPHVLQGHQ GDKD |QFH YH \ÕOGÕ] U]JDUODUÕQÕQ HWNLVL\OH EDúODQJÕo NRQYHNWLI oHNLUGH÷LQ GÕú NDWPDQODUÕ \]H\GHJ|UQUOHU\DUÕoDSNoOUYHHYULP\ROXVRODGR÷UX\|QHOLU NWOHOLELU\ÕOGÕ]ÕQ\DUÕoDSÕQÕQ, zaPDQÕQIRQNVL\RQXRODUDNGH÷LúLPL ùHNLO0 5 dLIW<ÕOGÕ]ODUÕQ(YULPL .ODVLN 6FKZDU]VFKLOG NULWHUOHUL \D GD ]D\ÕI konvektif li modeller, HR IÕUODWPD LOH KHVDSODQDQ E\N NWOH GL\DJUDPÕQÕQ NÕUPÕ]Õ E|OJHVLQH GR÷UX X]DQÕUODU PXKWHPHOHQ +5 GL\DJUDPÕQGD ,úÕQÕPOÕ 0DYL 'HYOHULQ /%9¶V EXOXQGX÷X E|OJH\H JLUGLNOHULQGH oLIW VLVWHPOHULQ E\N NWOHOL ELOHúHQOHUL WÕSNÕ NWOHOL WHN \ÕOGÕ]ODUGDROGX÷XJLELJoOYHG|QHPOLNWOHND\ÕSODUÕJ|VWHULUOHUDWPRVIHUKHO\XPEDNÕPÕQGDQ]HQJLQOHúLU YH \ÕOGÕ] VROD GR÷UX KDUHNHW HGHU %X DúDPDGD \ÕOGÕ] E]O\RU RODFD÷ÕQGDQ PXKWHPHOHQ NWOH DNWDUÕPÕ olmayacak ve model konvektif IÕUODWPDGXUXPXQGDNLLOHD\QÕVRQXFXYHUHFHNWLU <ÕOGÕ] HYULPL RUWDN |]HOOLNOHUH VDKLS \ÕOGÕ] JUXSODUÕQÕQ J|]OHQHQ |]HOOLNOHULQL DoÕNODPDN \D GD WHN WHN VLVWHPOHUL PRGHOOHPHN LoLQ NODVLN ELU DUDoWÕU %X GXUXP KHP WHN \ÕOGÕ]ODU KHP GH oLIW VLVWHPOHU LoLQ JHoHUOLGLU $PDo J|]OHQHQ |]HOOLNOHUL DoÕNODPDN ROGX÷XQGDQ oLIWLQ HYULP GXUXPXQXQ VHoLPL J|]OHPOHUO e EHOLUOHQLU%X\]GHQ\DNÕQoLIWVLVWHPOHULoLQPHYFXWHYULPKHVDSODPDODUÕHOGHNLJ|]OHPOHUGHQ\DUDUODQÕODUDN EHOLUOHQLU %X J|]OHPOHU J|]OHPVHO JUOWOHUGHQ VRQ GHUHFH HWNLOHQPLúWLUOHU NÕVD G|QHPOLOHUL \DNDODPDN GL÷HUOHULQH J|UH GDKD NROD\GÕU oQN J|]OHP SURJUDP NRPLWHOHUL GDKD oRN NÕVD J|]OHP ]DPDQODUÕQD L]LQ YHUPH\HH÷LOLPOLGLUOHUEXQHGHQOHX]XQG|QHPOLVLVWHPOHUGDKDD]J|]OHQPLúOHUYHGL÷HUOHULQHJ|UHGDKDD] DQODúÕOPÕúODUGÕU7DULKVHORODUDNHYULPKHVDSODPDODUÕJ|]OHPVHOHWNLOHUGHQHWNLOHQPLúGLUYHD\QÕVÕQÕUODPDODU QHGHQL\OH \RN GHQHFHN NDGDU D] VD\ÕGD HYULP GL]LVL PHYFXWWXU $\UÕFD EDúND IDNW|UOHU GH HYULP KHVDSODPDODUÕ LoLQ gereken EDúODQJÕo SDUDPHWUHOHULQLQ VHoLPLQL HWNLOH mektedir. Çift sistemlerin evrimi için oRN GDKD JHQHO ELU \DNODúÕP DQFDN VRQ ]DPDQODUGD EDúOD\DELOPLúWLU 6RQUDNL NHVLPOHUGH EX NRQX D\UÕQWÕOÕ RODUDNHOHDOÕQDFDNWÕU <|UQJHDoÕVDOPRPHQWXPX Kütleleri M1, M2 YH \DUÕoDSODUÕ R1, R2 RODQ YH VÕUDVÕ\OD r1 ve r2 \DUÕFDSOÕ oHPEHU \|UQJHOHUGH, v1 ve v2 KÕ]ODUÕ\ODGRODQDQYHDUDODUÕQGDNLX]DNOÕN A RODQùHNLOLNL\ÕOGÕ]J|] |QQHDODOÕP%DúODQJÕoWDE\N kütleli olan ELOHúHQ EDú \ÕOGÕ] RODUDN DGODQGÕUÕODFDN YH R HYULP VÕUDVÕQGD \ROGDú \ÕOGÕ] GDKD E\N NWOHOL olsa bile yine GH EDú \ÕOGÕ] RODUDN NDODFDNWÕU <ÕOGÕ]ODUÕQ NWOHOHULQLQ NWOH PHUNH]LQGH WRSODQGÕ÷ÕQÕ YDUVD\DFD÷Õ] E|\OHFH KHU ELU ELOHúHQLQ oHNLP SRWDQVL\HOL \DNODúÕN RODUDN ELU QRNWD NWOHQLQNL LOH WHPVLO HGLOPLúRODFDNWÕU %XGXUXPGD\|UQJHDoÕVDOPRPHQWXPX J = M 1 v1 r1 + M 2 v 2 r2 (15.1) LOHLIDGHHGLOHELOLUYHKHULNL\ÕOGÕ]D\QÕDoÕVDOKÕ]ODUDVDKLSRODFD÷ÕQGDQ v1 = ω r1 ; v 2 = ω r2 (15.2) J = ( M 1 r12 + M 2 r22 )ω (15.3) olur. Sonuç olarak r1 M 2 = r2 M 1 (15.4) dLIW<ÕOGÕ]ODUÕQ(YULPL 6 ùHNLO dLIW VLVWHPLQ |÷HOHUL ELOHúHQOHULQ oHPEHU \|UQJHOHUGH GRODQGÕNODUÕ YDUVD\ÕOPÕúWÕU øNL ELOHúHQLQ |÷HOHUL kütleleri M1, M2PHUNH]HX]DNOÕNODUÕr1, r2ELOHúHQOHUDUDVÕX]DNOÕNAYH\|UQJHKÕ]ODUÕv1, v2’dir. r1 M2 = r1 + r2 M 1 + M 2 r1 M2 r M1 ; 2 = = A M1 + M 2 A M1 + M 2 ya da r1 = AM 2 AM 1 ; r2 = M1 + M 2 M1 + M 2 (15.5) olur. Bu ifadeleri denklem 15.3¶GH\HULQH\D]GÕ÷ÕPÕ]GD M 22 M 12 2 + J = M 1 A2 M A ω 2 2 2 (M 1 + M 2 ) (M 1 + M 2 ) (15.6) ya da J = A2 M 1M 2 ω M1 + M 2 (15.7) elde edilir. Buradan ω 2 A3 = G ( M 1 + M 2 ), ω= 2π , P P : dolanma dönemi HúLWOLNOHULQLQ\DUGÕPÕ\OD J2 = ω 2 A 4 (M1M 2 ) 2 (M 1 + M 2 ) 2 = GA( M 1M 2 ) 2 M1 + M 2 (15.8) elde edilir. 15.3. Kritik Roche Hacmi 'g1(16ø67(0/(5'(327$16ø<(/ R1 ve R2, kütleleri M1 ve M2 olan ve A \DUÕoDSOÕ oHPEHU \|UQJHOHUGH GRODQDQ LNL \ÕOGÕ] A¶QÕQ\ÕOGÕ]\DUÕoDSODUÕLOHD\QÕPHUWHEHGHQROGX÷XQXYDUVD\DFD÷Õ]$\UÕFDG|QPHQLQHú ]DPDQOÕ\DQL ω = Ω ROGX÷XQXYDUVD\DFD÷Õ]6LVWHPVDDWLQWHUVL\|QGH ω DoÕVDOKÕ]ÕLOHG|QPHNWHGLUùLPGL \ÕOGÕ]ODUÕQ NWOHOHULQGHQ oRN GDKD NoN m NWOHOL ELU SDUoDFÕN GúQHOLP .WOH PHUNH]LQGH EXOXQDQ YH VLVWHPOHELUOLNWHG|QHQELUJ|]OHPFL\HJ|UHEXSDUoDFÕ÷ÕQKDUHNHWLDúD÷ÕGDYHULOHQFm kuvveti ile belirlenir: <DUÕoDSODUÕ GúQHOLPEXUDGD Fm = FM 1 + FM 2 + Fmerkezkaç + Fcoriolis , (15.9) burada, Fmerkezkaç ve FcoriolisG|QHQELUUHIHUDQVVLVWHPLQLQVHoLOPLúROPDVÕQGDQGROD\ÕRUWD\DoÕNDn terimlerdir; temel eylemsiz bir sistemde Fmerkezkaç = 0 ve Fcoriolis ¶GÕU3QRNWDVÕQGDNL ψ potansiyeli ùHNLO ψ = GM 1 GM 2 ω 2 s 2 + + r1 r2 2 m NWOHVLQLQ ELOHúHQOHUH RODQ r1 ve r2LOHNWOHPHUNH]LQHX]DNOÕ÷ÕGD s LOHJ|VWHULOPLúWLU LOH YHULOLU EXUDGD VRQ WHULP VLVWHPLQ G|QPHVL QHGHQL\OH RUWD\D oÕNPÕúWÕU X]DNOÕNODUÕVÕUDVÕ\OD 7 dLIW<ÕOGÕ]ODUÕQ(YULPL Dönen sistemdeki geometri. ùHNLO ùHNLO %LU oLIW VLVWHPLQ HúSRWDQVL\HO \]H\OHUL YH EHú /DJUDQJLDQ QRNWDVÕ <ÕOGÕ]ODU QRNWD NWOH RODUDN J|] |QQH siyel yüzey (kritik DOÕQPÕúWÕU (úSRWDQVL\HO \]H\OHU DLW ROGXNODUÕ SRWDQVL\HO GH÷HUOHUL LOH HWLNHWOHQPLúWLU .ULWLN HúSRWDQ 5RFKHOREXGDLúDUHWOHQPLúWLU6LVWHPLQNWOHPHUNH]LLVHLúDUHWLLOHJ|VWHULOPLúWLU $\QÕ SRWDQVL\HOH VDKLS RODQ 3 QRNWDODUÕQÕQ NPHVL ELU HúSRWDQVL\HO \]H\L ROXúWXUXU <ÕOGÕ] PHUNH]OHULQLQ \DNÕQÕQGDNL HúSRWDQVL\HO \]H\OHULKHPHQ KHPHQ NUHVHOGLU 'ÕúDUÕ\D GR÷UXJLGLOGLNoH NUHVHOOLNWHQJLGHUHN D\UÕOÕUODU %X HúSRWDQVL\HO \]H\OHU DUDVÕQGDQ \DOQÕ]FD ELU WDQHVL Lo /DJUDQJH QRNWDVÕ GHQLOHQ YH LNL \ÕOGÕ] DUDVÕQGD \HU DODQ /1 QRNWDVÕQGD NHQGLVL\OH NHVLúLU %X \]H\H Lo NULWLN 5RFKH \]H\L GHQLU øo NULWLN 5RFKH \]H\L KHU ELUL ELOHúHQOHUGHQ ELUL HWUDIÕQGD RODQ LNL E|OJH WDQÕPODU YH EX E|OJHOHUH 5RFKH OREX GHQLU <DOQÕ]FDELUELOHúHQLoHYUHOH\HQHúSRWDQVL\HO\]H\OHUL\ÕOGÕ]ODUÕQ5RFKHOREODUÕQÕQLoLQGHNDOÕUODU (úSRWDQVL\HO \]H\OHU NWOHOHUL ELUOHúWLUHQ GR÷UX ]HULQGH \HU DODQ o bunlar, semer benzeri noktaya sahiptirler; D\QÕ GR÷UX ]HULQGH EXOXQDQ o /DJUDQJLDQ QRNWDVÕGÕU /DJUDQJLDQ QRNWDODUÕQÕQ GL÷HU LNL WDQHVL WDEDQODUÕ NWOH PHUNH]OHULQL ELUOHúWLUHQ GR÷UX SDUoDVÕ RODQ LNL HúNHQDU oJHQLQ WHSH QRNWDODUÕGÕU %|\OHFH WRSODP EHú /DJUDQJLDQ QRNWDVÕ YDUGÕU ùHNLO EX EHú /DJUDQJLDQ QRNWDVÕQÕ KHU LNL \ÕOGÕ] HWUDIÕQGDNL HúSRWDQVL\HO\]H\OHULYH\ÕOGÕ]ODUÕQ5RFKHOREODUÕQÕJ|VWHUPHNWHGLU 1%ø5%2<87/8+(6$3/$0$/$5 DURUMUNDA ROCHE YARIÇAPI <ÕOGÕ] PHUNH]OHULQLQ FLYDUÕQGD HúSRWDQVL\HO \]H\OHU \DNODúÕN RODUDN X]DNODúWÕNoD NUHVHO úHNLOGHQ VDSPDODU GD JLGHUHN GDKD E\N ROXU NUHVHOGLU EX PHUNH]OHUGHQ ψ potansiyelinin belOL ELU GH÷HUL LoLQ HúSRWDQVL\HO\]H\OHU\ÕOGÕ]PHUNH]OHULDUDVÕQGDRUWDNELUQRNWD\DVDKLSROXUODU 8 dLIW<ÕOGÕ]ODUÕQ(YULPL 5RFKHOREODUÕWDPRODUDNNUHVHOROPDVDODUGD “ ” , bir küreden çok da IDUNOÕGH÷LOOHUGLU5RFKHOREXQXQKDFPLQH RR ile gösterilir. Buna göre HúLWELUNUHQLQ\DUÕoDSÕ 5RFKH\DUÕoDSÕ RODUDNDGODQGÕUÕOÕUYH 4 π R R3 = Roche lobunun hacmi . 3 5RFKH\DUÕoDSÕ (15.11) M1, M2NWOHOHULLOHDUDODUÕQGDNLAX]DNOÕ÷ÕQDED÷OÕGÕU3DF]\QVNL5RFKH\DUÕoDSÕLoLQ DúD÷ÕGDNL\DNODúÕNLIDGH\LYHUPLúWLU RR M = 0.38 + 0.2 log q, q = 1 , 0.3 < q < 20 için A M2 (15.12) 1/ 3 1 RR = 0.46224 A 1 + 1/ q , q ≤ 0.8 için . (15.13) 'DKDGR÷UXLIDGHOHULVHú|\OHGLU RR = 0.37771 + 0.20247 log q + 0.01838(log q )2 + 0.02275(log q )3 , q > 0.1 A LoLQ RR = 0.37710 + 0.21310 log q − 0.00800(log q )2 + 0.00660(log q )3 , q < 0.1 A LoLQ (15.14) qRUDQÕ\HULQHqDOÕQDUDNGD\ROGDúELOHúHQLQRR5RFKH\DUÕoDSÕHOGHHGLOLU .WOHDNWDUÕPÕYH\|UQJHQLQHYULPL BiU \ÕOGÕ] gel-git \D GD 5RFKH OREXQX GROGXUGX÷XQGD \DSÕVÕQD LOLúNLQ VÕQÕUODPDODU GH÷LúLU <ÕOGÕ] VDELW NWOHVL LOH GDKD ID]OD HYULPOHúHPH] YH 5RFKH OREXQXQ LoLQGHNL KDFPLQL NRUXPD\D oDOÕúDFD÷ÕQGDQ NWOH ND\EHWPHN]RUXQGDNDOÕU%|\OHFH\ÕOGÕ] , hacmini Roche lobuna uydurarak evrimini sürdürür. dHPEHU \|UQJHOL ELU oLIW VLVWHPLQ \|UQJH DoÕVDO PRPHQWXPX GHQNOHPL LOH YHULOLU Ω DOÕQDUDN J yör = M 1M 2 ΩA 2 M1 + M 2 yazabiliriz. AktDUÕODQ ω yerine (15.15) PDGGHQLQ ELU PLNWDUÕQÕQ VLVWHPL WHUN HWWL÷LQL YDUVD\DOÕP EX GXUXPGD \|UQJH D\UÕNOÕ÷ÕQÕQGH÷LúLPL J yör A M 1 M 1 M 1 = −2 1 − (1 − α ) 1 − α + 2 A M 2 2 M 1 + M 2 M 1 J yör (15.16) úHNOLQGH\D]ÕODELOLU.RUXQXPOXHYULP\DQLVLVWHPGHQNWOHND\EÕROPDGÕ÷ÕGXUXPGD M M A = −21 − 1 1 A M 2 M1 elde ederiz. ise daha basit olarak (15.17) 9 dLIW<ÕOGÕ]ODUÕQ(YULPL .WOH DNWDUÕPÕ M 1 < 0 , M 1 M 2 < 1 GXUXPXQGD JHQLúOH\HQ ELU \|UQJH\H YH M 1 M 2 > 1 durumunda da NoOHQ ELU \|UQJH\H \RO DoDU (÷HU \ÕOGÕ] U]JDUODUÕ\OD VLVWHPGHQ NWOH ND\EÕ ROPDVÕ GXUXPXQGD ROGX÷X ( gibi, α > 0 LVH\|UQJHQLQHYULPLDWÕODQPDGGHQLQ|]DoÕVDOPRPHQWXPXRODQ α −1 J yör / M ) LIDGHVLQHVÕNÕ VÕNÕ\D ED÷OÕ ROXU %X DoÕVDO PRPHQWXP KDNNÕQGD oRN D] ELOJL VDKLEL ROGX÷XPX]GDQ \ÕOGÕ] U]JDUODUÕ\OD PDGGHND\EÕQÕQELUoLIWVLVWHPLQHYULPLQHRODQHWNLVLVRQGHUHFHEHOLUVL]GLU α = 0 ROVD ELOH oLIWLQ HYULPL NRUXQXPVX] RODELOLU gUQH÷LQ E|\OHVL ELU GXUXP \|UQJH DoÕVDO PRPHQWXPXnun, gel-git HWNLOHúimleri VRQXFXQGD G|QPH DoÕVDO PRPHQWXPXQD G|QúWUOPHVL VÕUDVÕQGD RUWD\D oÕNDELOLU *HQHORODUDNEXGXUXP\|UQJHHYULPLLoLQoRN|QHPOLGH÷LOGLUoQNoRN\DNÕQELOHúHQOLVLVWHPOHUGÕúÕQGD \|UQJH DoÕVDO PRPHQWXPX J yör G|QPH DoÕVDO PRPHQWXPXQGDQ oRN E\NWU dRN NÕVD G|QHPOL VLVWHPOHUGHGRODQPDRNDGDUKÕ]OÕGÕUNLDoÕVDOPRPHQWXPX J yör J yör =− 32 G 3 M 1 M 2 (M 1 + M 2 )A − 4 s −1 5 c5 (15.18) nin evrimini önemOL |OoGH HWNLOHU 6LVWHP \HWHULQFH \DNÕQVD LOH YHULOHQ DoÕVDO PRPHQWXP LIDGHVLQGHNL EDVNÕQ WHULP ROXU YH EX GXUXPGD E\N NWOHOL ELOHúHQH NWOH DNWDUÕPÕ ROVD ELOH A / A ifadesi negatif olur. RUDQÕ\OD DNWDUDQ oHNLPVHO GDOJDODU VDOÕQÕU EN] /DQGDX DQG /LIVFKLW] YH EX GD \|UQJH %|\OHVL\DNÕQVLVWHPOHUGHNoNNWOHOLELOHúHQVSLUDOOHUoL]HUYHVLVWHPJLGHUHNGDKDGD\DNÕQODúÕU .WOHND\EHGHQ\ÕOGÕ]GDQELOHúHQLQHNWOHDNWDUPDKÕ]Õ\DNODúÕNRODUDN M = ψs ∫ ψc ρ cs dA dψ dψ (15.19) ρ (ψ ) ve cs (ψ ) , L1FLYDUÕQGDNL\R÷XQOXNYHVHVKÕ]ÕGÕU ψ s ve ψ c LVH VÕUDVÕ\OD 5RFKH OREX YH \ÕOGÕ] \]H\LQGHNL PHUNH]NDo NXYYHWL LoLQG]HOWLOPLú SRWDQVL\HOOHULGLU A, L1FLYDUÕQGDNLDNÕPWSQQNHVLWDODQÕGÕUoHNLPSRWDQVL\HOL/DJUDQJLDQQRNWDVÕFLYDUÕQGDVHUL\HDoÕODUDN ED÷ÕQWÕVÕLOHYHULOHELOLU-HGU]HMHFEXUDGD NHVLWDODQÕ dA = −2π (1 − φ )−1 / 2 φ Ω − 2 dψ (15.20) hesaplanabilir (Savonije, 1979). Burada φ NWOH RUDQÕ q’nun boyutsuz bir fonksiyonu, Ω ise \|UQJHDoÕVDOKÕ]ÕGÕU. ∆ (ψ − ψ ) IDUNÕ s c ED÷ÕQWÕVÕ\OD GM 1 ∆R ∆ψ = − RRc ED÷ÕQWÕVÕ\OD\DUÕoDSODUDUDVÕQGDNL (15.21) ∆R = (R − Rc ) IDUNÕQDG|QúWUOHELOLU <DUÕoDSÕQ NWOH ND\EÕQD WHSNLVL YH NWOH ND\EÕ QHGHQL\OH 5RFKH \DUÕoDSÕQGD RUWD\D oÕNDQ GH÷LúLP ED÷ÕQWÕVÕQGDYHULOGL÷L]HUHNWOHND\EÕKÕ]ÕQÕQRUDQÕQÕEHOLUOHUOHU .WOHDNWDUÕPLúOHPL .WOH DNWDUÕPÕ KDNNÕQGD ILNLU VDKLEL ROPDN LoLQ \ÕOGÕ]ÕQ NWOHVL D]DOGÕNoD \ÕOGÕ] YH 5RFKH \DUÕoDSODUÕQÕQ GH÷LúLPLQL ùHNLO GLNNDWH DOPDPÕ] JHUHNLU ø]ROH ELU \ÕOGÕ]ÕQ \DUÕoDSÕQÕQ HYULPL VDELW NWOH LOH GúH\ ′ GR÷UXOWXGDNL $% oL]JLVL\OH J|VWHULOPLúWLU <DNÕQ oLIW VLVWHPOHUGH \DUÕoDS NWOH DNWDUÕPÕQÕQ EDúODGÕ÷Õ % QRNWDVÕQGDNL 5RFKH \DUÕoDSÕ RODQ r1GH÷HULQH XODúÕOÕQFD\D NDGDU DUWDU 0DGGHGH÷LúLPLQLQEDúODQJÕo HYUHOHUL VUHVLQFH \ÕOGÕ] \DUÕoDSÕ KHPHQ KHPHQ VDELW NDOÕU %& IDNDW GDKD VRQUD NWOH ND\EÕ GHYDP HWWLNoH \DUÕoDS r1 D]DOÕU <|UQJH NoOU M1¶LQ D]DOÕ\RU ELU fonksiyonu olarak r1¶LQGH÷LúLPL%¶GHQ(¶\HNDGDURODQr1H÷ULVL\OHJ|VWHULOPLúWLU D]DOÕU &'1 .WOH ND\EÕ EDúODGÕ÷ÕQGD 5RFKH \DUÕoDSÕ 10 dLIW<ÕOGÕ]ODUÕQ(YULPL %DúYH\ROGDúELOHúHQLQM1 ve M2 NWOHOHULHúLWROGX÷XQGDr1 ¶GH(QRNWDVÕQGDNLPLQLPXPGH÷HULQHXODúÕUM1 < M2 ROGX÷XQGD r1 \HQLGHQ DUWDU (' \DQL \|UQJH \HQLGHQ JHQLúOHU % LOH & DUDVÕQGD R > r1 ROGX÷XQGDQ EDú \ÕOGÕ]ÕQ NWOHVLQLQ D]DOPDVÕ LoLQ NWOH ND\EÕ JHUHNOLGLU ,úÕQÕPOÕ ]DUIODU LoLQ EX GXUXP ÕVÕVDO ]DPDQ |OoH÷LQGH PH\GDQD JHOLU R1 H÷ULVL GÕú NDWPDQODUÕQÕ DWDUDN NWOHVLQL D]DOWDQ ÕVÕVDO GHQJHGHNL ELU \ÕOGÕ]ÕQ \DUÕoDSÕQÕQQDVÕOGH÷LúWL÷LQLJ|VWHUPHNWHGLU&QRNWDVÕQÕQ|WHVLQGHEDú\ÕOGÕ]ÕQ\DUÕoDSÕ5RFKH\DUÕoDSÕQGDQ küçüktür. ùHNLO .WOH GH÷LúLPLQLQ ROGX÷X ELU oLIW VLVWHP deki EDú \ÕOGÕ]ÕQ \DUÕoDSÕ LOH 5RFKH \DUÕoDSÕQÕQ GDYUDQÕúÕ %&'1 , D]DODQNWOHOLGHQJHPRGHOLQLQ\DUÕoDSÕQÕJ|VWHUPHNWHGLU øNLRODVÕOÕNGLNNDWHDOÕQPDOÕGÕU 1. 2. R1 < r1oLIWD\UÕNGXUXPDJHOLU (÷HU \HQL ELU QNOHHU \DQPD HYUHVL EDúODUVD \ÕOGÕ] 5RFKH OR bunu doldurur ve yeniden kütle ND\EÕPH\GDQDJHOLUIDNDWEXVHIHU]DPDQ|OoH÷LQNOHHU]DPDQ|OoH÷LGLU&' %|\OHFHLNLNWOHGH÷LúLPHYUHVLoLIWVLVWHPOHULQHYULPLLOHLOLúNLOHQGLULOHELOLU 1. (q=M1/M2). 2. +Õ]OÕ ELU NWOH GH÷LúLP HYUHVL EX HYUHGH VLVWHPLQ NWOH RUDQÕ q > 1’den q < 1’e ters döner M2¶QLQ\DYDúoDDUWWÕ÷ÕELUHYUHJHOLU %XKÕ]OÕHYUHGHQVRQUD\ROGDúÕQNWOHVL 4 – 105 \ÕO PHUWHEHVLQGH ROGXNoD NÕVD RODELOLU %|\OHFH NWOH DNWDUÕPÕ VÕUDVÕQGDNL VÕUDGDROXUENzùHNLO15.8): 1. A –%ELULQFL\ÕOGÕ]QNOHHU]DPDQ|OoH÷LQGHJHQLúOHU. 2. B –&ÕVÕVDO]DPDQ|OoH÷LQGHKÕ]OÕELUNWOHDNWDUÕPÕPH\GDQDJHOLU +Õ]OÕ HYUH ROD\ODU úX %X HYUHGH VLVWHP ELU DOW GHY EDú \ÕOGÕ]ÕQ NDOÕQWÕVÕ úLPGL NoN NWOHOL RODQ LOH ELU DQDNRO \ÕOGÕ]ÕQGDQ (büyük kütlelL\ÕOGÕ]ROXúPDNWDGÕU 3. &QRNWDVÕQÕQ|WHVLQGHDOWGHYELUQNOHHU]DPDQ|OoH÷LQGHHYULPOHúHUHN\DYDúoDJHQLúOHUYHD] PLNWDUGDELUPDGGH\LDNWDUÕU )DUNOÕNWOHDNWDUÕP]DPDQ|OoHNOHUL %LU \ÕOGÕ] gel-git \D GD 5RFKH OREXQX GROGXUGX÷XQGD \DSÕVÕQD LOLúNLQ VÕQÕUODPDODU GH÷LúLU <ÕOGÕ] VDELW NWOHVL LOH GDKD ID]OD HYULPOHúHPH] YH 5RFKH OREXQXQ LoLQGHNL KDFPLQL NRUXPD\D oDOÕúDFD÷ÕQGDQ NWOH ND\EHWPHN ]RUXQGD NDOÕU %|\OHFH \ÕOGÕ] ÕVÕVDO GHQJH GXUXPXQX NDUX\DUDN \D GD EX GHQJHGHQ D\UÕOPDN suretiyle, hacmini Roche lobuna uydurarak evrimini sürdürür. 11 dLIW<ÕOGÕ]ODUÕQ(YULPL <ÕOGÕ] PDGGHVL GDKD ]L\DGH PHUNH]L NÕVÕPODUGD \R÷XQODúWÕ÷ÕQGDQ \ÕOGÕ]ODU Lo \DSÕODUÕQÕ NWOH ND\EÕQD J|UH n gel-git ve \ÕOGÕ]ÕQ KLGURVWDWLN GHQJHVL ER]XOPD\DFDN úHNLOGH DWÕODELOLUOHU )DNDW ÕVÕVDO GHQJH zaman |OoH÷L \DQL QNOHHU HQHUML UHWLPL LOH DWPRVIHULN HQHUML ND\EÕ DUDVÕQGDNL GHQJHQLQ ]DPDQ |OoH÷L, dinamik D\DUODPD \HWHQH÷LQH VDKLSWLUOHU 'Õú NÕVÕPODU R NDGDU LQFHGLU NL \ROGDúÕQ HWNLVL\OH RUWD\D oÕND ROD\ODUÕ\OD ]DPDQ|OoH÷LQGHQoRNGDKDX]XQRODELOHFH÷LQGHQGROD\Õ \ÕOGÕ]ÕQ ÕVÕGHQJHVLER]XODELOLU<ÕOGÕ]ÕQ NWOHVLQGH |QHPOL RUDQODUGD GH÷LúLPH QHGHQ RODQ E\N NWOH ND\EÕ RUDQODUÕ LoLQ \ÕOGÕ] LoLQGHNL HQWURSL SURILOL GH÷LúPHGHQNDODELOLU\DGDGL÷HUELUGH÷LúOHLoNÕVÕPODUÕQWHSNLVLDG\DEDWLNRO abilir. 'ø1$0ø.=$0$1g/d(öø1'(.h7/(.$<%, 5RFKH OREXQX GROGXUDQ \ÕOGÕ] VRQ GHUHFH \NVHN RUDQGDNWOHND\EHWVHELOH 5RFKHOREXQXQLoLQGHNDODPD] .WOH ND\EHGHQ \ÕOGÕ]ÕQ NWOH ND\EHWPH KÕ]Õ \DOQÕ]FD /1 QRNWDVÕQGDQ JHoHQ ]DUIÕQ VHV KÕ]ÕQGDNL geQLúOHPHVL\OH belirlenmektedir. ,VÕ GHQJHVLQGHNL ÕúÕQÕPOÕ ]DUID VDKLS \ÕOGÕ]ODU GLQDPLN NWOH DNWDUÕPODUÕQD NDUúÕ NDUDUOÕGÕUODU %XQXQOD ELUOLNWH, GHULQ \]H\ NRQYHNWLI NXúDNOÕ \ÕOGÕ]ODU LOH \R]ODúPÕú \ÕOGÕ]ODU GLQDPLN ]DPDQ |OoH÷LQGHNL NWOH DNWDUÕPODUÕ LoLQ NDUDUVÕ]GÕUODU %|\OHFH, H÷HU NWOH ND\EHGHQ \ÕOGÕ] GHY NROXQGD \D GD \DNÕQÕQGD YH\D DOW DQDNROGD EXOXQX\RUVD \D GD H÷HU \ÕOGÕ] \R]ODúPÕú LVH GLQDPLN NDUDUVÕ]OÕN NRúXOODUÕQÕ VD÷ODPÕúROXU .RQYHNWLI]DUIOÕ\ÕOGÕ]ODULoLQNWOHND\EÕ\DNODúÕNRODUDN M ≈ M P ∆R R 3 ED÷ÕQWÕVÕ\OD YHULOHELOLU EXUDGD M \ÕOGÕ]ÕQ NWOHVL P, dolanma dönemi; R \DUÕoDS YH ∆R ¶GH \DUÕoDSWDNL r. Kütle DUWÕúWÕU(VDVRODUDN \ÕOGÕ]LoLQGHNL\R÷XQOXNGD÷ÕOÕPÕQDED÷OÕRODQRUDQWÕNDWVD\ÕVÕPHUWHEHVLQGHGL ND\EÕEDúODGÕ÷ÕQGDÕVÕGHQJHVLER]XOXUER]XOPD]NWOHND\EÕRUDQÕKÕ]ODDUWDU ,6,6$/=$0$1g/d(öø1'(.h7/(.$<%, koruyabilseydi\DUÕoDSÕ ve bu da daha büyük bir 5RFKHOREXQXGROGXUDQ\ÕOGÕ]NWOHND\EHGHUIDNDWÕVÕVDOGHQJHVLQLNRUX\DPD]H÷HU 5RFKH \DUÕoDSÕQGDQ E\N ROXUGX YH oRN GDKD E\N NWOH ND\EÕ RUWD\D oÕNDUGÕ \DUÕoDSD \RO DoDUGÕ YH VUHo E|\OHFH GHYDP HGHUGL ,VÕ GHQJHVLQGHQ D\UÕOPD \ÕOGÕ]ÕQ 5RFKH OREXQX WDP RODUDNGROGXUPXúRODUDNNDOPDVÕQDRODQDNVD÷ODU . ,VÕVDO]DPDQ|OoHNOLNWOH DNWDUÕPODUÕ+5 GL\DJUDPÕQGD , devler kolunun solundaki \R]ODúPDPÕú \ÕOGÕ]ODUGD KÕ]OÕNWOHND\EÕQHGHQL\OHNDUDUVÕ]ROGXNODUÕVÕUDGDPH\GDQDJHOLU,VÕVDO]DPDQ|OoHNOLNWOHDNWDUÕPÕE\N da, bozulmalar ile NRQWUROHGLOLU.WOHND\EÕX\JXQNWOHYH]DPDQ|OoH÷L NWOHOL ELOHúHQ 5RFKH OREXQX GROGXUGX÷XQGD PH\GDQD JHOLU .WOH ND\EÕ \ÕOGÕ] ]DUIÕQÕQ GHQJH GXUXPXQ NWOHND\EÕQÕQHWNLVL\OHRUWD\D oÕNDQ LOHDúD÷ÕGDNLJLELWDKPLQHGLOHELOLU M max = − M t KH (15.22) burada, tKHNWOHND\EHGHQ\ÕOGÕ]ÕQÕVÕVDO\DGD.HOYLQ-+HOPOKROW]]DPDQ|OoH÷LROXS t KH = E pot L = GM 2 RL M2 ≈ 3 ×10 RL 7 VDQL\H \ÕO G = × G\Q FP J − (15.23) M RLJQHúELULPLQGH ED÷ÕQWÕVÕ\ODYHULOLU 1h./((5=$0$1g/d(öø1'(.h7/($.7$5,0, .WOHDNWDUÕPÕWDPDPHQHYULPVUHoOHUL\OHNRQWUROHGLOLUEXQHGHQOH|QFHNLNHVLPOHUGHNLJLELWHNEDúÕQDHOH DOÕQDPD].WOHND\EHGHQ \ÕOGÕ]ÕQ\DUÕoDSÕ5RFKH\DUÕoDSÕLOHD\QÕGÕUYH \ÕOGÕ]ÕVÕVDOGHQJHGHNDOÕU1NOHHU ]DPDQ |OoH÷LQGHNL NWOH DNWDUÕPÕ \ÕOGÕ]ÕQ çekirdekte hidrojen yakma evresinde iken ROXúDQ KÕ]OÕ kütle 12 dLIW<ÕOGÕ]ODUÕQ(YULPL DNWDUPD HYUHVLQGHQ VRQUD PH\GDQD JHOLU 1NOHHU ]DPDQ |OoH÷L GLQDPLN \D GD ÕVÕVDO ]DPDQ |OoHNOHULQGHQ E\NROGX÷XQGDQEXWUNWOHDNWDUÕPÕQÕQJ|]OHQHELOPHRODVÕOÕ÷ÕGDE\NWU .ULWLN\DUÕoDSYHNWOHDNWDUÕPÕ Denklem 15.12 ve 15.13, M1’den M2¶\H NWOH DNWDUÕPÕ ROGX÷XQGD R R / A GH÷HULQLQ GDLPD D]DODFD÷ÕQÕ J|VWHUPHNWHGLU .WOH DNWDUÕPÕ VÕUDVÕQGD H÷HU NWOH RUDQÕ q = M / M ELUGHQ NoN LVH 5RFKH \DUÕoDSÕQÕQ 1 2 kendisi büyüyecektir (bkz. denklem 15.17). Aksine RODUDN H÷HU M 1 / M 2 > 1 LVH NWOH DNWDUÕPÕ VÕUDVÕQGD 5RFKH \DUÕoDSÕ NoOU (÷HU EX GXUXP JHoHUOL LVH KÕ]OÕ PDGGH DNWDUÕPÕQD VDKLEL] GHPHNWLU %LU \ÕOGÕ]ÕQ KÕ]OÕ PDGGH DNWDUÕPÕQD WHSNLVL Lo \DSÕVÕ LOH VÕNÕ VÕNÕ\D LOLúNLOLGLU g] HQWURSL \]H\H GR÷UX DUWWÕ÷ÕQGD GÕú NDWPDQODU ÕúÕQÕP GHQJHVLQGH LVH \ÕOGÕ] \DUÕoDSÕQÕ 5RFKH \DUÕoDSÕQD X\GXUVXQ GL\H \HQLGHQ QRUPDO ER\XWODUÕQDGR÷UXE]OPH\LEDúDUDELOLU(÷HU\ÕOGÕ]GHULQELUNRQYHNWLI\]H\NDWPDQÕQDVDKLSVH\DUÕoDSÕQ D]DODQNWOH\HNDUúÕWHSNLVLWDPDPHQIDUNOÕROXU .WOHDNWDUÕPÕQÕQ]DPDQ|OoH÷LGÕúNDWPDQODUÕQGXUXPXQDED÷OÕGÕU dÕúNDWPDQODUÕúÕQÕPVDOROGX÷XQGD, kütle DNWDUÕPÕÕVÕVDO]DPDQ|OoH÷LQGHROXUNHQNRQYHNWLIGÕúNDWPDQGXUXPXQGDLVH]DPDQ|OoH÷LGDKDGDNÕVDGÕU ,ù, NIMLI ZARFLAR <ÕOGÕ] PDGGHVLQLQ |] HQWURSLVLQLQ GÕúDUÕ\D GR÷UX DUWDELOPHVL LoLQ VÕFDNOÕN JUDGL\HQWLQLQ KHPHQ KHPHQ DG\DEDWLN ROPDVÕ JHUHNLU <ROGDúD NWOH DNWDUÕPÕ NWOH ND\EHGHQ \ÕOGÕ]ÕQ KLGURVWDWLN GHQJHVLQL WHNUDU VD÷OD\DELOPH k üzere, sabit entropi DOWÕQGD YH KLGURGLQDPLN ELU ]DPDQ |OoH÷LQGH JHQLúOHPHVLQH QHGHQ ROXU <ÕOGÕ] NWOH DNWDUÕPÕQGDQ |QFHNLQGHQ ELUD] GDKD NoN ELU ER\XWD VDKLS ROXU <ÕOGÕ] KLGURVWDWLN GHQJH\H XODúÕU IDNDW ÕVÕ GHQJHVLQH KHQ] XODúPDPÕúWÕU *HQLúOH\HQ NDWPDQODU ÕúÕQÕP DNÕVÕQGDQ HQHUML VR÷XUDUDUN ÕVÕ GHQJHVL HQWURSL JUDGL\HQWLQL D\DUODPÕú ROXUODU *HQLúOHPH \ÕOGÕ]ÕQ KHPHQ KHPHQ NWOH DNWDUÕPÕQGDQ |QFHNL ER\XWODUÕQDXODúDELOHFH÷LNDGDUE\NWU Ancak, Roche lobunun, bu durumXQ PPNQ RODPD\DFD÷Õ NDGDU NoOPHVL RODVÕGÕU Bu durumun olup ROPD\DFD÷ÕNWOHRUDQÕqLOHNWOHND\ÕSKÕ]Õ M ¶\HED÷OÕGÕU M i) q = 1 > 1 durumu M2 <ÕOGÕ] \DUÕoDSÕ ÕVÕVDO GXUXOPDQÕQ ELWPHVLQGHQ |QFH 5RFKH \DUÕoDSÕQÕ DúDU EX GXUXPGD GDKD ID]OD PDGGH DWÕODFDNYHÕVÕVDOGHQJH\HXODúÕODPD\DFDNWÕU5RFKHOREXNoOHFHNE|\OHFHGDKDID]ODNWOHND\EHGLOHFHNYH ELU ÕVÕ NDoD÷Õ RUWD\D oÕNDFDNWÕU =DUI E\N PLNWDUGD HQHUML VR÷XUDFDN YH E|\OHFH NWOH ND\EHGHQ \ÕOGÕ] ÕVÕ GHQJHVLQGHNLEHQ]HUELU\ÕOGÕ]DJ|UHoRNGDKDGúNÕúÕWPD\DVDKLSRODFDNWÕU ii) q = M1 < 1 durumu M2 q < 1 oluncaya kadar devam k (bkz. kesim 15.3.3), böylece A ve RRoche’un ikisi de +Õ]OÕNWOHDNWDUÕPÕNWOHND\EHGHQ\ÕOGÕ]ELOHúHQLQGHQGDKDNoNNWOHOL\DQL HGHU'DKDID]ODNWOHDNWDUÕOGÕNoD\|UQJHJHQLúOH\HFH büyüyecektir. ,VÕNDoD÷ÕVÕUDVÕQGDNWOHDNWDUÕPÕQÕQPDNVLPXPGH÷HUL M = M M RL (M, R, L JQHúELULPLQGH = ≈ 3 ×10 −8 t KH 3 × 10 7 M 2 RL M PHUWHEHVLQGHGLU .WOH ND\EHGHQ \ÕOGÕ] EXQX VUGUHELOPHN LoLQ JHQLúOHPHN ]RUXQGDGÕU E|\OHFH GXUXOPD ]DPDQÕÕVÕGHQJHVLQLQ\HQLGHQNXUXOPDVÕQÕVD÷OD\DFDNNDGDUX]XQGXU%XWUNWOHDNWDUÕPÕNWOHND\EHGHQ i \ÕOGÕ]ÕQ JHQLúOHPH ]DPDQ |OoH÷LQGH GHYDP HGHU YH \ÕOGÕ] HYULPLQLQ LOHU NL DúDPDVÕQGD 5RFKH \DUÕoDSÕQÕQ DOWÕQDNoOG÷QGHVRQDHUHU )DUNOÕNWOHDNWDUÕPKÕ]ODUÕELUELULLOHNDUÕúWÕUÕOPDPDOÕGÕUDQDNRO \ÕOGÕ]ODUÕQNOHHUX]XQ]DPDQ|OoH÷LQGHNL JHQLúOHPHOHUL VÕUDVÕQGDGúN NWOHOLELOHúHQOHULQH RUWDúLGGHWWH ELU NWOH DNWDUÕPÕQGDEXOXQXUODUH÷HUNWOH kaybeden ELOHúHQ, çekirdekteki hidrojenin tükenmesLQGHQ VRQUDNL KÕ]OÕ PHUNH]L o|NPH HYUHVLQGH LVH ]DUI , “QRGH NXUDPÕ” YHE\NNWOHOLELOHúHQHELOH \NVHNRUDQGDPDGGHDNWDUÕPÕ meydana gelebilir. KÕ]ODJHQLúOHUEN]NHVLP .219(.7ø)=$5)/$5 13 dLIW<ÕOGÕ]ODUÕQ(YULPL .RQYHNWLI ]DUIODU NWOH ND\EHGLOGL÷LQGH E]OPH \HULQH JHQLúOHPH H÷LOLPL J|VWHULUOHU 7DPDPHQ DG\DEDWLN RODUDNNRQYHNWLIRODQELU\ÕOGÕ]ÕQ\DUÕoDSÕQÕQGH÷LúLPLNWOH\H R ∝ M −1 / 3 úHNOLQGH ED÷OÕGÕU %XQD J|UH PDGGH DWÕOGÕ÷ÕQGD \ÕOGÕ] JHQLúOHU %|\OHVL \ÕOGÕ]ODU NWOH DNWDUÕPÕ VÕUDVÕQ da, 5RFKH OREODUÕQGD NDOPD\Õ VUGUHPH]OHU (÷HU NWOH ND\EHGHQ \ÕOGÕ] WDP DG\DEDWLN VÕFDNOÕN JUDGL\HQWOL GHULQELUNRQYHNWLI]DUIDVDKLSLVH]DUIWDNLPDGGHQLQHQWURSLVLGÕúDUÕ\DGR÷UXD]DOÕU L.WOHRUDQÕ (÷HU q q= M1 ’nin büyük ROGX÷Xdurum M2 \HWHULQFHE\NVH NWOHWUDQVIHUL VUHVLQFH 5RFKH OREX \D VDELW NDOÕU \D GD NoOU Belirli miktarda NWOHDNWDUÕOGÕ÷ÕQGDNWOHND\EHGHQ\ÕOGÕ]KLGURVWDWLNGHQJHVLQL \HQLGHQVD÷OD\DELOPHNLoLQVDELWHQWURSLLOH GeniúOH\HQNDWPDQODUGHQJHNRQXPXQDNÕ\DVODELUHQWURSLID]ODOÕ÷ÕQDVDKLSROXUODU böylece \ÕOGÕ] ÕVÕVDO GHQJHVLQL \HQLGHQ VD÷ODPD\D oDOÕúWÕ÷ÕQGD, E]OPH H÷LOLPL J|VWHUHFHNWLU 'ROD\ÕVL\OH kütle transferi, \ÕOGÕ]ÕQDG\DEDWLN olarak JHQLúOHPHsinden sonraki bR\XWODUÕQDVÕNÕFDED÷OÕGÕU DG\DEDWLNRODUDNJHQLúOHU (÷HU \ÕOGÕ] 5RFKH OREXQX DúDUVD NWOH DNWDUÕPÕ oRN KÕ]OÕ ELU DG\DEDWLN JHQLúOHPH ]DPDQ |OoH÷LQGH GHYDP bu durumda süreç çok daha idir (Paczynski =LRONRZVNL =\WNRZ .WOHND\ÕSKÕ]Õ oRN \NVHN RODFDNWÕU Bunlar, konvektif ]DUIÕNDUPDúÕNYHWDKPLQHGLOHPH\HQELUúHNLOGHHWNLOHr YHNWOHND\ÕSKÕ]ÕQÕQGX\DUOÕRODUDN tahmin edilmesi mümkün olmaz. HGHU YH ÕúÕQÕPOÕ ]DUI GXUXPXQGD ROGX÷X JLEL ELU ÕVÕVDO NDoDN ROXúXU IDNDW úLGGHWO M1 ’ninNoNROGX÷XGXUXP M2 q yeterince küçük olursa, Roche lobu, boyutODUÕ LL.WOHRUDQÕ (÷HU q= EDNÕPÕQGDQ yÕOGÕ]ÕQ DUWPDNWD RODQ \DUÕoDSÕ\OD NDUúÕODúWÕUÕODELOLURODUDNNDODFDNúHNLOGH\HWHULQFHJHQLúOH\HELOLUYH \ÕOGÕ]ÕQHYULP]DPDQ|OoH÷LQGH\DYDúELU NWOHDNWDUÕPÕPH\GDQD gelir. .WOHGH÷LúLPLQLQIDUNOÕGXUXPODUÕ , ni engelleyen bir durum yoktur (YULPVÕUDVÕQGD \ÕOGÕ]\DUÕoDSÕ DOWHUQDWLIRODUDNDUWPDYHD]DOPDDúDPDODUÕJ|VWHULU7HN\ÕOGÕ]ODUGD\ÕOGÕ]ÕQ JHQLúOHPHVL YH EX úHNLOGH \ÕOGÕ] ELU NÕUPÕ]Õ GHY \D GD ELU NÕUPÕ]Õ VSHU GHY olur. <DUÕoDSÕQ ]DPDQÕQ IRQNVL\RQX RODUDN GH÷LúLPL ùHNLO 4’te J|VWHULOPLúWLU (÷HU J|] |QQH DOÕQDQ \ÕOGÕ] ELU \DNÕQ oLIW VLVWHPLQ EDú \ÕOGÕ]Õ LVH \ÕOGÕ]ÕQ JHQLúOHPHVL \ROGDúÕQ YDUOÕ÷Õ nedeniyle VÕQÕUOÕ YH NRQWUROOX ELU úHNLOGH olur. 2QXQ \DUÕoDSÕ .HVLP \D GD ¶WH EHOLUOHQGL÷L ]HUH NULWLN 5RFKH \DUÕoDSÕQÕJHoHPH]<ÕOGÕ] \DUÕoDSÕQÕQNULWLN5RFKHOREXLoHULVLQGHNDOabilmesi LoLQNWOHDNWDUÕPÕPH\GDQD gelir. %XUDGD HVDV RODUDN \ÕOGÕ]ÕQ |QHPOL |OoGH JHQLúOH\Hrek Roche KDFPLQL DúDELOGL÷L o HYUH÷L HOH DODFD÷Õ] .LSSHQKDKQ YH :HLJHUW ¶L L]OH\HUHN EX NWOH DNWDUÕP HYUHOHULQL $ % YH & türleri olarak EHOLUWHFH÷L] A türü: (÷HU , VLVWHPLQ SDUDPHWUHOHUL NWOH \ÕOGÕ] PHUNH]OHUL DUDVÕQGDNL X]DNOÕN \ÕOGÕ]ÕQ \DUÕoDSÕQÕQ ELULQFL J|UHOL PLQLPXPXQD YDUPDVÕQGDQ |QFH evresi), , \DQL PHUNH]L KLGURMHQ \DQPDVÕ VÕUDVÕQGD DQDNRO 5RFKH OREXQX GROGXUPDVÕQÕ VD÷OD\DFDN úHNLOGH LVH EX GXUXPGD NWOH DNWDUÕPÕQÕQ $ - türü ROXúXU %DúODQJÕoWDNWOHDNWDUÕPKÕ]ÕoRN\NVHNWLUYHELU.HOYLQ +HOPKROW]]DPDQ|OoH÷LQGHPH\GDQDJHOLU buna NWOH DNWDUÕPÕQÕQ KÕ]OÕ HYUHVL GHQLU %HOLUOL ELU ]DPDQ VRQUD NWOH RUDQÕ WHUVLQH G|QHU +Õ]OÕ HYUH\L QNOHHU ]DPDQ|OoH÷LQGH ki bir \DYDúNWOHDNWDUÕPHYUHVLWDNLSHGHU B türü (÷HU ELOHúHQOHU DUDVÕQGDNL $ X]DNOÕ÷Õ PHUNH]L KLGURMHQ \DQPD HYUHVLQLQ VRQXQGD EDú \ÕOGÕ]ÕQ NULWLN 5RFKH \DUÕoDSÕ \ÕOGÕ]ÕQ \DUÕoDSÕQGDQ E\N YH KHO\XP \DQPD HYUHVLQLQ EDúODQJÕFÕQGD LVH RQGDQ NoN RODFDN úHNLOGH LVH NWOH DNWDUÕPÕQÕQ % türü meydana gelir. %X \ROOD \ÕOGÕ] GÕú NÕVÕPODUÕQ SHú SHúH JHOHQ KÕ]OÕ JHQLúOHPHOHUL VÕUDVÕQGD EX ROD\ KÕ]OÕ PHUNH]L VÕNÕúPD\OD ELU DUDGD ROPDNWDGÕU NULWLN hacmini doldurur..ULWLNKDFPHXODúÕOÕUXODúÕOPD]GDNWOHDNWDUÕPÕEDúODU,úÕWPDGúHUPLQLPXPELUGH÷HUH XODúÕUYHWHNUDUDUWDU Çok GúNNWOHOHULoLQKLGURMHQNDEX÷XQzayfla PDVÕ\ODPHUNH]GHHOHNWURQ\R]ODúPDVÕ EDúODU %X GXUXPGD PHUNH]LQ VÕNÕúPDVÕ \DYDúODU YH EX QHGHQOH ]DUIÕQ KÕ]OÕ JHQLúOHPH HYUHVL, GROD\ÕVÕ\OD GD KÕ]OÕNWOHDNWDUÕPHYUHVLROPD] C türü: Bu durum, çok ileri evrelerde, KHO\XPXQ \DQPD\DEDúODPDVÕQGDQVRQUD5RFKH\DUÕoDSÕQÕQ \ÕOGÕ]\DUÕoDSÕQÕDúWÕ÷Õ]DPDQRUWD\DoÕNDU 14 dLIW<ÕOGÕ]ODUÕQ(YULPL da ortaya kütle aktarmaya devam eder: AB türü: A türü NWOH DNWDUÕP evresinden sonra B türü NWOHDNWDUÕPÕROXúXU\DGD%&türü: A türünü, C WUNWOHDNWDUÕPÕizler. %LUNÕUPÕ]Õ GHYGH KHO\XPXQ WXWXúPDVÕ QHGHQL\OH NWOH DNWDUÕPÕQÕQ NHVLQWL\H X÷UDGÕ÷Õ GXUXP LVH JHQellikle BB türü RODUDNDGODQGÕUÕOÕU. %X o GXUXPXQ ROXúXPODUÕ ùHNLO ¶GD EHWLPOHQPLúWLU %XQODUÕQ \DQÕQGD PHOH] GXUXPODU oÕNDELOLU NWOH ND\EHGHQ \ÕOGÕ] LNL GXUXPGD ùHNLO 'H÷LúLN HYULP DúDPDODUÕ –ZAMS, merkezi H-WNHQPHVL NÕUPÕ]Õ QRNWD +H-WXWXúPDVÕ– LoLQ \ÕOGÕ] NWOHVLQLQ IRQNVL\RQX RODUDN \ÕOGÕ] \DUÕoDSODUÕQÕQ GH÷LúLPL <ÕOGÕ]ÕQ ELU oLIW VLVWHPLQ EDú ELOHúHQL RODUDN J|] |QQH DOÕQPDVÕ halinde, NWOH DNWDUÕPÕQÕQ $ % YH & türleri J|VWHULOPLúWLU $\UÕFD G|QHPOHUL – JQ DUDVÕQGD RODQ oLIW sistemlerdeki EDú ELOHúHQOHULQ 5RFKH \DUÕoDSODUÕ GD J|VWHULOPLúWLU ùHNLOGH NWOH RUDQÕ ELU RODUDN NXOODQÕOPÕú ROPDVÕQD NDUúÕQNWOHRUDQÕQÕQGL÷HUGH÷HUOHULNXOODQÕOGÕ÷ÕQGDGDúHNLOoRNID]ODGH÷LúPHPHNWHGLU .RUXQXPOXNWOHDNWDUÕPÕ <ÕOGÕ] 5RFKH OREX LoLQH JHUL JHOGL÷LQGH NWOH DNWDUÕPÕ VRQD HUHU %LU \ÕOGÕ]ÕQ HYULPVHO JHQLúOHPHVL HVDV RODUDN \ÕOGÕ]ÕQ Lo NÕVÕPODUÕQGDNL oHNLUGHNOHULQ ELUOHúHUHN GDKD D÷ÕU oHNLUGHNOHU ROXúWXUPDODUÕQÕ VD÷OD\DQ QNOHHU ELUOHúPHOHULQ QHGHQ ROGX÷X NLP\DVDO GH÷LúLPOHU LOH \DNÕWÕQÕ WNHWPHNWH RODQ \R]ODúPÕú oHNLUGH÷LQ J|UQP YH JHOLúLPLQH ED÷OÕGÕU çevrimi Böylece, ya \ÕOGÕ]ÕQ \R]ODúPÕú oHNLUGH÷LQGH \HQL ELU QNOHHU ELUOHúPH , + YH\D +H \DQPDVÕ EDúODGÕ÷ÕQGD oHNLUGH÷LQ VÕQÕUÕQGD \DQPDNWD RODQ NDEXNODUÕQ D]DODFD÷ÕQGDQ GROD\Õ \D GD \ÕOGÕ]ÕQ HQHUML ND\QDNODUÕQÕ besleyen n ]DUIÕ etkisi WNHQPHVL\OH EX JHQLúOHPHQLQ . Gerçekte, atmosferdeki hidrojen EROOX÷XQXQ D]DOPDVÕ \ÕOGÕ]ÕQ \DUÕoDSÕQÕQ NoOPHVLQH neden olur. $÷ÕUOÕNRODUDN QRUPDOGHFLYDUÕQGDRODQDWPRVIHULNKLGURMHQEROOX÷X GH÷HULQHGúW÷QGH GXUDFD÷Õ DoÕNWÕU RSDNOÕNE\NRUDQGDGH÷LúLUYHDWPRVIHUo|NHU .WOH DNWDUÕP HYUHVLQLQ EDúODQJÕFÕ YH VRQX ùHNLO ¶GD J|VWHULOPLúWLU %X úHNLOGH \ÕOGÕ] NWOHVLQLQ ELU IRQNVL\RQXRODUDN\ÕOGÕ]\DUÕoDSÕQÕWHPVLOHGHQH÷ULOHULOJLOLHYULPDúDPDODUÕ6ÕIÕU\DúDQNRO -=$06NÕUQÕ]Õ QRNWD \DQL PHUNH]L KLGURMHQ \DQPDVÕ VUHVLQFH HYULP oL]JLVLQLQ XODúWÕ÷Õ HQ VD÷ QRNWDPHUNH]GH KLGURMHQLQ 15 dLIW<ÕOGÕ]ODUÕQ(YULPL WNHWLOPHVL KHO\XPWXWXúPDVÕNDUERQ WXWXúPDVÕLoLQ J|VWHULOPLúOHUGLU (÷HU EX \DUÕoDSODUÕ \DNÕQoLIWLQEDú , e na Bununla \ÕOGÕ]ÕQÕQ 5RFKH \DUÕoDSÕ LOH WDQÕPODUVDN GL\DJUDP EL]H NWOH DNWDUÕPÕQÕQ QHU GH EDúOD\ÕS QHUHGH VR HUHFH÷LQL \DQL EDúND GH÷LúOH $ % YH & WU NWOH DNWDUÕPODUÕQD NDUúÕOÕN JHOHQ NÕVÕPODUÕ J|VWHULU ELUOLNWHHWNLOHúHQELUoLIWLQVRQDúDPDVÕQÕEHOLUOHPHNLoLQ\|UQJHHYULPLQLQGHGLNNDWHDOÕQPDVÕJHUHNOLGLU Korununmlu evrim durumunda, iki biOHúHQLQ GH÷LúHQ X]DNOÕNODUÕ YH \|UQJH G|QHPLQLQ GH÷LúLPL (15.8) denklemi ile verilen J2 = GA( M 1M 2 ) 2 M1 + M 2 ED÷ÕQWÕVÕQGDQNROD\FDDQODúÕOÕU A= C ( M 1M 2 ) 2 veya Hem J hem de M1 + M2VDELWNDOGÕNODUÕQGDQ A M 1o M 2o = A o M 1M 2 2 (15.24) yazabiliriz, buUDGD R LQGLVL EDúODQJÕo GXUXPXQX YH YH LQGLVOHUL GH, VÕUDVÕ\OD EDú YH \ROGDú ELOHúHQOHUL göstermektedir. CELUVDELWROXSEDúODQJÕoNRúXOODUÕQÕQ\DUGÕPÕ\OD C = A o ( M 1o M 2o ) 2 ED÷ÕQWÕVÕ (15.25) ile verilir. µ = M 2 / M1 WDQÕPODPDVÕ\OD)ED÷ÕQWÕVÕQÕ A (1 + µ ) 2 µ o = Ao (1 + µ o ) 2 µ (15.26) biçiminde yazabiliriz. Dönem ise, M M P = Po 1o 2o M 1M 2 3 (15.27) ED÷ÕQWÕVÕ\ODYHULOLU %Dú YH \ROGDúÕQ M1, M2 kütleleri ve yörüngH \DUÕ E\N HNVHQL A¶QÕQ YHULOPHVL\OH .HSOHULQ \DVDVÕ NXOODQÕODUDN\|UQJHG|QHPL log P = 1.5 log A − 0.5 log( M 1 + M 2 ) − 0.936 (15.28) ED÷ÕQWÕVÕQGDQKHVDSODQDELOLUEXUDGD\DUÕE\NHNVHQX]XQOX÷XAJQHú\DUÕoDSÕ biriminde, yörünge dönemi P gün biriminGHYHELOHúHQOHULQM1, M2NWOHOHULGHJQHúNWOHVLELULPLQGHGLU 5RFKH OREX LOH D\QÕ KDFLPOL ELU NUHQLQ \DUÕoDSÕ \DQL 5RFKH \DUÕoDSÕ ED÷ÕQWÕVÕ\OD YHULOLU Kütle DNWDUÕPÕVUGNoHEDú YH \ROGDúELOHúHQLQNWOHOHULYHEXQXQVRQXFXQGDGD5RFKH\DUÕoDSODUÕGH÷LúLU%LULP NWOHRUDQÕLoLQELOHúHQOHUDUDVÕQGDNLX]DNOÕ÷ÕQIRQNVL\RQXRODUDN5RFKH\DUÕoDSÕ RR = 0.38 veya log A = log RR + 0.42 A (15.29) ED÷ÕQWÕVÕ\ODYH\|UQJHG|QHPLGH log P = 1.5 log RR − 0.5 log M1 − 0.456 ED÷ÕQWÕVÕ\OD (15.30) verilir. BuED÷ÕQWÕ\DUGÕPÕ\ODùHNLONWOHRUDQÕRODQoLIWlerin dönemlerini, kütlelerinin bir IRQNVL\RQXRODUDNJ|VWHUHQùHNLO¶DG|QúWUOHELOLU dLIW<ÕOGÕ]ODUÕQ(YULPL 16 Toplam kütle M1 + M2 LOH WRSODP \|UQJH DoÕVDO PRPHQWXPX J¶QLQ NRUXQGX÷X YH Hú]DPDQOÕ dönmenin YDUVD\ÕOGÕ÷Õ GXUXPGD NWOH DNWDUÕPÕQÕQ GHYDP HWWL÷L ELU oLIW sistemin dolanma dönemi, ùHNLO 1’de J|VWHULOGL÷LJLELGH÷LúHFHNWLU KWOH DNWDUÕP HYUHVL VUHVLQFH, sistemden kütlH YH DoÕVDO PRPHQWXP ND\EÕ ROGX÷XQGDQ GROD\Õ JHUoHNWH durum çok dDKDNDUPDúÕNWÕU ùHNLO ZAMS’tan, C-WXWXúPDVÕQD NDGDU RODQ HYULPOHUL VUHVLQFH HúLW NWOHOL YH LOJLOL 5RFKH \DUÕoDSODUÕ \ÕOGÕ] dönemleri. ZAMS, merkezi H-WNHQPHVL NÕUPÕ]Õ QRNWD +H-WXWXúPDVÕ JLEL \DUÕoDSODUÕQD HúLW RODQ \DNÕQ oLIW VLVWHPOHULQ fDUNOÕH÷ULOHUùHNLO¶GDJ|VWHULOHQ\DUÕoDSODUDNDUúÕJHOPHNWHGLU + 1 MoLIWVLVWHPLQLQNRUXQXPOXNWOHDNWDUÕPÕYDUVD\ÕPÕ M1 kütlesinin fonksiyonu olarak dönem GH÷LúLPL ùHNLO%DúODQJÕoGRODQPDG|QHPLJQRODQELU0 DOWÕQGDEDúELOHúHQLQLQ .258180/8(95ø0 øOHUOHPHQLQ HQ EDVLW \ROX \ROGDú \HULQH EDú \ÕOGÕ]ÕQ D\UÕQWÕOÕ \DSÕVÕQÕ KHVDSODPDN YH \ROGDúÕQ NWOHVLQGHNL GH÷LúLPL \DOQÕ]FD \DUÕ E\N HNVHQ X]XQOX÷X LOH G|QHPGHNL GH÷LúLPOHUL KHVDSODPDN DPDFÕ\OD GLNNDWH 17 dLIW<ÕOGÕ]ODUÕQ(YULPL DOPDNWÕU.WOHDNWDUÕPHYUHVLVUHVLQFHNWOHEDú\ÕOGÕ]GDQND\EHGLOLUYHYHULOHQELU]DPDQDUDOÕ÷ÕLoHULVLQGH EDú \ÕOGÕ]ÕQ Lo \DSÕVÕEX GXUXPD X\JXQ RODUDN \HQLGHQ D\DUODQÕU .WOHOHUH YHELOHúHQOHUDUDVÕQGDNLX]DNOÕ÷D ED÷OÕ RODQ \|UQJH SDUDPHWUHOHUL KHVDSODQDELOLU <ROGDúÕQ Lo \DSÕVÕ KHVDSODQPD] YH EDVLWoH EDú \ÕOGÕ]GDQ DWÕODQ PDGGHQLQ \ROGDúÕQ NWOHVLQH HNOHQGL÷L YDUVD\ÕOÕU 6RQUD GD GH÷LúLN NWOH YH GH÷LúLN G|QHPOL oLIWOHULQ evrimleri, gözlenen sistemleri ve Algoller, Wolf-Rayet çiftleri ve X-ÕúÕQoLIWOHULJLELGH÷LúLN \ÕOGÕ]JUXSODUÕQÕ DoÕNODPDGDNXOODQÕOÕU .WOH DNWDUÕP HYUHVL úX úHNLOGH HOH DOÕQÕU \ÕOGÕ]ÕQ \DUÕoDSÕ 5RFKH \DUÕoDSÕ RR¶GHQ NoN NDOGÕ÷Õ VUHFH EDú \ÕOGÕ]ÕQHYULPLEDú \ÕOGÕ]VDQNLELUWHN\ÕOGÕ]PÕúJLELGLNNDWHDOÕQDUDNKHVDSODQÕU<DUÕoDS5RFKH\DUÕoDSÕQD HúLW ROGX÷XQGD \ÕOGÕ]ÕQ KDFPLQL NoOWPHN YH \DUÕoDSÕ 5RFKH \DUÕoDSÕQD HúLW RODUDN WXWDELOPHN DPDFÕ\OD R = RR úHNOLQGH ELU VÕQÕU GH÷HU NRúXOX NXOODQÕODUDN \DSÕODELOLU Alternatif olarak, verilen bir sÕQÕULoHULVLQGH R’nin RR’den küçük NDOPDVÕ VD÷ODQDELOLUhoQFELU \RORODUDN GD DWÕODQ PDGGHPLNWDUÕ∆MLOH\ÕOGÕ]YH5RFKH\DUÕoDSODUÕDUDVÕQGDNL∆rIDUNÕDUDVÕQGDELUED÷ODQWÕNXUXODELOLU \HWHUOL RUDQGD NWOH DWÕOÕU %X Lú Bunun \DOQÕ]FD ELU LON \DNODúÕP RODFD÷Õ DoÕNWÕU Çok daha ayrÕQWÕOÕ \|QWHPOHU D\QÕ HYULP NRGX LoHULVLQGH ELOHúHQOHULQKHULNLVLQLQGHLo\DSÕKHVDSODPDODUÕQÕLoHUmelidir. .25818068=(95ø0 .RUXQXPOX HYULP VHQHU\RVX KHU ]DPDQ JHoHUOL GH÷LOGLU YH J|]OHQHQ VLVWHPOHULQ SDUDPHWUHOHULQL DoÕNOD\DELOPHN LoLQ NWOH YH DoÕVDO PRPHQWXP ND\ÕSODUÕ GD GLNNDWH DOÕQPDOÕGÕU %XQXQ \DQÕQGD oLIW VLVWHPOHULQ D\UÕN HYUHOHUL VÕUDVÕQGD , \ÕOGÕ] U]JDUODUÕQÕQ QHGHQ ROGX÷X NWOH ND\ÕSODUÕ GD J|] |QQH DOÕQPDOÕGÕU .RUXQXP YDUVD\ÕPÕQÕQ JHoHUOL ROPDGÕ÷Õ GXUXPODUGD NWOH DNWDUÕPÕQÕQ ilk DúDPDVÕQÕQ VUHVL LQDQÕOPD] RUDQGDX]D\DELOLUYHNWOHGH÷LúLPLQGHQVRQUDRUWD\DoÕNDQVLVWHPNRUXQXPOXGXUXPGDNLQGHQIDUNOÕRODELOLU 6LVWHPLWHUNHGHQNWOHLVWHU\ÕOGÕ]U]JDUODUÕYDVÕWDVÕ\ODROVXQLVWHUNWOHDNWDUÕPÕVÕUDVÕQGDROVXQVLVWHPGHQ DoÕVDO PRPHQWXP ND\EÕQD QHGHQ ROXU %LOHúHQOHU DUDVÕQGDNL YH FLYDUODUÕQGDNL JD] DNÕPODUÕQÕQ GDYUDQÕúÕQD LOLúNLQ ELOJLOHULPL] HNVLN YH DQFDN QLWHO \DSÕGD ROGX÷XQGDQ VLVWHPGHQ NWOH YH DoÕVDO PRPHQWXP ND\EÕQÕQ etkilerini ancak bir çok serbest parametre yarGÕPÕ\ODEHOLUOH\HELOLUL] .WOHND\EÕLOHNWOH\Õ÷ÕúPDK]ÕELUELUOHULQHDúD÷ÕGDNLúHNLOGHED÷ODQDELOLU dM r dM d , = −β dt dt (15.31) burada Mr ve Md VÕUDVÕ\OD DOÕFÕ LOH vericinin kütleleridir. %X ED÷ÕQWÕGD NDoÕQÕOPD] RODQ \ÕOGÕ] U]JDUODUÕ\OD NWOH ND\EÕ KHVDED NDWÕOPDPÕúWÕU β parametresi keyfi olarak seçilebilir (β RODFD÷Õ DoÕNWÕU β = 1, korunuPOXGXUXPDNDUúÕOÕNJHOLU- βVLVWHPLWHUNHWWL÷LGúQOHQPDGGHQLQNHVULGLU %D]Õ GXUXPODUGD NWOH ND\EÕ LOH RUWD\D oÕNDQ açÕVDO PRPHQWXP ND\EÕ ROGXNoD L\L ELU úHNLOGH WDKPLQ edilebilir. 1. <ÕOGÕ] U]JDUODUÕ\OD NWOH ND\EÕ \ÕOGÕ] U]JDUODUÕ\OD NWOH ND\EÕQÕQ -HDQV PRGXQD +XDQJ J|UH ROXúWX÷X yDQLQRNWDVDONWOH RODUDNJ|]|QQHDOÕQDQ \ÕOGÕ]GDQNUHVHOVLPHWULde YH \ÕOGÕ]GDQ EHOLUOLRUDQGD ki yükseNKÕ]ODUODROGX÷XNDEXOHGLOLU%XGXUXPGDG|QHPYH DoÕVDOPRPHQWXPWDúÕQÕPÕQD\RODoDFDNúHNLOGH D\UÕNOÕ÷ÕQGH÷LúLPL P M + M 2i 2 ) = ( 1i Pi M1 + M 2 (15.32) A M 1i + M 2i = Ai M1 + M 2 A, M ve P VÕUDVÕ\OD ELOHúHQOHU DUDVÕQGDNL D\UÕNOÕ÷Õ WRSODP NWOH\L YH VLVWHPLQ dolanma dönemini göstermektedir. ED÷ÕQWÕODUÕ\OD YHULOLU EXUDGD 18 dLIW<ÕOGÕ]ODUÕQ(YULPL 2) L2¶GHQ NWOH ND\EÕ %LOHúHQOHUGHQ ELULQL WHUN HGHQ GúN KÕ]ODUD Vahip JD]ÕQ DoÕVDO PRPHQWXPX sistemi terk etmesinden önce, gel-git etkileri nedeniyle daha da artar.$oÕVDOPRPHQWXPND\EÕ 1.65ω A2 ED÷ÕQWÕVÕ\OD ω A2 GH÷HULQGHQ NoN ROGX÷X -HDQV modundan tahmin edilenden büyüktür. $VOÕQGD bu, L2 QRNWDVÕQGDQ NDoDQ PDGGHQLQ DoÕVDO momentumuyla WDKPLQ HGLOHELOLU EX WDKPLQ |]JQ DoÕVDO PRPHQWXP ND\EÕQÕQ GDLPD NDUúÕODúWÕUÕODELOLU GH÷HUGHGLU %XQXQOD ELUOLNWH \ÕOGÕ] U]JDUODUÕQGD KÕ]ODU \HWHULQFH E\NWU YH EX QHGHQOH -HDQVPRGXL\LELU\DNODúÕPGÕU L2¶GHQJHoHQHúSRWDQVL\HO\]H\Lni dolGXUGX÷XQGD meydana gelir. %X GXUXPGD |]JQ DoÕVDO PRPHQWXP ND\EÕ \DNODúÕN RODUDN 1.75ω A2 ROXS NWOH RUDQÕQGDQ %XGXUXPGH÷HQELUoLIWVLVWHPLQGÕúNULWLN\]H\LQL\DQL ED÷ÕPVÕ] YH VLVWHPLQ NHQGLVLQLQ DoÕVDO PRPHQWXPXQGDQ oRN GDKD E\NWU VLVWHPLQ NHQGLVL LoLQ DoÕVDO momentum q( 1 − q)ω A2 ¶GLU(Q\NVHNGH÷HULQHq ¶WHXODúÕUEXGXUXPGDDoÕVDOPRPHQWXP 0.25ω A2 olur. %|\OHFH DoÕVDOPRPHQWXP VLVWHPLQ NHQGLVLQLQ |]JQ DoÕVDOPRPHQWXPXQun \DNODúÕN RODUDN NDWÕGÕU. %XWUNWOHND\EÕ\|UQJHG|QHPLYHELOHúHQOHUDUDVÕQGDNLD\UÕNOÕ÷ÕQE\NRUDQGDNoOPHVLQHQHGHQROXU 'L÷HU WP GXUXPODUGD NWOH YH DoÕVDO PRPHQWXP ND\ÕSODUÕQÕ WDKPLQ HGHELOPHN RODQDNVÕ]GÕU LVWLVQDL WHN \RO DoÕVDO PRPHQWXP ND\EÕQÕ EHOLUWHQ ELU VHUEHVW SDUDPHWUH NXOODQPDNWÕU .WOH DNWDUÕP VÕUDVÕQG a, yörünge DoÕVDOPRPHQWXPXQXQWRSODPNWOH\H J = Mα (15.33) úHNOLQGH\DGDHúGH÷HURODUDN ∆J ∆M α ) = 1 − (1 − J M (15.34) , burada α tirilmeyecek bir sabittir. YÕOGÕ]ODUÕQ NWOHOHUL LOH yörünge dönemi ile sistemin D\UÕNOÕ÷Õ da hesaplanabilir. 5RFKH OREX WDúPDVÕ ROD\Õ RULMLQDO RODUDN -HGU]HMHF EN] 3DF]\Q]ki ve Sienkiewicz, 1972) WDUDIÕQGDQ JHOLúWLULOHQ WUGHQ EDVLWOHúWLULOPLú bir KLGURGLQDPLN \DNODúÕPOD WDQÕPODQDELOLU úHNOLQGH ED÷OÕ ROGX÷X NDEXO HGLOHELOLU GH÷Lú \|UQJH DoÕVDO PRPHQWXPXQGDQ \DUDUODQÕODUDN NULWLN \DUÕoDSODU \DQÕQGD %DVLWPRGHOHJ|UHDNDQPDGGH\Õ÷ÕúPD\ÕOGÕ]ÕQÕQ \]H\NDWPDQODUÕQDEXNDWPDQODUÕQVDKLSROGX÷XHQWURSL LOH\XPXúDNELUúHNLOGHGúHU %XYDUVD\ÕPKDNOÕJ|UQPHNWHGLUoQN\ÕOGÕ]\]H\LQLQDQFDNoRNNoNELU kesri, çarpan maddeden, bir leke ya da ekvatoryal ELU NXúDN YDVÕWDVÕ\OD HWNLOHQLU GúHQ PDGGHQLQ GLQDPLN EDVÕQFÕ LKPDO HGLOHELOLU <Õ÷ÕúDQ PDGGHQLQ QHGHQ ROGX÷X NLQHWLN HQHUML ID]ODOÕ÷Õ GD÷ÕODFDN úRN E|OJHVLQLQ yüksek VÕFDNOÕ÷Õ QHGHQL\OH EX HQHUML PRU|WH YH ;-ÕúÕQODUÕ úHNOLQGH \D\ÕPODQDFDNWÕU (÷HU, kütle kazanan \ÕOGÕ] \D GD RODVÕ ELU \Õ÷ÕúPD GLVNL úLGGHWOL ELU úHNLOGH JHQLúOHPH]VH, senkronizasyon devam edebilir ve yörünge çember olarak kalabilir. Korunumlu kütle aktDUÕPÕQÕ GHVWHNOH\HQ dinamik nedenler olabilir. Küçük 0DFK VD\ÕVÕQD VDKLS DNDQ JD], L1 FLYDUÕQGDNL NoN ELU Eölgede ses KÕ]ÕQGD ELU JHoLú \DSDELOLU NWOH ND]DQDQÕQ 5RFKH OREXQD JLUHU YH EX \]H\ LoHULVLQGH WX]DNODQÕU (÷HU DNÕQWÕ NHQGLVLQe ya da kütle alan \ÕOGÕ]ÕQ \]H\LQH oDUSDUVD yörünge enerjisi GD÷ÕOÕU YH PDGGH NWOH ND]DQDQ \ÕOGÕ]ÕQ SRWDQVLyeli içerisinde GHULQOHUHGúHUYHVLVWHPGHQNWOHND\EÕROPD] .WOH\Õ÷ÕúPDVÕ -Helmholtz zaPDQ |OoH÷LQGH -bu süre genel arak .WOH ND]DQDQ \ÕOGÕ] PDGGH\L NWOH ND\EHGHQ \ÕOGÕ]ÕQ .HOYLQ - RODUDN NWOH ND]DQDQ \ÕOGÕ]ÕQNLQGHQ IDUNOÕGÕU \Õ÷ÕúWÕUÕU %X GXUXPGD NWOH ND]DQDQ \ÕOGÕ] ER\XW RO úLGGHWOL ELU úHNLOGH E\U5RFKHOREXQX GROGXUXU YH ELUGH÷HQVLVWHP ROXúXU6RQUDNLHYULPDúDPDVÕ |QFHNL durumlardan farkOÕROXU 'H÷PHHYUHVLVUHVLQFHNWOHDNWDUÕPKÕ]ÕKHULNL\ÕOGÕ]ÕQGDD\QÕHúSRWDQVL\HO\]H\LGROGXUPDODUÕJHUHNWL÷L NRúXOX LOH EHOLUOHQLU %X YDUVD\ÕP \HWHULQFH GR÷UXGXU RUWDN ]DUIÕQ OREODUÕ DUDVÕQGDNL EDVÕQo IDUNOÕOÕNODUÕ QHGHQL\OHHúSRWDQVL\HONRúXOXQGDQVDSPDLKPDOHGLOHELOLU Kütle aktarÕP HYUHVL VUHVLQFH NWOH ND\EHGHQ \ÕOGÕ] JLGHUHN GÕú NDWPDQODUÕQÕ ND\EHGHU YH oHNLUGHN kar; böylece, NWOH ND]DQDQ \ÕOGÕ] WDUDIÕQGDQ \Õ÷ÕúWÕUÕODQ PDGGH BX úHNLOGH \Õ÷ÕúDQ PDGGH ]DUI WHSNLPHOHULQLQ ROGX÷X NDWPDQODU RUWD\D oÕ KHO\XP EDNÕPÕQG an, NHQGL NDWPDQODUÕQD J|UH oRN GDKD ]HQJLQ ROXU NDWPDQODUÕQGDQ GDKD E\N ELU PROHNOHU D÷ÕUOÕ÷D VDKLS ROXU YH NWOH ND]DQDQ \ÕOGÕ] WHUVLQH G|QPú PROHNOHUJUDGL\HQWOLELU]DUIJHOLúWLULU azalmakWDGÕU Dengesiz olan bu zarfta, molekülHUD÷ÕUOÕN\]H\GHQ,PHUNH]HGR÷UX 19 dLIW<ÕOGÕ]ODUÕQ(YULPL Büyük µPROHNOD÷ÕUOÕNOÕ \ÕOGÕ]PDGGHVLQLQGDKDNoNµPROHNOD÷ÕUOÕNOÕNDWPDQODUÕQ]HULQHEÕUDNÕOPDVÕ durumu, bir miktar tuzlu suyun, VR÷XN WDWOÕ VX NDWPDQÕ ]HULQH EÕUDNÕOPDVÕ durumuyla NDUúÕODúWÕUÕOabilir; bu durumda, ara \]GH SDUPDN EHQ]HUL ELU NDUDUVÕ]OÕN JHOLúLU 6WHUQ 9HURQLV %X NDUDUVÕ]OÕ÷ÕQ JHQHO DGÕ ³ÕVÕVDO WDúÕQÕP konveksiyonu (thermohaline convection)” dur ve ona ED]HQ ³\DODQFÕ NRQYHNVL\RQ´ da denir. Bu ÕVÕVDOWDúÕQÕP NDUÕúÕPÕQÕ, astrofizikte E\NPROHNOHUD÷ÕUOÕNOÕPDGGHQLQGDKDNoNPROHNOHUD÷ÕUOÕNOÕ PDGGH ]HULQGH EÕUDNÕOPDVÕ LOH RUWD\D oÕNDQ WUGHQ NRQYHNVL\RQ GXUXPX\OD NDUúÕODúWÕUDELOLUL]. Bu konudaki JHQHO WDUWÕúPDODU LoLQ &R[ YH *LXOL 6SLHJHO =DKQ YH 3DFNHW ¶H EDNÕODELOLU Bu ÕVÕVDOWDúÕQÕP NDUÕúÕPÕLoLQ]DPDQ|OoH÷L\Õ÷ÕúPD]DPDQ|OoH÷LQGHQoRNNÕVDGÕUYHEXQHGHQOH ona,DQOÕNELU süreçJ|]\OHEDNÕODELOLU. bu nedenle, çekirdek elir. %X NDWPDQODU \ROGDúD .WOH DNWDUÕP HYUHVL VUHVLQFH NWOH YHUHQ ELOHúHQ GÕú NDWPDQODUÕQÕ DWDU YH WHSNLPHOHULQLQ GHYDP HWWL÷L GDKD DOW NDWPDQODU J|UQU \]H\ NDWPDQÕ KDOLQH J DNWDUÕOGÕ÷ÕQGDE\N ELU EÕUDNÕOPÕú ROXU Bu µ PROHNO D÷ÕUOÕNOÕNDWPDQODU RULMLQDONLP\DVDOELOHúLPH VDKLSNDWPDQODUÕQ]HULQH VXUHWOH WHUV \|QO ELU PROHNOHU D÷ÕUOÕN JUDGL\HQWL RUWD\D oÕNPÕú ROXU YH EX GXUXP NDUDUVÕ] ELU GXUXPD QHGHQ ROXU .WOH YHUHQ YH DODQÕQ GH÷LúHQ KLGURMHQ EROOXNODUÕ NDUÕúÕP ]HULQH \DSÕODQ . oHúLWOLYDUVD\ÕPODULoLQùHNLO ¶GHJ|VWHULOPLúWLU Helyumca]HQJLQ]DUIOÕ\ÕOGÕ]PRGHOOHUiQRUPDOEROOXNOXPRGHOOHULQVROXQGD\HUDOÕUODUùHNLOGH÷LúLN NWOHOHULoLQ QRUPDO NLP\DVDO NDUÕúÕPOÕX KRPRMHQ NLP\DVDONDUÕúÕP =$06 PRGHOOHUL LOHKHO\XPFD ]HQJLQ ]DUIOÕ X \ÕOGÕ] NWOHVLQLQ ¶XQX içeren helyumca zengin zarf) modelleri göstermektedir. =DPDQ |OoH÷L WDKPLQOHULNDUÕúÕP]DPDQ|OoH÷LQLQ NWOH DNWDUÕP ]DPDQ|OoH÷LQGHQ oRN GDKD NÕVDROGX÷XQX göstermektedir.%XQHGHQOHÕVÕVDOWDúÕQÕPNDUÕúÕPÕDQOÕNELUROJXRODUDNJ|]|QQHDOÕQDELOLU dLIW<ÕOGÕ]ODUÕQ(YULPL 20 ùHNLO .WOH ND\EHGHQ VWWH YH \Õ÷ÕúDQ ELU \ÕOGÕ]ÕQ DOWWD NLP\DVDO SURILOL ùHNLO G|UW RODVÕ GXUXPX göstermektedir: A <Õ÷ÕúDQ PDGGHQLQ kimyasal ELOHúLPL DOÕFÕ \ÕOGÕ]ÕQNL\OH D\QÕ B) Helyum ID]ODOÕ÷ÕQÕQ D]DOGÕ÷Õ NDWPDQODUGD birikim; böyleFH NoN PROHNO D÷ÕUOÕNOÕ NDWPDQODUÕQ VWQGH, E\N PROHNO D÷ÕUOÕNOÕ katmanlarÕQROXúXmu; C<DUÕ-NDUÕúÕPG]GúH\oL]JLROPDNVÕ]ÕQÕVÕVDOWDúÕQÕPNDUÕúÕPÕD<DUÕ-NDUÕúÕPOÕ H÷ULoL]JLÕVÕVDOWDúÕQÕPNDUÕúÕPÕ ùHNLO Kütleleri 2 - 9 M araVÕQGDNL QRUPDO NDUÕúÕPOÕ, X = 0.7 (noktalar), KRPRMHQ \ÕOGÕ]ODU LOH helyumca zengin, X = 0.3, modeller LoL ERú oHPEHUOHU -burada He-zengin katmanlar, \ÕOGÕ] NWOHVLQLQ %10’unu içermektedir- için ZAMS modellerinin Hertsprung-5XVVHOGL\DJUDPÕ 21 BÖLÜM 16 .hdh.9(257$.h7/(/ødø)76ø67(0/(5ø1(95ø0ø 16*LULú 1NOHHU \DQPD VUHVLQFH \ÕOGÕ]ÕQ \DUÕoDSÕ DUWDU (÷HU \ÕOGÕ] ELU \DNÕQ oLIW VLVWHPLQ \HVL LVH \DUÕoDSWDNL EX DUWÕú \ROGDúÕQ YDUOÕ÷Õ QHGHQL\OH VÕQÕUOÕGÕU (÷HU \DUÕoDSÕQ ROGXNoD KDVVDV RODUDN EHOOL RODQ NULWLN GH÷HUL , hatta VLVWHPGHQ NWOH ND\EÕ olabilir ya da bir halka veya diskte kütle birikimi meydana gelebilir. %X NWOHDNWDUÕPÕDúDPDVÕQÕQKHVDSODPDODUÕDQFDNEHOLUOi \DNODúÕPODUÕQ NDEXO HGLOPHVL\OH RODQDNOÕ RODELOLU Hidrodinamik ve küresel simetriden sapmalar (dönme ve DúÕOÕUVD ELOHúHQOHUGHQ ELULQGHQ GL÷HULQH NWOH DNWDUÕPÕ EDúODU oHNLPVHO HWNLOHU JHQHOOLNOH GLNNDWH DOÕQPD] YH \|UQJH JHQHOOLNOH oHPEHU RODUDN HOH DOÕQÕU %LOHúHQOHULQ dönmeleri yörünge hareketi ile senkronize oOPXú YDUVD\ÕOÕU <DNÕQ oLIW VLVWHPOHULQ HYULPL ELOHúHQOHULQ NWOHOHULQHNWOHRUDQÕQDYH\|UQJHG|QHPLQHED÷OÕGÕU *|] |QQH DOÕQDQ \ÕOGÕ]ÕQ NULWLN HúSRWDQVL\HO \]H\OHU iyle ED÷ODQWÕOÕ RODUDN oLIW VLVWHPLQ GXUXPX o - NDWHJRUL\HD\UÕODELOLUD\UÕN\DUÕ D\UÕNYHGH÷HQHYUHOHU , görsel çiftler ile i verebiliriz. <DUÕ-D\UÕN ELU VLVWHPGH ELOHúHQOHUGHQ ELUL NULWLN KDFPLQL GROGXUPXúNHQ \ROGDúÕ GROGXUPDPÕúWÕU Bu türe örnek olarak, Algol türü çiftleri ve β /\UDH¶\Õ YHUHELOLUL] $\UÕNHYUHVÕUDVÕQGDELOHúHQOHULQKLoELULNULWLNKDFLPOHULQLGROGXUPD]%XWUH|UQHNRODUDN HYULPOHúPHPLú WD\IVDO oLIWOHU 'H÷HQELUVLVWHPGHLVHELOHúHQOHULQLNLVLGHNULWLNKDFLPOHULQLGROGXUPXúWXU|UQH÷LQ:80D\ÕOGÕ]ODUÕ Doldurma faktörü genellikle f LOH J|VWHULOLU YH LNL \ÕOGÕ] DUDVÕQGDNL GH÷PH GHUHFHVLQLQ ELU |OoVGU L1’den geçen yüzeyin L2 ve L1¶GHQJHoHQ\]H\OHULQHúSRWDQVL\HOOHUL fDUNÕQDRUDQÕRODUDNWDQÕPODQÕU <DUÕ-D\UÕNVLVWHPOHULoLQf = 0; L2’den geçen ortak bir yüzeye sahip GH÷HQELU sistem için de f = 1’dir. 'ROGXUPD IDNW|U \ÕOGÕ] \]H\LQLQ HúSRWDQVL\HOL LOH Lo /DJUDQJLDQ QRNWDVÕ HúSRWDQVL\HOLDUDVÕQGDNLIDUNÕQGÕúYHLo/DJUDQJLDQQRNWDODUÕ $\UÕN VLVWHPOHUGHKHULNL ELOHúHQ GH oR÷XQOXNOD QRUPDO DQD NRO \ÕOGÕ]ÕGÕU (YULP KHVDSODPDODUÕ =$06¶WDQ BüyüN NWOHOL \ÕOGÕ] EDú \ÕOGÕ] RODUDN LVLPOHQGLULOLU YH NWOHVL M1 ile gösterilir; onun küçük kütleli M2 LOH J|VWHULOLU %Dú YH \ROGDúÕQ EX úHNLOGHNL WDQÕPODPDVÕ EDúODQJÕoWDE\NNWOHOLRODQELOHúHQHYULP süresince meydana gelen NWOHDNWDUÕPODUÕQÕQELUVRQXFXRODUDN sistemin küçük kütleli ELOHúHQL KDOLQH JHOVH ELOH GH÷LúWLULOPH] 'L÷HU WP \ÕOGÕ] SDUDPHWUHOHUL LoLQ GH DOW EDúODU ELOHúHQL LVH \ROGDú RODUDN DGODQGÕUÕOÕU YH NWOHVL LQGLVLEDú\ÕOGÕ]YHDOWLQGLVLGH\ROGDú\ÕOGÕ]LoLQNXOODQÕOÕUYHKHUKDQJLELUNDUÕúÕNOÕ÷DQHGHQROPDPDNLoLQ NWOH ND\EHGHQ \ÕOGÕ] ³ND\EHGHQ´ \D GD ³YHULFL´ RODUDN YH NWOH ND]DQDQ \ÕOGÕ] GD ³ND]DQDQ´ \D GD ³DOÕFÕ´ olarak belirtilir. Bu durumda alt indis olarak l (kaybeden), d (verici), g (gazanan) ve r DOÕFÕ harfleri NXOODQÕODFDNWÕU%DúODQJÕoGXUXPXi (initial) ve son durum da f (final) alt indisleri ile gösterilecektir. Küçük ve orta kütleli çiftlere örnekler Çizelge 16.1 – $¶GD YHULOPLúWLU %LOLQHQ WP \DUÕ-D\UÕN VLVWHPOHUGH 5RFKH OREXQX GROGXUPD\DQ \ÕOGÕ] ELU DQD NRO \ÕOGÕ]ÕGÕU YH RQXQ \ROGDúÕ bir alt devdir. %X \ROGDúÕQ NWOHVL GDLPD DQD NRO \ÕOGÕ]Õ RODQ EDú \ÕOGÕ]ÕQNLQGHQ J|]NPHNWHGLUOHU QRUPDO \ÕOGÕ]ODU GXUXPXQGD NoNWU %X VLVWHPOHU JDULS GDYUDQÕúOÕ RODUDN L ≈ M 3.5 ED÷ÕQWÕVÕ JHoHUOL YH \DúDP VUHVL t ≈ ML−1 ya da t ≈ M −2.5 dur.'DKDE\NNWOHOL\ÕOGÕ]GDKDLOHULHYULPDúDPDVÕQGDROPDOÕGÕUIDNDWJ|]OHPOHUEXQXQE|\OH ROPDGÕ÷ÕQÕ J|VWHUPHNWHGLU Bu durum, Algollerin listesinden (Çizelge 16.1 – B) J|UOHELOLU HYULPOHúPLú ELOHúHQler -JHULWUWD\IOÕRODQELOHúHQler – daha küçük kütlelere sahiptir. %X SDUDGRNVXQ ELU DoÕNODPDVÕ &UDZIRUG WDUDIÕQGDQ EXOXQPXúWXU GDKD LOHUL HYULP EDVDPD÷ÕQGD RODQ - ELOHúHQ RULMLQDO RODUDN GDKD E\N NWOHOL RODQGÕU IDNDW \DUÕ D\UÕN ELU HYUH VUHVLQFH ELOHúHQLQH NWOH DNWDUPDVÕQHGHQL\OHúLPGLNLGDKDNoNNWOHOLELOHúHQKDOLQHJHOPLúWLU - 6LVWHPOHUD\UÕNGDQ \DUÕ D\UÕN YH PXKWHPHOHQ GH÷HQHYUH\H HYULPOHúHELOLUOHU dHNLP DODQÕQÕQGDYUDQÕúÕLoLQ \ÕOGÕ]ODUQRNWDNWOHRODUDNHOHDOÕQÕUODUEXGXUXPGDHúSRWDQVL\HO\]H\OHULQJHRPHWULVL5RFKHPRGHOLEN] .HVLPLOHEHOLUOHQLUYH\DOQÕ]FDELOHúHQOHULQ q (= M 2 / M 2 ) NWOHRUDQÕQDED÷OÕGÕU 22 Çizelge 16.1 – A ø\LELOLQHQNoNNWOHOLoLIWOHU3RSSHU 6R÷XND\UÕNVL stemler Çizelge 16.1 – B Algol sistemler (Popper, 1980) +HU ELU ELOHúHQ LoLQ NULWLN \DUÕoDS \DQL ELULQFL /DJUDQJLDQ QRNWDVÕ L1¶GHQ JHoHQ HúSRWDQVL\HO \]H\LQ oHYUHOHGL÷L KDFPH 5RFKH KDFPL HúLW KDFLPOL ELU NUHQLQ \DUÕoDSÕ EHOLUOHQHELOLU +HU LNL ELOHúHQ GH 5RFKH KDFLPOHULQLDúWÕNODUÕQGDGH÷HQELUVLVWHPHVDKLSROPXúROXUX]%XGXUXPGD\ÕOGÕ]ODU L1FLYDUÕQGDNLELUER÷D] YDVÕWDVÕ\ODELUELUOHULQHIL]LNVHORODUDNED÷OÕGÕUODUYHRUWDNELUHúSRWDQVL\HO\]H\LGROGXUXUODU 23 %LU VLVWHPGH NWOH DNWDUÕPÕ ROGX÷XQGD ELOHúHQOHU DUDVÕQGDNL X]DNOÕN YH \|UQJH GRODQPD G|QHPLQLQ - GH÷LúHFH÷LDoÕNWÕUEN] GHQNOHPOHUL%\NNWOHOLELOHúHQNWOHND\EHWWL÷LQGHNLEXPDGGHRQXQ \ROGDúÕ WDUDIÕQGDQ \Õ÷ÕúÕU \|UQJH NoOU NWOH ND\EHGHQ NoN NWOHOL ROGX÷XQGD LVH \|UQJH E\U .oN NWOHOL ELOHúHQLQ ELU DOW GHY ROGX÷X $OJRO VLVWHPOHUL GXUXPXQGD NoN NWOHOLGHQ E\N NWOHOL , ELOHúHQHNWOHDNWDUÕOPDNWDGÕUYHEXQHGHQOH ELOHúHQOHUDUDVÕQGDNLX]DNOÕNYHGRODQPDG|QHPLDUWPDNWDGÕU øONRODUDNE\NNWOHOL\ÕOGÕ]\ROGDúÕQDNWOHDNWDUÕUYH\|UQJHNoOUEDú\ÕOGÕ]ÕQ5RFKHOREXGDNoOU ve kütle ND\EÕQÕQ KÕ]Õ DUWDU øNL \ÕOGÕ] HúLW NWOHOL ROGXNODUÕQGD DUDODUÕQGDNL X]DNOÕN dD PLQLPXP GH÷HULQH XODúÕU 6RQUDNL NWOH DNWDUÕPÕ \|UQJH\L JHQLúOHWLU YH VRQXQGD GD NWOH ND\EHGHQ \ÕOGÕ] DUWÕN 5RFKH OREXQX e GROGXUDPD\DFDNKDOHJHOLUYHE|\OHFHNWOHDNWDUÕPÕELUVRQD ULúPLúROXU .HVLP¶GH DoÕNODQGÕ÷Õ JLELNWOH ND\EÕ DQFDN \ÕOGÕ] \DUÕoDSÕQÕQ DUWWÕ÷ÕHYUHOHUGH \DQL PHUNH]LKLGURMHQ yanma evresinde (A evresi), kabukta hidrojen yanma evresinde (B evresi) ya da helyum yanma evresinde (C HYUHVLEDúOD\DELOLU =$06¶D YDUGÕNODUÕQGD ELOHúHQOHULQ KLo ELULQLQ 5RFKH OREODUÕQÕ DúPDGÕNODUÕ \DQL VLVWHPLQ D\UÕN ROGX÷X YDUVD\ÕPÕ\ODLúHEDúODUÕ]7DNLSHGHQHYULPVÕUDVÕQGDKHULNLELOHúHQLQ de \DUÕoDSÕ büyür. Daha büyük kütleli RODQ GDKD KÕ]OÕ HYULPOHúHFH÷LQGHQ JHUHNOL NRúXOODUÕQ VD÷ODQPDVÕ\OD EX \ÕOGÕ] VRQXQGD 5RFKH OREXQX Temsili olarak, Algol sistemlerin orijini dikkate DOÕQDELOLU Algoller, ya merkezi hidrojen yanma evresi (A evresi)VÕUDVÕQGDNL\DGDVRQUDNLHYUHOHU%HYUHVLVÕUDVÕQGDNL NWOHDNWDUÕP\ROX\OD,LNLúHNLOGHROXúDELOLUOHU%LULQFLGXUXPGDEDú \ÕOGÕ]NWOHVLQLQ\DNODúÕNRODUDN \DUÕVÕQÕ GROGXUXU YH E|\OHFH NWOH GH÷LúLPL EDúODU 5105 \ÕOGDQ GDKD NÕVD ELU VUHGH DNWDUÕU YH EX VXUHWOH \ROGDú ELOHúHQ VLVWHPLQ E\N NWOHOL ELOHúHQL KDOLQH gelir. %X HYUHGHQ VRQUD NWOH ND\EHGHQ ELU DOW GHYGLU PHUNH]LQGH KDOD KLGURMHQ \DQPDNWDGÕU IDNDW GÕú NÕVÕPODUÕQGD QRUPDO ana kol \ÕOGÕ]ODUÕQD nazDUDQ GDKD D] NWOH YDUGÕU %|\OHVL ELU \ÕOGÕ]ÕQ PHUNH]L YH ÕúÕWPDVÕ D\QÕ NWOHOL QRUPDO ELU \ÕOGÕ]GDQ EHNOHQHQGHQ GDKD E\NWU Hesaplamalar, \ÕOGÕ]ÕQ evrimi VÕUDVÕQGDki JHQLúOHPHVLQL PLO\RQODUFD \ÕO GHYDP HWWLUPHVLQH UD÷PHQ NWOH DNWDUÕPÕQÕQ DQFDN oRN GúN ELU KÕ]ODGHYDPHGHFH÷LQLJ|VWHUPHNWHGLU , , hidroMHQ\DQPDNDEX÷X\ODoHYULOL\R]ODúPÕúELUKHO\XP 2.4 M¶GHQ NoN ROGX÷X GXUXPODUGD PH\GDQD JHOLU Böylesi øNLQFLROXúXPWULVHDQFDN EDú\ÕOGÕ]ÕQNWOHVLQLQ oHNLUGH÷LQLQ ROXúDELOPHVLQLQ VW OLPLWL RODQ \ÕOGÕ]ODU 5RFKH OREODUÕQÕ GROGXUGXNODUÕQGD oRN \NVHN KÕ]ODUOD NWOH DNWDUÕUODU 6RQXQGD JHUL\H \R]ODúPÕú KHO\XP oHNLUGH÷L LOH VÕ÷ ELU KLGURMHQ ]DUID VDKLS RODQ NDEXNWD KLGURMHQ \DNDQ YH KDOD 5RFKH OREXQX GROGXUX\RU RODQ YH EX QHGHQOH GH \ROGDúÕQD GúN KÕ]ODUOD GD ROVD PLO\RQODUFD \ÕO kütle aktarmaya devam HGHFHNRODQELUDOWGHYNDOÕU % HYUHVL NWOH DNWDUÕPÕ\OD ROXúDQ $OJROOHU $ WU LOH ROXúDQODUGDQ WDPDPHQ IDUNOÕ Lo \DSÕODUD VDKLS basitELUúHNLOGHbu sonuca varmak LPNDQVÕ]GÕU Ancak, bazen, kütle belirlemesi yoluyla, A ve B duUXPODUÕQÕ D\ÕUPDN RODQDNOÕ ROXU WRSODP NWOHOHUL 0’in DOWÕQGD olan sistemlerin, B türü kütle DNWDUÕPÕ\OD ROXúWXNODUÕQÕ KHPHQ KHPHQ NHVLQ RODUDN V|\OH\HELOLUL] |UQH÷LQ $OJRO λ Tau). Küçük kütleli ROPDODUÕQDNDUúÕQ \ÕOGÕ]ODULoLQLVHNHVLQELUúH\V|\OHQHPH] 16.2. Evrim türleri .oN NWOHOL oLIWOHULQ VÕQÕIODPDVÕ\OD HYULPOHULQLQ VRQ DúDPDVÕQGD JHUL\H NDODQ NWOHOHUL &KDQGUDVHNKDU OLPLWLQL DúPD\DQ EDú ELOHúHQOL VLVWHPOHUL DQOD\DELOLUL] dHúLWOL KHVDSODPD VHULOHULQH J|UH EDú \ÕOGÕ]ÕQ NWOHVL 12 M - 14 MGH÷HULQLDúDPD]gQFHNLE|OPGHDoÕNODQGÕ÷Õ]HUHNWOHDNWDUÕPÕQÕQELUoRNoHúLWLQLGLNNDWH alabiliriz. $(95(6ø0(5.(=ø+ø'52-(1<$10$ SI SIRASINDA.ø.h7/('(öøùø0ø %Dú \ÕOGÕ] 5RFKH OREXQX GROGXUPD\D EDúODGÕ÷ÕQGD KÕ]OÕ ELU NWOH DNWDUÕP HYUHVL EDúODPÕú ROXU %Dú \ÕOGÕ]ÕQ NWOHVLQLQE\NELUNÕVPÕ\ROGDúDDNWDUÕOÕU%DúODQJÕoWDE\NNWOHOLRODQ\ÕOGÕ]EDú\ÕOGÕ]VLVWHPLQNoN . kritik hacminiGROGXUPD\DGHYDPHWWL÷L\DYDúELUNWOHDNWDUÕP evresi gelir.%XúHNLOGHELU\DUÕ-D\UÕN VLVWHP ROXúPXú ROXU =$06¶WD EDúODQJÕo NLP\DVDO ELOHúLPL X = 0.602, Z = 0.044’tür. %LOHúHQOHU =AMS ELOHúHQOHUL DUDVÕQGDNL X]DNOÕN, EDú \ÕOGÕ]ÕQ 5RFKH OREXQX KLGURMHQ \DQPD HYUHVL VÕUDVÕQGD GROGXUDFD÷Õ úHNLOGHGLU%XGXUXPGDEDú\ÕOGÕ]ÕQX\JXQ\DUÕoDSÕRR = 11.60 R olur.$\QÕNWOHOLELUWHN\ÕOGÕ]ÕQ\DUÕoDSÕ ise, hidrojen yanma evresinin sonunda 11.7 RGH÷HULQHXODúÕU NWOHOLELOHúHQLKDOLQHJHOLU\DQLVLVWHPLQNWOHRUDQÕWHUVLQHG|QHU %XKÕ]OÕNWOHDNWDUÕPHYUHVLQLWDNLEHQEDú \ÕOGÕ]ÕQ 24 ùHNLO $ WU LoLQ NWOHOL ELU \DNÕQ oLIW VLVWHPLQ HYULPL =DPDQ PLO\RQ \ÕO FLQVLQGHQ \|UQJH G|QHPL LVH JQ ELULPLQGH YHULOPLúWLU %Dú \ÕOGÕ] PHUNH]L KLGURMHQ \DQPD HYUHVL VÕUDVÕQGD 5RFKH OREXQX GROGXUXU YH \ROGDúÕQ DNWDUPD\D EDúODU ùHNLOGH NWOH DNWDUÕPÕQÕQ LNL HYUHVL J|VWHULOPLúWLU +Õ]OÕ HYUHGH 0 a kütle ’den biraz fazla bir kütle \DOQÕ]FD\ÕOLoHULVLQGHDNWDUÕOÕUNHQEXHYUH\L\DYDúELUNWOHDNWDUÕPHYUHVLL]OHU6L\DKGDLUHOHUKLGURMHQ -zengin, gri çemberler ise helyum-zengin bölgeleri göstermektedir (Kippenhahn ve Weigert, 1967). su, karakteristik nicelikleriyle birlikte daùHNLO¶GHJ|VWHULOPLúWLU øOJLOL ED]Õ HYUHOHU LoLQ HYULP VHQHU\R \ROODUÕ DKÕ]OÕNWOHDNWDUÕPÕ0 ùHNLO ¶GH YH VLVWHP in evrim ’den 3.73 M’e) 7 %Dú \ÕOGÕ] NULWLN \DUÕoDSÕQD \ÕO VRQXQGD XODúÕU +LGURMHQ EROOX÷X ¶GHQ GH÷HULQH GúHU Hidrostatik dengeyi yeniden kurabilmek için, alt katmanlar JHQLúOHPHN ]RUXQGD NDOÕUODU %X JHQLúOHPH LoLQ JHUHNOL RODQ HQHUML ÕúÕWPDGDQ KDUFDQÕU YH E|\OHFH .WOHDNWDUÕPHYUHVLVUHVLQFHNWOHGÕúNDWPDQODUGDQDWÕOÕU \ÕOGÕ]ÕQÕúÕWPDVÕGúHUùHNLO+Õ]OÕNWOHDNWDUÕPHYUHVLQLQVRQXQGDÕúÕWPD\HQLGHQDUWDU ùHNLO %LU 0 + 5 M VLVWHPLQLQ HYULPL %Dú \ÕOGÕ]ÕQÕQ HYULPL NDOÕQ oL]JL LOH J|VWHULOPLúWLU .WOH DNWDUÕPÕQÕQ EDúODQJÕFÕD LOH YH KÕ]OÕNWOHDNWDUÕP HYUHVLQLQ VRQX ELOHJ|VWHULOPLúWLUEGHQF \H NDGDU \DYDúHYUHGLU$\UÕFD MNWOHOLWHNELU\ÕOGÕ]ÕQHYULP\ROXGDJ|VWHULOPLúWLU 25 b) yaYDúNWOHDNWDUÕPÕ Konvektif merkezde sürmektedir<ÕOGÕ]\DNODúÕN PLO\RQ \ÕO VUHVLQFH5RFKH \]H\LQGHQPDGGHDNWDUPD\D -8 YHGROD\ÕVL\OHNWOHND ybetmeye (10 M\ÕO-1 mertebesinde) deam eder. <ROGDú ELUNDoPLO\RQ \ÕOER\XQFD $UWÕNEDú\ÕOGÕ]ÕQNLP\DVDOHYULPLNWOHND\EHWPH\HQELU\ÕOGÕ]ÕQNL\OHD\QÕúHNLOGHROXU KLGURMHQ \DQPDVÕ =$06 \DNÕQÕQGDNDOÕU%XHYUHGHVLVWHP $OJROOHULQ NDUDNWHULVWLN|]HOOLNOHULQLJ|VWHULU3HN HYULPOHúPHPLú RODQ E\N NWOHOL ELOHúHQ =$06 \DNÕQÕQGD LNHQ =$06¶WDQ D\UÕOPÕú RODQ NoN NWOHOL ELOHúHQ 5RFKH OREXQX GROGXUPXúWXU %Dú \ÕOGÕ]ÕQ NWOHVL 0 PHUNH]LKLGURMHQEROOX÷X X = 0.002’dir. GH÷HULQH JHOGL÷LQGH NWOH DNWDUÕPÕ GXUXU EX GXUXPGD Çizelge 16.2 Bir 9 M + 5 M sisteminin evrimi M1 ve M2 EDú YH \ROGDú \ÕOGÕ]ODUÕQ NWOHOHUL AELOHúHQOHU DUDVÕQGDNL X]DNOÕN R1 \ÕOGÕ]ÕQ RR LVH 5RFKH OREXQXQ JQHú ELULPLQGH\DUÕoDSÕGÕUXoHNLUGHNWHNLKLGURMHQEROOX÷XDEYHFLVH+5GL\DJUDPÕQGDNLNRQXPODUÕJ|VWHUPHNWHGLU Çizelge 16.3 Bir 2 M + 1 M sisteminin evrimi (Kippenhahn, Kohl, Weigert, 1967) Çizelgede \Dú, EDú YH \ROGDú ELOHúHQLQ M1 ve M2 kütleleri, gün biriminde P dolanma dönemi, durum –D\UÕN G \DUÕD\UÕN VG; ÕúÕWPD L HWNLQ VÕFDNOÕN Teff YH EDú \ÕOGÕ]ÕQ DWPRVIHULN KLGURMHQ EROOX÷X Xat parameWUHOHUL YHULOPLúWLU Orijinal NDUÕúÕPX = 0.602, Y = 0.354, Z ¶WU6RQNRORQGDNLKDUIOHULVHùHNLO¶HJ|nGHUPH\DSPDNWDGÕU 26 + 1 M sisteminin B evresi evrimi. Evrim süresi t PLO\RQ \ÕO GRODQPD G|QHPL JQ ELULPLQdedir. Siyah daireler hidrojen-zengin, gri çemberler ise helyum-zengin bölgeleri göstermektedir. ùHNLO %LU 0 .hdh..h7/(%(95(6ø (1 M < M1 < 2.8 M) o ve bu nedenle ]DUIÕQKÕ]OÕJHQLúOHGL÷LELUHYUHJ|UOPH] HidrojeniQL\DNPÕúRODQoHNLUGH÷LQNWOHVL, M < 2.8 M için 0.35 M¶GHQNoNWUVÕFDNOÕNDUWÕúÕ+H-\DQPDVÕQDL]LQYHUHFHNG]H\GHGH÷LOGLU Hidrojen NDEX÷XQ \RNROPDVÕ\ODNWOHDNWDUÕPÕVRQDHUHU<ÕOGÕ]ELUEH\D]FFHROXU0 + 1 MNWOHOL \DNÕQoLIW VLVWHPLQ%WUHYULPLùHNLO¶WH, +5GL\DJUDPÕQGDNLHYULP\ROODUÕLVHùHNLO¶WHJ|VWHULOPLúWLU +LGURMHQ NDEX÷X ]D\ÕIODGÕ÷ÕQGD PHUNH]GH HOHNWU Q \R]ODúPDVÕ PH\GDQD JHOLU 0HUNH]L VÕNÕúPD \DYDú KÕ]GDGÕU 27 + 1 M\DNÕQoLIWVLVWHPLQLQEDú\ÕOGÕ]ÕQDLOLúNLQHYULP\ROODUÕ ùHNLOdL]HOJH¶WHYHULOHQúHPD\DJ|UHELU0 1RUPDO KLGURMHQ EROOX÷X X = 0.7 (ZAMS) ile X KHO\XP VÕIÕU \Dú DQD NROX +H =$06 LoLQ VÕIÕU \Dú DQD NROODUÕ GD J|VWHULOPLúWLU(YULP\ROODUÕ]HULQGHNLKDUIOHUdL]HOJH¶HJ|QGHUPH\DSPDNWDGÕU 16.2.3. ORT$.h7/(%(95(6ø0 < M1 < 14 M) Çekirdek kütlesi, hidrojenini WNHWPLú bir oHNLUGH÷LQ ÕVÕVDO NDUDUOÕOÕ÷Õ LoLQ JHUHNOL RODQ &KDQGUDVHNKDU kütlesinden daha büyüktür. 0HUNH]L VÕNÕúPD oRN KÕ]OÕ ROXU YH oO DOID LúOHPL EDúODU %X KÕ]OÕ JHQLúOHPH KÕ]OÕ ELU NWOH DNWDUÕP HYUHVLQH neden olur. %DúODQJÕo G|QHPL JQ RODQ ELU 0 + 8 M sisteminin evrimi (De Greve ve de Loore, 1976) ùHNLOúX úHNLOGHROXU hLGURMHQ \DQPD HYUHVLQLQ |PU \DNODúÕN PLO\RQ \ÕOPHUWHEHVLQGH iken -5 NWOH GH÷LúLPLQLQ VUHVL \DNODúÕN RODUDN \ÕOGÕU KWOH ND\EÕQÕQ RUWDODPD GH÷HUL 5.2 10 M\ÕO-1 ve -4 -1 PDNVLPXP GH÷HUL GH M\ÕO ’dir. +HO\XP \DQPDVÕ PLO\RQ \ÕO VUHU VRQUD \R]ODúPÕú KHPHQ KHPHQHúVÕFDNOÕNOÕELUoHNLUGHNJHOLúLU<ÕOGÕ]+5GL\DJUDPÕQGDVD÷DGR÷UXLOHUOHU.WOHDNWDUÕPÕQÕQLNLQFL 0.94 M NWOHOL ELU &2 oHNLUGH÷LQH YH 0 kütleli bir helyum atmosferine sahip kütleli, çok ince, aktif bir helyum kabuk kD\QD÷Õ YDUGÕU 2 10-5 M\ÕO-1 mertebesindeki \DYDú ELU NWOH DNWDUÕP HYUHVL \ÕO VUHU sonra helyum NDEXN ND\QD÷Õ WNHWLOLU NDOÕQWÕQÕQ NWOHVL M ’dir. .WOH GH÷LúLPLQLQ VRQXQGD EDú \ÕOGÕ] KLGURMHQFH ]HQJLQ ]DUIÕQÕQ QHUHGH\VH WDPDPÕQÕ ND\EHGHU sonuç kütle 0.264 M ’dir. Bu son kütle o kadar küçüktür ki, HYUHVL EDúODU <ÕOGÕ] ROXUEXQODUÕQ DUDVÕQGDWRSODP HQHUMLQLQ ¶Q UHWHQ0 +H DVOD WXWXúDPD] YH \ÕOGÕ] VR÷XPD\D EDúODU <ÕOGÕ] KHO\XP VÕIÕU \Dú DQD NROXQD +H=$06 GR÷UX HYULPOHúHPH] YH EH\D] FFHOHULQ EXOXQGX÷X E|OJH\H GR÷UX LOHUOHU +HVDSODPDODUÕQ VRQXQGD \ÕOGÕ]ÕQ yDUÕoDSÕD\QÕNWOHOLLGHDOELUEH\D]FFHQLQ&KDQGUDVHNKDUOLPLWLQLQ\DNODúÕNRODUDNLNLNDWÕGÕU<ÕOGÕ]KDOHQ toplam kütlesinin %0.9’una sahip olan, hidrojence zengin bir zarfa sahiptir, böylece o, ölmekte olan hidrojen \DQPD]DUIOÕKRPRMHQROPD\DQELU beyaz cücedir. - 0HUNH]GHNLQ|WULQRODUÕQNDWNÕVÕDUWDUPHUNH]LVÕFDNOÕND]DOÕUIDNDW\DUÕ \R]ODúPÕúE|OJHOHUGHEXE|OJHOHUGHNL E]OPHQHGHQL\OHVÕFDNOÕNDUWPD\DGHYDPHGHU.DEXNHQHUMLND\QD÷Õ\RNWXUEXQHGHQOHGHELUEWQRODUDN E]OPH J|]OHQLU +Õ]OÕ E]OPH \DNODúÕN \ÕO Q|WULQR ND\ÕSODUÕQÕ NDUúÕOD\DPD] YH ÕúÕWPD GúHU Buradan itibaren (log Teff = 5.2) beyaz cüce HYUHVLQHGR÷UX HYULPEDúODU.WOHOHUL0¶GHQE\N \ÕOGÕ]ODU LoLQ \DSÕODQ KHVDSODPDODUDWPRVIHUik KLGURMHQ EROOX÷XQXQ \DNODúÕk olarak ROGX÷XQGD,NWOH ND\ÕSODUÕQÕQ VRQDHUGL÷LQLJ|VWHUPLúWLU 28 ùHNLO%DúODQJÕoG|QHPLJQRODQELU0 Loore, 1976). + 8 MVLVWHPLQLQEDú\ÕOGÕ]ÕQDLOLúNLQHYULP\ROX'H*UHYHYHGH (YULPKHVDSODPDODUÕ 16.3.1. KORUNUMLU9(.25818068=(95ø0 (YULP\ROODUÕQÕQKHVDSODPDODUÕQGDúXRODVÕOÕNODUÕGLNNDWHDODELOLUL] Korunumlu evrim için, WRSODPNWOHYHDoÕVDOPRPHQWXPVDELWRODUDNHOHDOÕQÕU.WOHDNWDUÕPÕEDúODGÕ÷ÕQGD NWOH DWÕOÕU YH DWÕODQ EX NWOH \ROGDúÕQ NWOHVLQH HNOHQLU %X LNL ELOHúHQLQ NWOHOHULQGHNL GH÷LúLPGHQ KDUHNHW HGHUHNGHVLVWHPLQGRODQPDG|QHPLQGHNLGH÷LúLPLOHELOHúHQOHULQ5RFKH\DUÕoDSODUÕQÕQGH÷LúLPLKHVDSODQÕU Korunumsuz evrim içinNWOHYHDoÕVDOPRPHQWXPGDNLGH÷LúLPOHUKHVDEDNDWÕOÕU Böylesi bir dDYUDQÕúGH÷HQ sistemlerinGLNNDWHDOÕQPDVÕQDL]LQYHULU%XGXUXPGD \ROGDúWDUDIÕQGDQ \Õ÷ÕúWÕUÕOPD\DUDNVLVWHPLWHUNHGHQ ELU GLVNWH \D GD RUWDN ELU ]DUI LoHULVLQGH ELULNWLULOHQ NWOH NHVUL LoLQ ELU WDQÕPODPD JHUHNLU D\QÕ úH\ DoÕVDO momentum için de yaSÕOPDOÕGÕU 'DKD |QFH %|OP ¶WH EHOLUWLOGL÷L ]HUH KHVDSODPDODUÕ EDú \ÕOGÕ]ÕQ HYULPLQH VÕQÕUOD\DUDN YH \ROGDúÕQ NWOHVLQGHNLGH÷LúLPL\DOQÕ]FDVLVWHPLQGRODQPDG|QHPLQGHNLGH÷LúLPLEHOLUOHPHGHNXOODQPDN \DGDKHULNL ELOHúHQLQHYULPLQLHú]DPDQOÕRO arak hesaplamak \ROODUÕQÕQLNLVLGHRODVÕGÕU Korunumsuz durumu için NWOH YH DoÕVDO PRPHQWXP ND\ÕSODUÕ PXWODND GLNNDWH DOÕQPDOÕGÕU .WOH DNWDUÕP ∆MNWOHPLNWDUÕ\ÕOGÕ]5RFKHOREXQXQLoLQGHNDODFDNúHNLOGHEHOLUOHQir; HYUHVLVUHVLQFHEDú\ÕOGÕ]GDQDWÕODQ NWOH ND\EÕ ]DPDQ |OoH÷L LOH \Õ÷ÕúPD ]DPDQ |OoH÷LQLQ GR÷DO RODUDN EHQ]HU ROPDPDODUÕ QHGHQL\OH DWÕODQ β kesrinin yani β ∆MPLNWDUÕQÕQ\ROGDúWDUDIÕQGDQ\Õ÷ÕúWÕUÕOGÕ÷ÕYDUVD\ÕODELOLU NWOHQLQ\DOQÕ]FD $oÕVDOPRPHQWXPND\EÕLoLQGH EHQ]HU ELULúOHP \DSÕODELOLUH÷HUG|QPHDoÕVDOPRPHQWXPX LKPDO HGLOLUYH ELU \D GD KHU LNL ELOHúHQGHQ DWÕODQ PDGGHQLQ VLVWHPL WHUN HWWL÷L YDUVD\ÕOÕUVD DWÕODQ EX NWOH LOH WDúÕQDQ ND\EHGLOHQDoÕVDOPRPHQWXPKHVDSODQDELOLU 29 .HVLUVHONWOHND\EÕ c c = ∆M /( M 1i + M 2i ) (16.1) ED÷ÕQWÕVÕ LOH LIDGH HGLOHELOLU 6LVWHPL WHUN HGHQ PDGGH LOH WDúÕQDQ DoÕVDO PRPHQWXP LVH -HDQV \DNODúÕPÕ NXOODQÕODUDN ∆J = cJ (16.2) úHNOLQGH GH÷HUOHQGLULOHELOLU 6RQXo RODUDN .HSOHU¶LQ oQF \DVDVÕQD J|UH ELOHúHQOHU DUDVÕ X]DNOÕN YH GRODQPDG|QHPLQLQGH÷LúLPOHULLoLQ A (1 − c) 2 ( M 1i M 2i ) 2 ( M 1 + M 2 ) = Ai ( M 1M 2 ) 2 ( M 1i + M 2i ) (16.3) P (1 − c) 3 ( M 1i M 2i ) 3 ( M 1 + M 2 ) = Pi ( M 1 M 2 ) 3 ( M 1i + M 2i ) (16.4) in fonksiyonu LIDGHOHULQL \D]DELOLUL] (÷HU NHVLUVHO DoÕVDO PRPHQWXP ND\EÕQÕ VLVWHPGHQ DWÕODQ J|UHOL NWOHQ olarak ifade edersek, c için çok daha genel bir ifade elde edebiliriz c = c(∆M /( M1 + M 2 )) . (÷HU ∆MNWOHVLQLQDWÕOPDVÕQGDQVRQUDVLVWHPGHNDODQDoÕVDOPRPHQWXPXd = 1 – c ile temsil edersek d(O) = 1, d(1) = 0 0 d (16.5) elde ederiz.(÷HU ∑ ∆M k = ∆M (16.6) k ise, bu durumda d( ∆M ∆M k )= d( ) M 1i + M 2i M 1k −1 + M 2k −1 k ∏ (16.7) olur. Bir d IRQNVL\RQXQXQ EXOXQPXú ROGX÷XQX YDUVD\GÕ÷ÕPÕ]GD YH ED÷ÕQWÕODUÕQÕ VD÷OD\DQ fonksiyon ailesi bir bütün olarak belirlenebilir. d( ∆M ∆M ) =1− M 1i + M 2i M 1i + M 2i (16.8) IRQNVL\RQXYHED÷ÕQWÕODUÕQÕVD÷ODGÕ÷ÕQGDQ ∆M ∆M ) = (1 − )α α ≥ 0 M1i + M 2i M1i + M 2i DLOHVLGHVD÷ODU%XGXUXPGDc’yi dα ( cα ( ∆M ∆M ) = 1 − (1 − )α α ≥ 0 M1i + M 2i M1i + M 2i úHNOLQGH\HQLGHQ\D]DELOLUL] (16.9) 30 %HOOL ELU HYULP HYUHVL VUHVLQFH ELOHúHQOHUGHQ ELUL WDUDIÕQGDQ ND\EHGLOHQ PDGGH \ROGDúÕ WDUDIÕQGDQ β, bu kütle kesrini göstersin, yani β = ( M 2 − M1 ) / ∆M . \Õ÷ÕúWÕUÕODELOLU (16.10) %XGXUXPGDELOHúHQOHUDUDVÕQGDNLX]DNOÕNLOHG|QHPGHNLGH÷LúLPOHUL A M + M 2 2α +1 M 1i M 2i 2 =( 1 ) ( ) Ao M 1i + M 2i M 1M 2 (16.11) P M + M 2 3α +1 M 1i M 2i 3 =( 1 ) ( ) Po M 1i + M 2i M 1M 2 biçiminde yazabiliriz, burada M2, (16.10) ile verilir. ø.ø%ø/(ù(1ø1(95ø0ø (ú]DPDQOÕHYULPLoLQELUNRGNXOODQÕODUDNKHULNLELOHúHQLQ\DSÕVÕDQODúÕODELOLU Bu durumdaKHULNLELOHúHQLQ , \DUÕoDSODUÕ YH RQODUÕQ 5RFKH \DUÕoDSODUÕ KHVDSODQÕU YH EX GD \ÕOGÕ] \DUÕoDSODUÕ LOH 5RFKH \DUÕoDSODUÕ DUDVÕQGDNDUúÕODúWÕUPD\DSPD\DRODQDNVD÷ODU Bu suretle, VRQUDNLGH÷PHHYUHOHULJ|]GHQNDoÕUÕOPDPÕúYHRQD J|UH GDYUDQÕOPÕú ROXU <Õ÷ÕúPD \ÕOGÕ]ÕQÕQ GDYUDQÕúÕ úX úHNLOGH DQODúÕODELOLU EX \ÕOGÕ] NWOH \Õ÷ÕúPDVÕ QHGHQL\OH JHQoOHúLU YH |PU |QHPOL |OoGH DUWD bilir. *HQoOHúHQ EX \ROGDú \ÕOGÕ] 5RFKH OREXQX GD GROGXUDELOLUYHE|\OHFHWHUVLQHG|QPúELUNWOHDNWDUÕPHYUHVLRUWD\DoÕNDELOLU (YULP KHVDSODPDODUÕQGDNL VÕQÕUODPDODU úXQODUGÕU VLVWHP GÕú NULWLN \]H\LQL L2 QRNWDVÕQGDQ JHoHQ Hú SRWDQVL\HO \]H\DúPDGÕ÷ÕVUHFHKHVDSODPDODUNRUXQXPOXGXUXPDJ|UH\DSÕOÕUGÕúNULWLN \]H\DúÕOGÕ÷ÕQGD ise sistemden olaVÕ NWOH ND\ÕSODUÕ GD GLNNDWH DOÕQÕU .WOHQLQ VLVWHPGHQ NDoDELOPHVL LoLQ HQ D]ÕQGDQ L2 QRNWDVÕ LOH 5RFKH OREXQXQ SRWDQVL\HO HQHUMLOHUL DUDVÕQGDNL IDUNÕ VD÷ODPD\D \HWHFHN E\NONWH ID]ODGDQ ELU . , bu enerjiQLQ E\NO÷ q = 1 için, 0.27 GM/A ile hesaplanabilir..WOHRUDQÕQÕQJHQLúELUDUDOÕ÷ÕQGDEXGH÷HUROGXNoDWLSLNWLU%D÷ÕQWÕ\DJ|UHJHQLúVLVWHPOHUGH kütlenin sistemden kaçabilmesi, \DNÕQ VLVWHPOHUH J|UH GDKD NROD\GÕU NWOH RUDQÕQÕQ Xo GH÷HUOHULQGH 27 oDUSDQÕ\HULQLoRNGDKDNoNELUoDUSDQDEÕUDNÕUYHEu nedenle de, büyük kütleli sistemlerde kütlenin sistemi terk etmesi çok daha kolay olur. HQHUML\H JHUHNVLQLPL YDUGÕU %LULP NWOH EDúÕQD M + 1 M sistemiQLQ KHU LNL ELOHúHQLQLQ GH /RRUH YH 'H *UHYH WDUDIÕQGDQ KHVDSODQDQ HYULP \ROODUÕQÕ D\QÕ EDúODQJÕo (ú ]DPDQOÕ HYULP GH÷HULQLQ NRQWURO HGLOPHVL DPDFÕ\OD EDúODQJÕo G|QHPL JQ RODQ ELU G|QHPLQHVDKLSD\QÕELU VLVWHPLQEDú\ÕOGÕ]ÕQÕQ.LSSHQKDKQ.RKOYH:HLJHUWWDUDIÕQGDQKHVDSODQDQ HYULP \ROX\OD NDUúÕODúWÕUPDVÕQÕ ùHNLO ¶GD YHUL yoruz. *|UOHFH÷L JLEL KHU LNL EDú \ÕOGÕ]ÕQ HYULP \ROODUÕ ROGXNoDX\XúPDNWDGÕU+HULNLGXUXPGDGDGH÷PHHYUHVLROXúPDPDNWDGÕUELOHúHQOHULQHYULP\ROODUÕD\UÕD\UÕ KHVDSODQDELOLU \DQL LON RODUDN EDú \ÕOGÕ]ÕQ HYULPL KHU DGÕPGD VLVWHPGHQ NWOH ND\EÕQÕGD LoHUHFHN úHNLOGH KHVDSODQGÕNWDQ VRQUD PDGGHQLQ \Õ÷ÕúWÕ÷Õ \ROGDúÕQ HYULPL GH KHVDSODQDELOLU .LSSHQKDKQ YH DUN 7DUDIÕQGDQ EDú\ÕOGÕ]LoLQKHVDSODQDQHYULP\ROXGDKD|QFHùHNLO¶WHJ|VWHULOPLúWL .WOHRUDQÕYHG|QHPLQVLVWHPLQGDYUDQÕúÕ]HULQGHNLHWNLOHULQLLQFHOHPHNDPDFÕ\OD MNWOHOLEDú\ÕOGÕ]D VDKLS RODQ ELU VLVWHPLQ Hú ]DPDQOÕ HYULPL L]OHQHELOLU 'H÷PH HYUHVLQLQ ROXS ROPD\DFD÷Õ EDúODQJÕo NWOH M+ 8.1 M sistemi, M\ÕO¶OÕN PDNVLPXP GH÷HULQHXODúÕUYHDWPRVIHULNKLGURMHQEROOX÷XNWOHRODUDNYHULFL\ÕOGÕ]GD¶GHQ¶HYHDOÕFÕ\ÕOGÕ]da da RUDQÕQD YH EDúODQJÕo G|QHPLQH ED÷OÕGÕU %DúODQJÕo G|QHPL JQ RODQ ELU koUXQXPOX HYULPLQ NODVLN \ROXQX WDNLS HGHU ùHNLO .WOH ND\ÕS KÕ]Õ -4 ¶GHQ¶\HGúHU9HULFL\ÕOGÕ]GDQJHUL\HNDODQKHO\XP\DQPDHYUHVLER\XQFDHYULPOHúLUVRQUD\HQLGHQ M ile 10 M DUDVÕQGDRODQEDú\ÕOGÕ]ODULoLQPH\GDQDJHOLUYH helyum kabuk kayQD÷ÕQGDQHQHUMLoÕNÕúÕQÕQQHGHQ JHQLúOHUYHEXVXUHWOHNWOHDNWDUÕPÕQÕQLNLQFLHYUHVLEDúODU.WOHDNWDUÕPÕQÕQEXLNLQFLHYUHVLNWOHOHUL ROGX÷X KHO\XP ]DUI JHQLúOHPHVLQLQ ELU VRQXFX RODUDN DWPRVIHULN KLGURMHQ EROOX÷X NWOH RODUDN YHULFL \ÕOGÕ]GD¶GHQ¶HYHDOÕFÕ\ÕOGÕ]GDGD¶GHQ¶\HGúHU Bir 10 M+ 8 MVLVWHPLLoLQ\DSÕODQNRUXQXPOXKHVDSODPDODUEN].HVLPLOHNDUúÕODúWÕUPDGH÷PH HYUHVLQLQ J|UOPHGL÷L EX GXUXPGD Hú ]DPDQOÕ HYULP VRQXoODUÕQÕQ NRUXQXPOX HYULP LOHHOGH HGLOHQOHUOH oRN L\LX\XúWX÷XQXJ|VWHUPHNWHGLU %DúODQJÕo G|QHPL JQ RODQ ELU 0 + 5.4 M sistemi için, kütle DNWDUÕPÕQÕQ EDúODPDVÕQGDQ \DNODúÕN ¶OLNELUNWOHDNWDUÕOGÕ÷ÕQGD,ELUGH÷PHHYUHVLPH\GDQDJHOLU. Bu RODUDN\ÕOVRQUD\DNODúÕNRODUDN0 31 GH÷PHHYUHVLNWOH RUDQÕ WHUVG|QQFH\H NDGDU \DNODúÕN RODUDN \ÕOGHYDPHGHU %Dú \ÕOGÕ]ÕQ NWOHVL M¶HGúW÷QGHGH÷PHHYUHVLVRQDHUHU6RQUDNLHYULPVUHFL|QFHNLGXUXPGDNLJLELROXU ùHNLO%DúODQJÕoG|QHPLJQRODQELU0 + 1 MVLVWHPLQLQGH/RRUHYH'H*UHYHWDUDIÕQGDQELUHú]DPDQOÕ HYULP NRGX LOH KHVDSODQDQ HYULP \ROODUÕQÕQ .LSSHQKDKQ YH :HLJHUW WDUDIÕQGDQ GDKD |QFH KHVDSODQDQ HYULP \ROODUÕ LOH NDUúÕODúWÕUPDVÕ (ú ]DPDQOÕ KHVDSODPDODUÕQ EDú \ÕOGÕ]Õ NDOÕQ oL]JL LOH \Õ÷ÕúDQ \ROGDú \ÕOGÕ]ÕQ HYULP \ROX LVH ]HULQGH LoL ERú oHPEHUOHULQ EXOXQGX÷X LQFH oL]JL LOH J|VWHULOPLúWLU .LSSHQKDKQ YH :HLJHUW¶ÕQ HYULP \ROX LVH ]HULQGH QRNWDODUEXOXQDQoL]JLLOHJ|VWHULOPLúWLU 32 ùHNLO%DúODQJÕoG|QHPLJQRODQELU0 ]DPDQOÕKHVDSODQDQHYULP\ROODUÕ + 8.1 MVLVWHPLQLQNWOHDNWDUÕPÕQÕQHUNHQ%HYUHVLQHJ|WUHQHú + 2.7 MVLVWHPLQLQEDúYH Xc1 ve Xc2 LOH NWOH RUDQÕQÕQ HYULPL 0HUNH]L KLGURMHQLQ GH÷LúLP KÕ]Õ\OD ùHNLO%DúODQJÕoG|QHPLJQRODQYH$HYUHVLQHGR÷UXHYULPOHúPHNWHRODQELU0 \ROGDú \ÕOGÕ]ODUÕQÕQ PHUNH]L KLGURMHQ EROOXNODUÕ ED÷ODQWÕOÕRODUDNNWOHRUDQÕLNLNH]WHUVLQHG|QHU .h7/(25$1,1,17(56ø1('g10(6ø (ú ]DPDQOÕ HYULP KHVD÷ODPDODUÕ oLIW VLVWHPOHULQ HYULPOHUL VÕUDVÕQGD ED]Õ GXUXPODUGD NWOH RUDQÕQÕQ WHUVLQH G|QPHVL GXUXPXQXQ \DúDQGÕ÷ÕQÕ RUWD\D NR\PDNWDGÕU gUQHN RODUDN EDúODQJÕo G|QHPL JQ RODQ ELU M+ 2.7 M VLVWHPLQLQ $ WU HYULPL 3DFNHW HOH DOÕQDELOLU +Õ]OÕ ELU NWOH DNWDUÕP HYUHVL VÕUDVÕQGD NWOH RUDQÕ WHUVLQH G|QHU .WOH ND]DQDQ \ROGDúÕQ PHUNH]L KLGUÕMHQ \DQPDVÕ KÕ]ODQÕU E|\OHFH \ROGDúÕQ PHUNH]LQGHNLKLGURMHQEROOX÷X Xc2EDú\ÕOGÕ]ÕQPHUNH]L NÕVPÕQDQD]DUDQGDKDKÕ]OÕRODUDND]DOÕU Xc2 ≈ 0.4 ROGX÷XQGD \ROGDúÕQ JHQLúOHPHVL VRQXFXQGD 5RFKH OREX WDúPDVÕQÕQ PH\GDQD JHOPHVL QHGHQL\OH NWOH RUDQÕ WHUVLQH G|QHU .WOH RUDQÕ ELU NH] GDKD PH\GDQD JHOLU YH WD]H KLGURMHQLQ EDú \ÕOGÕ]ÕQ PHUNH]L NÕVPÕQGD NDUÕúPDVÕQHGHQL\OH Xc1DUWDU6LVWHPDUWÕNELU\DUÕ-D\UÕNWÕUùLPGLNLGXUXPGDVLVWHPLQE\NNWOHOLRODQEDú L2’den geçen kritik yüzeye ELOHúHQLGDKDKÕ]OÕ HYULPOHúLUYH ELUPGGHWVRQUD \HQLGHQ5RFKHWDúPDVÕ ROXúXU daha çabuk uODúÕOÕU E\N |OoHNOHUGH NWOH YH DoÕVDO PRPHQWXP ND\ÕSODUÕ ROXúXU VRQXoWD LNL \ÕOGÕ]ÕQ ELUOHúPHVLQH QHGHQ RODQ LoH GR÷UX ELU VSLUDO KDUHNHWL RUWD\D oÕNDU .WOH RUDQÕ YH EROOX÷XQ HYULP ùHNLO ¶GHJ|VWHULOPLúWLU , kütOH RUDQÕQÕQLNL NH] WHUVLQH G|QG÷ EX DUGÕúÕN NWOH DNWDUÕP HYUHOHUL LOH ortaya koyar. Örnek olarak, bDúODQJÕoG|QHPL 2.27 gün olan bir 9 M+ 5.4 M sisteminin3DFNHWWDUDIÕQGDQKHVDSODQDQHYULPJ|]GHn geçirilebilir. (ú ]DPDQOÕ HYULP KHVDSODPDODUÕ ELUD]GDKDNDUPDúÕN GXUXPODUÕQROXúDELOHFH÷LQL 16.4. KonvektifIÕUODWPDOÕHú]DPDQOÕHYULP GeniúOHPLú NDUÕúÕP GLNNDWH DOÕQGÕ÷ÕQGD \ÕOGÕ]ÕQ HYULPL \DOQÕ]FD PHUNH]L KLGURMHQ \DQPD HYUHVL VUHVLQLQ DUWPDVÕ GROD\ÕVÕ\OD GD \ÕOGÕ]ÕQ DQD NRO |PUQQ X]DPDVÕ EDNÕPÕQGDQ GH÷LO D\QÕ ]DPDQGD, \ÕOGÕ]ÕQ Lo NÕVPÕQGD KLGURMHQ SURILOLQGHNL JUDGL\HQWLQ NRQYHNWLI PHUNH]L NÕVPÕQ o|NPHVLQLQ ELU VRQXFX RODUDN \]H\H GDKD\DNÕQROPDVÕEDNÕPÕQGDQGDGH÷LúLU Konvektif ktadaki konvektif IÕUODWPDOÕ PRGHOOHU GXUXPXQGD oRN IÕUODWPDQÕQ GLNNDWH DOÕQGÕ÷Õ YH DOÕQPDGÕ÷Õ KHVDSODPDODUÕQ NDUúÕODúWÕUPDVÕ NÕUPÕ]Õ QR \DUÕoDSÕQ \DQL DQDNRO VÕUDVÕQGD XODúÕODQ PDNVLPXP \DUÕoDSÕQ 33 GDKD E\N ROGX÷XQX J|VWHUPHNWHGLU %XQXQ ELU VRQXFX RODUDN \DNÕQ oLIW VLVWHPOHUGH % YH $ HYULP GXUXPODUÕQÕQJ|UHOLROXúXPODUÕ konvektif IÕUOatmadan önemli ölçüde etkilenecektir. konvektif IÕUODWPD GLNNDWH DOÕQGÕ÷ÕQGD NWOH DNWDUÕPÕQÕQ A, B ve C konvektif IÕUODWPDQÕQGLNNDWHDOÕQPDGÕ÷Õ%GXUXPXLoLQDOWOLPLW de÷HUOHULQL J|VWHUPHNWHGLU ùHNLO NWOH RUDQÕ 9 RODQ \DNÕQ oLIWler için VRQXoODUÕ J|VWHUPHNWHGLU IDUNOÕ ùHNLO \DNÕQ oLIW G|QHPOHULQLQ GXUXPODUÕQDRODQDNVD÷OD\DQDOWOLPLWOHULLOH HYULPOHúPH GXUXPODUÕQÕQ RUWD\D oÕNPDVÕ NWOH RUDQÕQD DQFDN ]D\ÕIoD ED÷OÕGÕU .WOH RUDQÕQÕQ DOÕQPDVÕ durumunda, ùHNLO¶GD%GXUXPXQDDLWRODQH÷UL,\DOQÕ]FDELUNDoPLOLPHWUH\XNDUÕ\DGR÷UXND\PDNWDGÕU k bir 10 M+ 8 M çift sisteminin, Roxburgh kriterine uygun, konvektif $GXUXPXNWOHDNWDUÕPÕQÕQNDUDNWHULVWLN|]HOOLNOHULQLRUWD\DNR\PD DPDFÕ\ODEDúODQJÕoG|QHPLJQRODQ IÕUODWPDOÕ HYULPL EDúODQJÕo G|QHPL JQ RODQ YH D\QÕ NWOHOL ELU VLVWHPLQ 6FKZDU]VFKLOG NULWHUL\OH KHVDSODQDQ HYULPL yle NDUúÕODúWÕUÕODELOLU Konvektif IÕUODWPDVRQXoODUÕùHNLO¶GDYHULOPLúWLU Konvektif M \ROGDúD DNWDUÕOÕU %X MDNWDUÕOÕU.WOHDNWDUÕPÕQÕQEDúODPDVÕQGDQ IÕUODWPD GXUXPXQGD KÕ]OÕ NWOH DNWDUÕP HYUHVL VUHVLQFH \DNODúÕN HYUH\L\DYDúELUNWOHDNWDUÕPHYUHVLL]OHUYHEXHYUHGHGH 6 \DNODúÕN \ÕO VRQUDNL EHOLUOL ELU DQGD RULMLQDO RODUDN \ROGDú ELOHúHQ RODQ \ÕOGÕ] RULMLQDO RODUDN EDú ELOHúHQ RODQ \ÕOGÕ]Õ JHoHUHN VLVWHPLQ GDKD HYULPOHúPLú ELOHúHQL KDOLQH JHOLU 5RFKH OREXQX GROGXUXU NHQGLVLQLQ $ GXUXPX NWOH DNWDUÕPÕQÕ EDúODWÕU YH E|\OHFH ELU GH÷HQ VLVWHP RUWD\D oÕNDU 7HUVLQH NWOH DNWDUÕPÕEDúODGÕ÷ÕQGDRULMLQDOEDú \ÕOGÕ]ÕQÕúÕWPDVÕQRUPDONWOHND\EHGHQELU \ÕOGÕ]LoLQRODQODD\QÕúHNLOGH 6 GúHU 'H÷PH HYUHVL \DNODúÕN RODUDN \ÕO VUHU 6LVWHP \DNODúÕN RODUDN M ND\EHGHU <ROGDúÕQ da sistem, PHUNH]L KLGURMHQ \DQPDVÕQÕQ VRQXQGD GH÷PH ER]XOXU YH % GXUXPX NWOH DNWDUÕPÕ EDúODU 6RQXQ PHUNH]LKLGURMHQPLNWDUÕ M olan, 6.37 MNWOHOLELUDQDNRO\ÕOGÕ]ÕLOHKHO\XP\DNPD\DEDúODPÕúRODQ MNWOHOLELU\ÕOGÕ]DVDKLSROXU 34 ùHNLO <DNÕQ oLIW VLVWHPOHULQ $ % YH & GXUXPODUÕQD LOLúNLQ DOW OLPLW G|QHPOHUL JQ ELULPL ND\EÕ YH RUWDúLGGHWWHNL nde). Düz çizgiler, kütle konvektif IÕUODWPDLOH\DSÕODQ KHVDSODPDODUÕQ'RRP VRQXFXQX J|VWHUPHNWHLNHQ NHVLNOL çizgi, B durumu, Schwarzschild merkezi için (Vanbeveren, 1980) limit dönemleri göstermektedir. + 8 M oLIW VLVWHPLQLQ EDú YH \ROGDú ELOHúHQLQLQ HYULP \ROODUÕ (Sybesma, 1987). .HVLNVL] oL]JLOHU D\UÕN HYUHOHUL NHVLNOL oL]JLOHU LVH EDú \ÕOGÕ]GDQ \ROGDúD NWOH DNWDUÕP HYUHOHULQL göstermektedir; kareler tersine kütlHDNWDUÕPGXUXPXQX\DQL\ROGDúÕQNWOHND\EHGHQELOHúHQROGX÷XGXUXPXYHoJHQOHU ùHNLO %DúODQJÕo G|QHPL JQ RODQ ELU 0 GHGH÷PHHYUHOHULQLJ|VWHUPHNWHGLU 2UWDYHGúNNWOHOLoLIWVLVWHPWUOHUL $/*2/6ø67(0/(5ø Algol-VLVWHPOHUL\DUÕD\UÕNVGVLVWHPOHUROXS5RFKHOREXQXGROGXUPXúRODQNoNNWOHOLELOHúHQ\ROGDúÕQD NWOHDNWDUPDNWDGÕU.oNELOHúHQEDúODQJÕoWDGDKDE\NNWOHOLROXSGDKDKÕ]OÕHYULPOHúPLúRODQGÕU Kütle RUDQÕq = Ml / Mg ¶QLQGD÷ÕOÕPÕWHNPDNVLPXPOXROXSPDNVLPXP–FLYDUÕQGDGÕU Kütle oranÕGD÷ÕOÕPÕ ùHNLO¶GHYHULOPLúWLU. 'DKDE\NNWOHOLELOHúHQOHULQNWOHOHUL – 4 MFLYDUÕQGDELU]LUYH\HVDKLSROXS\Õ÷ÕOPDNoNNWOHOHUH mleri GR÷UX GDKD ID]ODGÕU NWOH DNWDUDQ VLVWHPOHUGHNL E\N NWOHOL ELOHúHQOHULQ NWOHOHUL D\UÕN DQDNRO VLVWH için olandan daha küçüktür. M DOÕFÕQÕQ ise 5.60 M¶GLU 2UWDODPD G|QHP JQ YH RUWDODPD NWOH RUDQÕ YHULFLDOÕFÕ ¶GLU .WOH RUDQODUÕQÕQ bir IRQNVL\RQX RODUDN WRSODP NWOH YH DoÕVDO PRPHQWXP ]HULQH \DSÕODQ ELU LQFHOHPH D\UÕN VLVWHPOHU LoLQ NWOHOHULOHDoÕVDOPRPHQWXPODUÕQNWOHRUDQÕQGDQED÷ÕPVÕ]ROGX÷XQXRUWD\DNR\PXúWXU+DOEXNL\DUÕ-D\UÕN 0XKWHPHOHQ NWOH RUDQÕ LOH G|QHP LOLúNLOL GH÷LOGLU $OJRO YHULFLQLQ RUWDODPD NWOHVL \DNODúÕN VLVWHPOHU GXUXPXQGD EX SDUDPHWUHOHU DUDVÕQGD NWOH DNWDUÕP HYUHVL VUHVLQFH WRSODP NWOHQLQ D]DOGÕ÷ÕQD - LúDUHW HGHQ ELU LOLúNL YDUGÕU .oN NWOH RUDQOÕ \DUÕ D\UÕN VLVWHPOHULQGDKD LOHUL HYULP DúDPDVÕQGD ROGXNODUÕ - r. Son kütle (Mf), NDEXO HGLOHELOLU <DUÕ D\UÕN VLVWHPOHU KDOHQ NWOH DNWDUÕP DúDPDVÕQGD RODQ VLVWHPOHUGL EDúODQJÕoNWOHVL MiNXOODQÕODUDNDúD÷ÕGDNLúHNLOGHEXOXQDELOLU'H*UHYH M f = M i /(9.645 − 0.342M i ), M f = 0.04M i 1.62 2 M< M < 11 M için (3.11) 11 M< M < 30 M için. (3.12) %X NXUDPVDO LOLúNLOHU LOH J|]OHPOHULQ NDUúÕODúWÕUPDVÕ J|]OHQHQ \ÕOGÕ]ODUÕQ NWOHOHULQLQ GDKD \DUÕVÕQÕ DNWDUPDODUÕJHUHNWL÷LQLRUWD\D NR\PDNWDGÕU%XQHGHQOH$OJROOHUNWOHDNWDUÕPHYUHVLQLQVRQXQGDGH÷LOOHUGLU 35 Konvektif IÕUODWPD YHULOHQ ELU M için, son kütlenin daha büyük olmDVÕ YH NWOH GH÷LúLP HYUHVLQGH YHULFLQLQ ÕúÕWPDVÕQÕQ6FKZDU]VFKLOGGXUXPXLoLQEHNOHQHQGHQGDKDE\NROPDVÕúHNOLQGHELUHWNL\HVDKLSWLU0HUNH]L IÕUODWPHoHNLUGHNOHUL6FKZDU]VFKLOGoHNLUGHNOHULQGHQE\NWUYHEXQHGHQOHYHULOHQELU MfGH÷HULLoLQGDKa küçük bir MiGH÷HULYHGDKDE\NELUEDúODQJÕoNWOHRUDQÕGH÷HULJHUHNLU q = Ml / Mg¶QLQ $OJRO VLVWHPLQH LOLúNLQ GD÷ÕOÕPÕ 1RNWDODU q¶QXQ DUDOÕNODUÕ\OD . φ (q) fonksiyonu, belli bir q GH÷HULQLQ ± 0 DUDOÕ÷Õ LoHULVLQGHNL RUWDODPD NWOH RUDQÕQD VDKLS RODQ sistemlerin kesrini göstermektedir (Giuricin ve Mordirossian, 1981). ùHNLO .WOH RUDQÕ LúDUHWOHQPLúWLU q = 0.5 ve P = 2 gün için, konvektif 1987): IÕUODWPD GXUXPXQGD VRQ NWOHOHU úX úHNLOGH LIDGH HGLOHELOLU 6\EHVPD M f = M i1.41 − 6.16 $GXUXPXNDOÕQWÕODUÕLoLQ M f = M i1.72 − 21.92 %GXUXPXNDOÕQWÕODUYH (16.13) Mi > 6 M için. (16.14) %LULODJQDUDVÕQGDNLG|QHPOHULQoR÷XVHoLPHWNLVLQGHQGROD\ÕKDWDOÕGÕU']HOWPHVRQUDVÕQGDG|QHPOHULQ D\UÕNVLVWHPOHUHQD]DUDQGDKDNoN ROGX÷XEXOXQPXúWXU%XLVHNWOHGH÷LúLPLVÕUDVÕQGDDoÕVDOPRPHQWXP ND\EÕ ROGX÷XQD LúDUHW HGHU GeUoHNWHQ GH GHQNOHPLQH J|UH D LoLQ E\N ELU GH÷HU NXOODQÕOPDGÕNoD G|QHPLQDUWPDVÕJHUHNLU n olan bir 5 M + 4 M VLVWHPLQGHQEDúOD\DUDNNWOHQLQVRQNWOHQLQ β DoÕVDO PRPHQWXPXQNRUXQGX÷XYHNRUXQPDGÕ÷Õα GXUXPODUDLOLúNLQVRQdönemi hHVDSOD\ÕQÕ] 3UREOHP%DúODQJÕoG|QHPLJ ¶Õ ROGX÷X ELU HYUH LoLQ NRUXQXPOX NWOH DNWDUÕP NRUXQXPVX] NWOH DNWDUÕP 13 –JQDUDVÕQGDNLX]XQG|QHPOL $OJROVLVWHPOHU GHNHúIHGLOPLúWLURQODU:6HUSHQWLV \ÕOGÕ]ODUÕRODUDN VÕQÕIODQGÕUÕOÕUODU%WQ:6HUSHQWLV\ÕOGÕ]ODUÕRSWLNWD\IODUÕQGDVDOPDoL]JLOHULROXúWXUDPD\DFDNNDGDUVR÷XN RODQ ELU \ÕOGÕ]ÕQ RSWLN VUHNOLOL÷L LOH X\XPOX RODQ YH EX QHGHQOH GH VÕFDN ELU ND\QDN ROGX÷XQD LúDUHW HGHQ salma çizgileri (Balmer çizgileri) gösterirler. ³6HUSHQWLGH´ WD\IODUÕ RUWDN NDUDNWHULVWLN RODUDN 89¶GH gösterirler. 2SWLN ELOHúHQler ve NWOH ND]DQDQ ELU \Õ÷ÕúPD GLVNLQH VDKLS VÕFDN ELOHúHQLQLQ Böylesi sistemlere örnek olarak Beta Lyrae, SX Cas, W Ser \DNODúÕN .¶OÕN VÕFDN ELU VUHNOLOLN ]HULQH ELQPLú JoO VDOPD oL]JLOHUL GDKD VR÷XNWXU %X VLVWHPOHU ELU VR÷XN \ÕOGÕ] ROXúWXUGXNODUÕ ELU PRGHO LOH DoÕNODQÕUODU verilebilir. SalPDoL]JLOHULPXKWHPHOHQPDGGHDNÕPÕYH\Õ÷ÕúPDVÕLOHLOLúNLOLGLUiyonizasyon da,HQSODVÕRODUDN,VÕFDNELU OHNH\DGDGLVNLQLoNÕVPÕQGDNLVÕFDN ELUE|OJHLOHLOLúNLOLGLU 6ÕFDNELOHúHQL oHYUHOH\HQPDGGH \ÕOGÕ]NHQGLVL \ROGDúÕQ DUNDVÕQGD J|UOPH] ROGX÷XQGD ELOH WDPDPHQ |UWOPH] YH NDEXN oL]JLOHULQLQ EHOLUOL ELOHúHQOHUL VUHNOL KLGURMHQ ÕúÕQÕPÕQÕQ JHUL ]HPLQLQGH J|UOU RODUDN NDOÕUODU 'DKD VRQUDODUÕ NÕVD G|QHPOL $OJRO 36 VLVWHPOHULQ GH EHQ]HU WD\IVDO |]HOOLNOHU J|VWHUGL÷L EXOXQGX YH EX QHGHQOH JoO DNWL vite, muhtemelen tüm Algol sistemlerde mevcuttur. 257$.<$ù$0/,<,/',=/$5 2UWDN \DúDPOÕ \ÕOGÕ]ODU WD\IODUÕQGD JoO NÕUPÕ]Õ VUHNOLOLN LOH ]D\ÕI PDYL VUHNOLOL÷H VDKLS NDUDNWHULVWLN , uzun dönHPOL \ÕOGÕ]ODUGÕU 2UWDN \DúDPOÕ \ÕOGÕ]ODU dönemli olarak patlamalar gösterirler. ,úÕQÕP WD\IÕ ROGXNoD JDULSWLU YH X]XQ VUH DQODúÕODPDPÕúWÕU )RWR÷UDI VR÷XUPD |]HOOLNOHUL YH SDUODN VDOPD oL]JLOHUL EXOXQDQ SODNODUÕQGDNoNVÕFDNELUELOHúHQLQYDUOÕ÷ÕPRU|WHGHNHQGLQLHOHYHUPLúWLU Örnek sistemler: 964 gün dönemli HBV 475, 760 gün dönemli Z And, V1016 CYG, RR Tel, RX Pup, CI Cyg’dir. <DNODúÕN RODUDN FLYDUÕQGD RUWDN \DúDPOÕ \ÕOGÕ] ELOLQPHNWe ve bunlar \DúOÕ GLVN |EH÷LQH DLW gözükmektedirler. Gözlenen M-WU |]HOOLNOHU JHUL WU ELU \ÕOGÕ] GHY LOH LOLúNLOHQGLULOHELOLUNHQ PDYL süreklilik ile salma çizgileri ancak VÕFDNELU\ROGDúWDQND\QDNODQÕ\RUROPDOÕGÕU 'L÷HU WDUDIWDQ NWOH YH NLQHWLN PRPHQWXP ND\EÕQÕQ RUDQÕ KDNNÕQGD KLo ELU ELOJL\H VDKLS ROPDGÕ÷ÕPÕ]GDQ GROD\Õ J|]OHQHQ |]HOOLNOHU LOH EDúODQJÕoWDNL JD] EXOXWODUÕQÕQ EDúODQJÕo NRúÕXOODUÕQÕ LOLúNLOHQGLULUNHQ oRN GLNNDWOL ROXQPDOÕGÕU 'DKDVÕ PDQ\HWLN DODQODUÕQ \ÕOGÕ] G|QPHVL YH VLVWHPLQ HYULPL ]HULQH RODQ HWNLVL JLEL GL÷HUIDNW|UOHUGXUXPXGDKDGDNDUPDúÕNODúWÕUPDNWDGÕU 16.5.3. .$7$./ø60ø.'(öøù(NLER Kataklismik GH÷LúHQOHULQ genel özellikleri , genellikle, GHMHQHUH ELU \ÕOGÕ] \DQL ELU EH\D] FFH LOH kimi zaman ELU NÕUPÕ]Õ GHY bazen bir cüce ve bazen de ELU GHMHQHUH \ÕOGÕ]GDQ ROXúPXú çift sistemOHU ROGXNODUÕ NDEXO HGLOLU Kataklismik .DWDNOLVPLN GH÷LúHQOHULQ GH÷LúHQOHULQVWDQGDUWPRGHOLQGH\ROGDúELUDQDNRO\ÕOGÕ]Õ\DQLKLGURMHQ\DNDQELU\ÕOGÕ]GÕU <DNODúÕN VLVWHPLQ \|UQJH G|QHPL ELOLQPHNWHGLU G|QHPOHU LOH VDDW DUDVÕQGD GH÷LúPHNWHGLU <ROGDúÕQWD\IÕQÕQELOLQGL÷LVLVWHPOHUGHEX*.\D da M türündendir.<ROGDúÕQELUFFHROGX÷XGXUXPODUGD o, KLGURMHQ\DNDQELUDQDNRO\ÕOGÕ]ÕGÕU'L÷HUGXUXPODUGD|]HOOLNOHVDDWLQDOWÕQGDNLG|QHPOHUHVDKLSRODQODUGD \ROGDú GR÷UXGDQ J|]OHQHPH] YH RQODUÕQ DQDNRO \ÕOGÕ]Õ ROGX÷XQGDQ HPLQ ROXQDPD] <ROGDú , Roche lobunu , GROGXUPXúWXU YHEXQHGHQOH GHEH\D]FFH\H GR÷UX PDGGH DNÕúÕ YDUGÕU0DQ\HWLN DODQÕQ\RNOX÷XQGD GúHQ PDGGH EDú \ÕOGÕ]ÕQ HWUDIÕQGD ELU \Õ÷ÕúPD GLVNL ROXúWXUXU 0DGGH DNÕPÕQÕQ \Õ÷ÕúPD GLVNLQH oDUSWÕ÷Õ \HU “parlak leke” dir. (÷HU JoO ELU PDnyetik alan mevcutsa, alan çizgileri, GúHQ PDGGH\L ELOHúHQLQ PDQ\HWLN XoODNODUÕQD GR÷UX \|QOHQGLULU 'LNLQH KÕ] |OoPOHUL PHYFXW RODQODU DUDVÕQGD ELU LVWLVQD RODUDN (0 &\J , GÕúÕQGDNLVLVWHPOHULQKHSVLQGH EH\D]FFHEDú\ÕOGÕ]ÕVLVWHPLQE\NNWOHOLELOHú enidir. .DWDNOLVPLNGH÷LúHQOHULQ ELUoRNWUYDUGÕU Novalar: ELU oLIW VLVWHPLQ GHMHQHUH EDú \ÕOGÕ]ÕQÕQ VÕFDN ]DUIÕQGD hidrojenin ani RODUDN ELUOHúPHVL +Õ]OÕ \NVHOPHYH\DYDúGúPHOLoRNE\NELUSDWODPDROXU Tekrarlayan novalar: novalardakini andÕUDQ ROJXODUGÕU IDNDW JHQOLNOHU GDKD GúNWU $UGÕúÕN SDWODPDODU DUDVÕQGDNLVUH–\ÕOGÕU Cüce novalar: <Õ÷ÕúDQ PDGGH PLNWDUÕQÕQ DQLGHQ \NVHOPHVLQH ED÷OÕ RODUDN \Õ÷ÕúPD GLVNLQLQ SDUODNOÕ÷ÕQÕQ DQLGHQ\NVHOPHVL&FHQRYDODUVÕNYHNoNSDWODPDO ar gösterirler. 1RYD EHQ]HUOHUL SDWODPD VÕUDVÕQGD FFH QRYDODUD \D GD SDWODPD |QFHVL YH\H VRQUDVÕQGD QRYDODUD EHQ]HUOHU 8;8UVDH0DMDULV\ÕOGÕ]ODUÕ 0DQ\HWLN \Õ÷ÕúDQ \ÕOGÕ]ODU ÕúÕNODUÕ GDLUHVHO XoODúPÕúWÕU 'H÷LúHUHN D\ODU YH\D \ÕOODU VUHQ \NVHN Y e alçak düzeyler gösterirler. .DWDNOLVPLNGH÷LúHQOHULQ yörünge dönemleri <DNODúÕN VLVWHPLQ G|QHPL ELOLQPHNWHGLU G|QHPOHU GDNLND := 6JH LOH VDDW GDNLND DUDVÕQGD n bir tekrarlayan nova ve GK Per, 1.99 gün dönemli bir nova. '|QHP ERúOX÷X \DQL YH VDDW DUDOÕ÷ÕQGD KLo ELU G|QHPLQ J|]OHQHPHPLú GH÷LúLUøNL LVWLVQD ELOLQL\RU 7&RURQDH %RUHDOLV \|UQJHG|QHPL JQ ROD 37 ROPDVÕ YH G|QHP GD÷ÕOÕP H÷ULVLQLQ GDNLNDQÕQ DOWÕQGD NHVNLQ ELU úHNLOGH VRQD HUPHVL ùHNLO GúQGUFGU ùHNLO.DWDNOLVPLNGH÷LúQOHULQ\|UQJHG|QHPOHULQLQKLVWRJUDPÕ5LWWHU +HPG|QHPNHVLQWLVLOLPLWLQLQKHPGHG|QHPERúOX÷XQXQELUJHFHOLNJ|]OHPoHYULPLQLDúPDPDVÕQHGHQL\OH bX|]HOOLNOHU\|UQJHVHOG|QHPOLOL÷LQEHOLUOHQHELOLUOL÷Lterminolojisiyle DoÕNODQDPD] '|QHP GD÷ÕOÕPÕQÕQ NDUDNWHULVWLNOHULQL DoÕNOD\DELOPHN LoLQ J|]OHQHQ DUDOÕNODUGD GH÷HQ VLVWHP KDOLQH JHOHQ bir kaç çiftin ROXúWX÷XQXYHHWNLOHúHQVLVWHPOHULQ\DEXG|QHPDUDOÕNODUÕQDhiç HYULPOHúHPHGLNOHULQL ZAMS kütlelerinin alt limitinin (0.085 M) birazDOWÕQGD bir kütleye sahip, hidrojence-]HQJLQGHMHQHUHELU \ROGDúDNDUúÕOÕN JHOHQG|QHP GDNLNDGÕU 30 GDNLND FLYDUÕQGDNLE|\OHVLQHNoN G|QHPOHULQEXOXQPDPÕúROPDVÕ JHUoH÷L oLIWOHULQ HYULPLnin (kataklismik GH÷LúHQOHU olmadan önce), KLGURMHQ \DQPDVÕ LoLQ JHUHNOL RODQ PLQLPXP NWOHden daha büyük bir kütleye \DOQÕ]FD \D GD oRN KÕ]OÕ HYULPOHúWLNOHULQL NDEXO HWPHN JHUHNPHNWHGLU VDKLS\ROGDú\ÕOGÕ]ÕQJHUHNWL÷LDQODPÕQDJHOLU .WOHDNWDUÕPÕ KDWDNOLVPLN GH÷LúHQOHUGHNL \ROGDú ELOHúHQO er kütle kaybedenlerdir. YÕ÷ÕúPD GLVNLQLQ VÕFDN OHNHQLQ YH WLWUHPHOHULQYDUOÕ÷ÕNWOHND\EÕQÕQGR÷UXGDQNDQÕWODUÕGÕU$\UÕFDFFHQRYDYHQRYDSDWODPDODUÕQÕQJHQHOOLNOH NWOHDNWDUÕPÕQÕQEHOLUWLVLROGX÷XGúQOU*HUoHNWHQGHELUFFHQRYDSDWODPDVÕQÕQPXKWHPHOHQ\ROGDúÕQ NWOH DNWDUPDVÕQGDNL NDUDUVÕ]OÕNODUÕQ \D GD \Õ÷ÕúPD GLVNLQLQ NHQGL OLPLW oHYULP NDUDUVÕ]OÕNODUÕQÕQ ELU VRQXFX RODUDN \Õ÷ÕúPD GLVNLQLQ SDUODPDVÕQÕQ ELU VRQXFX RODUDN RUWD\D oÕNWÕ÷Õ NRQXVXQGDNL NDQÕWODU ROGXNoD JHOLúPLúWLU $NWDUÕODQ .WOHDNWDUÕPKÕ]Õ madde, yROGDúÕQ NDEXO HGLOHQ HYULP durumuyla uyumlu olarak, hidrojence zengindir. ile 10-8.5 M\ÕO-1 DUDVÕQGDGÕU -10.5 .WOH DNWDUÕPÕQÕ NRQWURO HGHQ PHNDQL]PD oHNLPVHO ÕúÕQÕP \D GD PDQ\HWLN IUHQOHPHGLU EN] .HVLP Çekimsel ÕúÕQÕP NDWDNOLVPLN GH÷LúHQOHU LoLQ EDVNÕQ ELU HYULPVHO PHNDQL]PD haline gelebilir. Gözlemler, JUDYLWDV\RQHO ÕúÕQÕPÕQ WHN EDúÕQD NWOH DNWDUÕPÕQÕ NRQWURO HWPH\H her zaman \HWHUOL RODPD\DFD÷ÕQÕ göstermektedir. 2ODVÕ GL÷HU ELU PHNDQL]PD ise \ROGDúWDQ JHOHQ PDQ\HWLN RODUDN oLIWOHúPLú ELU \ÕOGÕ] U]JDUÕQÕQ QHGHQ RODFD÷Õ PDQ\HWLN frenlemedir (bkz. Kesim 18.5.2). ³(QJHOHQPLú PDQ\HWLN IUHQOHPH´ modeli, G|QHPERúOX÷XQXQ]HULQGHELUNDo-9 M\ÕO-1GH÷HULQGHki\NVHNNWOHND\ÕSKÕ]ODUÕQÕve dönem -10 ERúOX÷XQun aOWÕQGDise 10 M\ÕO-1GH÷HULQGHkiGúNNWOHND\ÕSKÕ]ODUÕQÕWDKPLQHWPHNWHGLU 1 – 2 MNWOHOLo|NPúELUELOHúHQLOHMFLYDUÕQGDNLGúNNWOHOLELUELOHúHQGHQROXúQXúG|QHPOHUL VDDW \D GDGDKDNoN RODQ \DNÕQ oLIWVLVWHPOHULQHYULPLoHNLPVHOÕúÕQÕPÕQ VHEHEROGX÷X yörüngeGDUDOPDVÕ 38 VRQXFXQGDRUWD\DoÕNDQNWOHDNWDUÕPÕLOHEHOLUOHQLU.WOHND\ÕSKÕ]ÕNDWDNOLVPLNGH÷LúHQOHUOHX\XPOXRODUDN \DNODúÕN -10 M \ÕO-1 mertebesindedir. dRN NÕVD \|UQJH G|QHPOHULQGH .HOYLQ-Helmholtz zaman öloH÷L oHNLPVHO ÕúÕQÕP ]DPDQ |OoH÷LQL DúWÕ÷Õ LoLQ \ROGDú ÕVÕVDO GHQJHGH GH÷LOGLU %X DúDPDGD \ROGDú GHMHQHUH oldukça 60 – 75 GDNLNDOÕN PLQLPXP ELU yörünge dönemine eULúLOLU %X PLQLPXP G|QHP NDWDNOLVPLN GH÷LúHQOHULoLQ\|UQJHG|QHPLGD÷ÕOÕPH÷ULVLQGHNLNÕVDG|QHPDQLNHVLQWLVLLOHHúWXWXODELOLU :80D6ø67(0/(5 'H÷HQoLIWOHU KHULNLVLGH5RFKHOREXQXWDúPÕú YH VÕ÷ELURUWDN]DUIJHOLúWLUPLúRODQELUELULQHoRN \DNÕQ LNL \ÕOGÕ]GDQROXúXUODU%XNXUDPVDOWDQÕPODPDGDQKDUHNHWOHJ|]OHPVHOVRQXoODUDXODúÕODELOLU - GDPEÕOEHQ]HULúHNLOOHULRQODUÕQoR÷XQXQ|UWHQRODFD÷ÕQDLúDUHWHGHU JHUHN L]GúPVHO DODQÕQ GH÷LúLPLQLQ JHUHNVH \]H\ SDUODNOÕN GH÷LúLPLQLQ NHQDU NDUDUPDVÕ oHNLP Bunlar, ön tür özellikleridir. :80D \ÕOGÕ]ODUÕ oRN \D\JÕQ olup, NDUDUPDVÕ VUHNOL ROPDVÕ QHGHQL\OH WXWXOPDODU DUDVÕQGDNL ÕúÕN GH÷LúLPOHUL VUHNOL ROPDOÕGÕU GH÷HQ oLIWOHU LOH :8 0DMRULV \ÕOGÕ]ODUÕQÕQ NDUDNWHULVWLN JQHúNRPúXOX÷XQGDNLWP|UWHQoLIWOHULQ¶LQL\DGDEWQ)YH*WU\ÕOGÕ]ODUÕQ\DNODúÕNRODUDN¶LQL WHúNL l ederler. WUMa sistemleri için, gözlemsel özelliklerin WPQ VD÷OD\DQ ELU GH÷HQ modeli yapmak oldukça zordur. %D]Õ :80D VLVWHPOHUL QNOHHU ]DPDQ |OoH÷LQGHQ GDKD KÕ]OÕ ELU ]DPDQ |OoH÷LQGH HYULPOHúLUOHU YH ÕVÕVDO WUMa sistHPOHULQLQ\DúODUÕROGXNoDEHOLUVL]ROXSWDKPLQOHU5 107 - 5 109 mektedir. 'H÷HQ VLVWHPOHULQ RULMLQL DQDNRO |QFHVL ELUOHúPH RODUDN veya DoÕVDO PRPHQWXP GHQJHGHQD\UÕOPDPH\GDQDJHOLU \ÕO DUDVÕQGD GH÷Lú ND\EÕ \D da ELOHúHQOHUGHQ ELULQLQ JHQLúOHPHVL QHGHQL\OH GH÷HQ VLVWHPOHU GXUXPXQD HYULPOHúPH RODUDN DoÕNODQDELOLU 'H÷HQ VLVWHPOHULQ VRQX ELOHúHQOHULQ PXKWHPHOHQ RUWDN ELU ]DUI LoHULVLQGH oRN KÕ]OÕ G|QHQ WHN ELU \ÕOGÕ] ROXúWXUDFDNúHNLOGHELUOHúPHOHULRODELOLU Son,ELUD\UÕN\DGD\DUÕ-D\UÕNGXUXPGDRODELOLU Dönemler 0.22 ile 0.62 gQDUDVÕQGDGH÷LúLUWD\IWUOHULLVH)¶GDQ.¶DNDGDUGÕU2UWDODPDNWOHRUDQÕ olup alt limiti 0.07 ve üst limiti 0.87’dir. Toplam kütle 1- 2 M (0.9 M ile 2.3 M DUDVÕQGD FLYDUÕQGDGÕU ,úÕN H÷ULOHUL HúLW GHULQOLNWH PLQLPXPODUD VDKLSWLU ,úÕN H÷ULlerinin analizlerinden, WUMa sistemlerinin ELOHúHQlerLQLQ \DNÕQ VÕFDNOÕNODUD VDKLS ROGXNODUÕ DQODúÕOÕU %XQXQOD ELUOLNWH ELOHúHQOHUGHQ ELULQGH OHNH \D GD OHNHOHULQROXSROPDPDVÕQDED÷OÕRODUDNELOHúHQOHUDUDVÕQGDSDUODNOÕN YH VÕFDNOÕNIDUNOÕOÕNODUÕRUWD\DoÕNDELOLU .XUDPFÕODU DoÕVÕQGDQ HQ |QHPOL |]HOOLN :80D VLVWHPOHULQLQ ROGXNoD GúN NWOHOL ROPDODUÕ YH KLo ELULQGH ELOHúHQOHULQ NWOHOHULQLQ HúLW ROPDPDVÕGÕU Kütle – ÕúÕWPD ED÷ÕQWÕVÕ DOÕúÕOPDGÕNWÕU %D]Õ VLVWHPOHU HYULPOHúPHPLúJ|]NPHNWHGLUOHU Kuramsal yorumlama 6ÕFDNOÕNODUÕQKHPHQKHPHQHúLWROPDVÕQHGHQL\OH L1 R1 = L2 R2 2 (16.15) yazabiliriz, burada L1 ve L2 ELOHúHQOHULQ J|]OHQHQ \]H\ ÕúÕWPDODUÕ YH R1 ve R2 LVH RQODUÕQ HúSRWDQVL\HO \]H\OHULQLQ \DUÕoDSODUÕGÕU 6LVWHP GH÷HQ ROGX÷XQGDQ KHU LNL ELOHúHQ HúLW SRWDQVL\HOH VDKLSWLU EX DúD÷ÕGDNL gibi bir kütle –\DUÕoDSED÷ÕQWÕVÕ\ODLIDGHHGLOHELOLU R1 M 1 = R2 M 2 β . (16.16) Kopal (1978), io5RFKHOREODUÕQGDβ 2 M L1 R1 = 1 = L2 R2 M2 – 2β ≈ ROGX÷XQXEXOPXúWXU Bu da, 2β ≈1 olmDVÕQHGHQL\OH M1 M2 (16.17) – úHNOLQGHELUNWOH ÕúÕWPDED÷ÕQWÕVÕYHULU +DOEXNLJQHúJLELELUDQDNRO\ÕOGÕ]ÕLoLQNWOH ÕúÕWPDED÷ÕQWÕVÕ 39 L1 M 1 = L2 M 2 4 (16.18) úHNOLQGHGLU enlerin merNH]L NRúXOODUÕ, RQODUÕQ GH÷HQ ROPDODUÕ JHUoH÷LQGHQ KDUHNHW HGHUHN normal kütle – ÕúÕWPD Lnuc için daha fazla JHoHUOL RODPD\DFD÷ÕQÕ NDEXO HGHUHN GH÷LúWLULOHPH] Yüzey VÕQÕU NRúXOODUÕQGDNL GH÷LúLNOLNOHU PHUNH]L EDVÕQo YH VÕFDNOÕN ]HULQGH oRN NoN ELU HWNL GR÷XUXU Bu QHGHQOH KHU LNL \ÕOGÕ]ÕQ ÕúÕWPDODUÕQÕ SD\ODúWÕNODUÕ VRQXFXQD YDUÕUÕ] EDú \ÕOGÕ] ∆L RUDQÕQGD ELU HQHUML\L %LOHú ED÷ÕQWÕVÕQÕQ QNOHHU ÕúÕWPD \ROGDúÕQDDNWDUÕUYHE|\OHOLNOH L1nuc − ∆L1 L2 nuc − ∆L2 = M1 M2 (16.19) úHNOLQGHELUGHQJHGXUXPXNXUXOPXúROXU Muhtemelen bu enerji,RUWDN]DUIÕQLo5RFKHOREXQXQ]HULQGH\ÕOGÕ]ODUDUDVÕQGDL\LELUGH÷PHQLQROGX÷XELU yerde üretilmektedir. Ortak zarf muhtemelen tamamen konvektiftir. üzerine keyfi bir ∆L HQHUMLVL HNOHQLUNHQ EDú \ÕOGÕ]ÕQ r. ∆L enerjisi, sistem dengede olacak YH GH÷HQ kalacak úHNLOGH VHoLOLU Bu GúQFHOHUOH PRGHOOHU \DSÕODELOLU IDNDW =$06 modelleri için yöntem geçersizdir. Gerçekte, WUMA sistemleri için kütle – ÕúÕWPD ED÷ÕQWÕVÕ β ≈1 üssünü gerektirirken, ZAMS modelleri için, 2β = 4 üssü gereklidir. Bu ise ancak M1 = M1NRúXOX\ODVD÷ODQÕUDQFDNEXGXUXPJ|]OHPOHULOHoHOLúLU.XLSHUSDUDGRNVX 'H÷HQ oLIWOHULQ oR÷X VD\ÕVDO PRGHOL ROJXVDOGÕU \ROGDú ÕúÕWPDVÕ D\QÕ RUDQGD D]DOWÕOÕ sistemlerin, ELU ÕVÕVDO ]DPDQ |OoH÷LQGH HYULPOHúPLú ROGXNODUÕ ve dengede olmaGÕNODUÕ LOHUL VUOPúWU %LU ÕVÕVDO ]DPDQ |OoH÷LQGHki HYULPOHúPHnin GH÷PHQLQ RUWDGDQ NDONPDVÕQD neden olaca÷Õ DQODúÕOPDNWDGÕU %X JHUoH÷L DoÕNODPDN LoLQ oHYULPVHO GDYUDQÕúODU |QHUHQ PRGHOOHU “ÕVÕVDl durulma” PRGHOOHUL RODUDN DGODQGÕUÕOÕUODU 2OD\ODU ]LQFLUL ùHNLO YH ùHNLO ¶WH J|VWHULOPLúWLU %LU oRN WDUWÕúPDGD GH÷HQ 6HQHU\RúXúHNLOGHGLU ùHNLO ¶GHNL NHVLNOL NDOÕQ oL]JL GH÷PH NRúXOXQX J|VWHUPHNWHGLU 'LQDPLN GHQJH GXUXPXQGD KHU LNL \ÕOGÕ] GD EX oL]JL ]HULQGH EXOXQPDOÕGÕU .HVLNOL LQFH oL]JL WHN \ÕOGÕ]ODU LoLQ =$06 NRúXOXQX göstermektedir. 3QRNWDVÕQGDNL EDú \ÕOGÕ]ÕQ, ÕVÕVDOYHGLQDPLNGHQJHGH ROGX÷XQXYDUVD\DOÕP GLQDPLNGHQJH \ROGDúÕ6′¶GHROPD\D]RUODU2ÕVÕVDOGHQJHGHROPDGÕ÷ÕQGDQ6¶GHNLGHQJH\HGR÷UXJHQLúOHPH\HoDOÕúÕU ùHNLO ,VÕVDO GXUXOPD PRGHOL .DOÕQ NHVLNOL oL]JL GH÷PH NRúXOXQX WHPVLO HWPHNWHGLU øQFH NHVLNOL oL]JL WHN \ÕOGÕ]ODU LoLQ =$06 NRúXOXQXJ|VWHUPHNWHGLU%Dú \ÕOGÕ] ÕVÕVDOYH 3FLQVLQGHQ GLQDPLN GHQJHGH EDúOÕ\RU GLQDPLNGHQJH \ROGDúÕ S′¶GHROPD\D]RUODU2ÕVÕVDOGHQJHGHROPDGÕ÷ÕQGDQÕVÕVDOGHQJH\HXODúPDNLoLQ6¶\HGR÷UXJHQLúOHU2UWD\DoÕNDQKDILI JHQLúOHPHEDú\ÕOGÕ]DGR÷UXPDGGHDNWDUÕPÕQDQHGHQROXU%LOHúHQOHUDUDVÕQGDNLX]DNOÕNDUWDUYHGH÷PHVRQDHUHU.WOH vH HQHUML DNWDUÕPÕ GXUXU <ROGDú E]OU EDú \ÕOGÕ] JHQLúOHU YH EDú \ÕOGÕ]Õ =$06 NRQXPXQD XODúPDVÕQGDQ |QFH 5/2) EDúODU 'HYDPHGHPNWOH DNWDUÕPÕ E\NNWOHOL EDú\ÕOGÕ]GDQNoNNWOHOL \ROGDúDELOHúHQOHUDUDVÕQPGDNL X]DNOÕ÷ÕQ D]DOPDVÕQDYHGH÷PHHYUHVLQLQ \HQLGHQROXúPDVÕQDQHGHQROXU'H÷PH \HQLGHQROXúXQFD\ROGDúÕVÕVDOGHQJH \DUÕoDSÕQD XODúÕQFD\DNDGDUJHQLúOHUNWOHDNWDUÕPÕWHUVLQHG|QHUYHoHYULP\HQLGHQEDúODPÕúROXU 40 ùHNLO:80D\ÕOGÕ]ODUÕLoLQÕVÕVDOGXUXOPDPRGHOLDoÕNODPDPHWLQGHYHULOPLúWLU +DILIoHJHQLúOHPHQHGHQL\OH EDú \ÕOGÕ]DGR÷UXNWOHDNWDUÕPÕEDúODU .RUXQXPOX NWOHDNWDUÕPÕ durumunda, NWOHDNWDUÕPÕ NoN NWOHOLGHQE\N NWOHOL\H ROGX÷XQGDQ ELOHúHQOHU DUDVÕQGDNLX]DNOÕN E\U YH GH÷PH sona erer. Kütle ve eneUML DNWDUÕPÕ GXUXU <ROGDú E]OU YH \DUÕoDSÕ =$06 GH÷HULQH \DNODúÕU EDú \ÕOGÕ] E\U YH =$06 NRQXPXQD \HUOHúPHGHQ |QFH 5/2) \HQLGHQ EDúODU 'HYDP HGHQ NWOH DNWDUÕPÕ EDú \ÕOGÕ]ÕGDQ \ROGDúD \DQL E\N NWOHOLGHQ NoN NWOHOL\H ELOHúHQOHU DUDVÕQGDNL yeni bir GH÷PH GXUXPX ROXúPDVÕQD yol açar. a\UÕNOÕ÷ÕQ NoOPHVLQH YH durumunda, kütle .RQYHNWLI ]DUIOÕ NoN NWOHOL ELU \ROGDú \Õ÷ÕúPDVÕ \DUÕoDSÕ D]DOWÕFÕ ELU HWNL\H VDKLS RODFDN YH yeni bir GH÷PH GXUXPXQXQ ROXúPDVÕ GÕú NÕVÕPODUÕ mELUúHNLOGHRODFDNWÕU'H÷PH\HQLGHQNXUXOXQFD ÕúÕQÕPVDORODQELU\ROGDúGXUXPXQGDNLQHJ|UHGDKD\DYDú \ROGDú ÕVÕVDO GHQJH \DUÕoDSÕQD XODúÕQFD\D NDGDU JHQLúOHU NWOH DNWDUÕPÕ WHUVLQH G|QHU YH ROJXODU oHYULPL en, çevrimin D\UÕN HYUH \D GD ]D\ÕI süresi, gözlemlerin aksine çok uzundur. .WOH DNWDUÕPÕ PXKWHPHOHQ NRUXQXPOX GH÷LOGLU YH DoÕVDO PRPHQWXPND\ÕSODUÕLoLQbelirtiler YDUGÕU .WOHND\EÕELOHúHQOHUDUDVÕQGDGDKDNoND\UÕNOÕ÷DQHGHQROXUYH böyleFH GDKD JoO YH GDKD X]XQ VUHOL GH÷PH HYUHVL NXUXODELOLU ADoÕVDO PRPHQWXP ND\EÕ LoLQ HQ RODVÕ mekanizma manyetik frenlemedir. \HQLGHQ EDúODU %XQXQ L\L oDOÕúDQ ELU PRGHO RODUDN J|UQPHVLQH UD÷P GH÷PH Manyetik frenlemenin bir sonucX RODUDN WHN \ÕOGÕ]ODU GDKD \DYDú G|QHUOHU Halbu ki, çekimsel sürtünmenin, rüzgar WDUDIÕQGDQ WDúÕQDQ DoÕVDO PRPHQWXPX \|UQJH DoÕVDO PRPHQWXPXQGDQ DOPDVÕQÕ VD÷ODPDVÕ nedeniyle, çift VLVWHPOHUGDKDKÕ]OÕG|QHUOHU%XVUHFLQ]DPDQ|OoH÷LELOLQPHPHNWHGLU Bir çift sistemELUWHN\ÕOGÕ]ÕQNLQGen GDKD E\N ELU WRSODP DoÕVDO PRPHQWXPa sahiptir ve bunun sonucu olarak da bir çift sistemin dönme 5]JDUOD NWOH ND\EÕ YH PDQ\HWLN DODQÕQ ELUOHúLPL PDQ\HWLN IUHQOHPH\H \RO DoDU +XDQJ KÕ]ODQPDVÕWHN\ÕOGÕ]ÕQG|QPH\DYDúODPDVÕQGDQGDKD\DYDúROPDOÕGÕU'L÷HUWDUDIWDQGDKDE\NG|QPHKÕ]Õ nedeniyle manyetik aktivite de daha büyüktür. *QHúLQ GDYUDQÕúÕQGDQ HNVWUDSRODV\RQ \DSDUVDN JQQ DOWÕQGDNLG|QHPOHUHVDKLSoLIWOHULQG|QPHKÕ]ODQPDVUHVL 10 \ÕOGDQNÕVDROPDOÕGÕU - øOHULHYULPDúDPDVÕQGDNLoLIWOHUGúNNWOHOL; ÕúÕQoLIWOHULSDWOD\ÕFÕODUJDODNWLNúLúLPND\QDNODUÕYHNUHVHO NPHND\QDNODUÕ\DNÕQoLIWOHULQILQDODúDPDODUÕ]HULQHRODQ%|OP¶GHLQFHOHQHFHNWLU 41 BÖLÜM 17 %h<h..h7/(/ø<$.,1dø)7/(5ø1(95ø0ø *LULú %\N NWOHOL oLIWOHU LOH EDú \ÕOGÕ]ÕQÕQ EDúODQJÕo =$06 NWOHVL 0 ¶GHQ E\N RODQ oLIWOHUL \DQL \ÕOGÕ] Bu etki nedeniyle baúODQJÕoWDNL NRQYHNWLI oHNLUGH÷LQ NDWPDQODUÕ \]H\GH J|UQUOHU YH EX QHGHQOH GH DWPRVIHULN KLGURMHQ EROOX÷X GúHU Büyük U]JDUODUÕ\OD NWOH ND\EHGHQ E\N NWOHOL \ÕOGÕ]ODUÕ DQOÕ\RUX] NWOHOLOHU JLEL NoN NWOHOL \ÕOGÕ]ODU LoLQ GH NWOH DNWDUÕPÕ PHUNH]L KLGURMHQ \DQPDVÕ LOH KHO\XP \DQPDVÕ VÕUDVÕQGD PH\GDQD JHOLU Bü\N NWOHOL \ÕOGÕ]ODU LoLQ U]JDUOD NWOH ND\EÕ \|UQJH |÷HOHULQLQ GH÷LúPHVLQH neden olur (bkz. denklem 15.34). .RQYHNWLI E|OJHQLQ VÕQÕUÕQÕ EHOLUOHPHN DPDFÕ\OD 6FKZDU]VFKLOG NULWHULQL X\JXODGÕ÷ÕPÕ]GD G|QHP GD÷ÕOÕPÕQÕQ GLNNDWH DOÕQPDVÕ GXUXPXQ da, homojen bir % YH & HYUHOHULQLQ JHQLú ELU \|UQJH G|QHPL DUDOÕ÷ÕQÕ NDSVDGÕNODUÕ YH RQODUÕQ HYULPLQ HQ \D\JÕQ WUOHUL ROG÷X RUWD\D oÕNDU $ WUQH J|UH HYULPOHúHQ VLVWHPOHULQ kesri küçüktür; 10 M’den NoN EDú \ÕOGÕ] NWOHOHUL LoLQ RUDQ ¶GDQ GúNWU Büyük kütleler için bu oran daha büyüktür; O-WU \ÕOGÕ]ODU LoLQ RUDQ ¶GHQ E\NWU $QFDN H÷HU PHUNH]GHQ IÕUODWPD GLNNDWH DOÕQÕUVD EX GXUXPGD |]HOOLNOH GH E\N NWOHOL \ÕOGÕ]ODU LoLQ $ GXUXPX GDKD |QHPOL KDOH JHOLU. Büyük NWOHOHU LoLQ \DOQÕ]FD $ GXUXPX X\JXQdur ve en büyük kütleler için Roche loEX WDúPDVÕ ELOH PH\GDQD JHOPH]EXVRQGXUXPGD\DQLHQE\NNWOHOL\ÕOGÕ]ODUGXUXPXQGD\ÕOGÕ]GDKD|QFHGHQ\ÕOGÕ]U]JDUODUÕ\OD , RODQ\NVHNGHUHFHGHQNWOHND\EÕQHGHQL\OH KLGURMHQ\DQPDVÕQÕQHUNHQHYUHOHULQGHVRODGR÷UXKDUHNHWHWPLú olur. % YH & GXUXPODUÕQGD EDú \ÕOGÕ]ÕQ HYULPL NWOH DNWDUÕPÕQÕQ NRUXQXPOX ROXS ROPDPDVÕQGDQ oRN ID]OD etkilenmez. dR÷X GXUXPGD EDú \ÕOGÕ] 5RFK OREXQGDQ WDúPD\D EDúODU EDúODPD] JHULGH NDODQ KLGURMHQFH ]HQJLQ]DUIÕQoR÷X\ÕOGÕ]ÕQEDúODQJÕoWRSODPNWOHVLQLQ¶LQHXODúÕUdenklem (15.23) ile verilen dinamik (Kelvin – HelmholW]]DPDQ|OoH÷LQGHND\EHGLOLU t KH = 3 10 7 M2 RL (17.1) \ÕO , pratik olarak, JHUL\H \DOQÕ]FD EDú EXUDGD WP QLFHOLNOHU JQHú ELULPOHULQGHGLU .WOH DNWDUÕPÕQGDQ VRQUD \ÕOGÕ]ÕQ oHNLUGH÷L NDOÕU %X NDOÕQWÕ HVDV RODUDN KHO\XP YH ELU PLNWDU GD D÷ÕU HOHPHQWOHUGHQ LEDUHWWLU , evrimLQ VRQUDNL DúDPDODUÕ KHO\XP oHNLUGH÷LQ HYULPL LOH +HO\XPXQ EX úHNLOGH EDVNÕQ ROPDVÕ QHGHQL\OH belirlenebilir. %\NNWOHOL\DNÕQoLIWOHULQWUOHUL 17.2.1. O-TÜRÜ YILDIZLAR, KÜTLELER VE YARIÇAPLAR 1. Kütleler <ÕOGÕ]ODUÕQNWOHOHUL\DOQÕ]FDoGXUXPGDGR÷UXGDQEHOLUOHQHELOLU - <|UQJHOHULELOLQHQYHWULJRQRPHWULNÕUDNVÕPODUÕPHYFXWRODQJ|UVHOoLIWOHUGXUXUP u, *|UVHO ELU \|UQJH WDKPLQL \DSÕODELOHQ YH KHU LNL ELOHúHQLQ GLNLQH KÕ]ODUÕQÕQ ELOLQGL÷L J|UVHO oLIWOHU durumu, - dLIWoL]JLOL|UWHQoLIWOHUGHÕúÕNYHGLNLQHKÕ]H÷ULOHULQLQDQDOL]L O-WU \ÕOGÕ]ODU LoLQ X]DNOÕNODUÕ oRN E\N ROGX÷XQGDQ J|UVHO \|UQJH belirlenemez. Kütleleri GR÷UXGDQ EXODELOHFH÷LPL] WHN \|QWHP oLIW oL]JLOL WD\IVDO |UWHQ oLIWOHU GXUXPXGXU Örten olmayan çiftler durumunda \DOQÕ]FD PLQLPXP NWOH GH÷HUOHUL ( M sin 3 i) ve D\UÕFD H÷HU \ROGDúÕQ WD\IÕ J|UQP\RUVD EX GXUXPGD GD yaOQÕ]FDNWOHIRQNVL\RQX f ( M ) = ( M 2 sin i ) 3 /( M 1 + M 2 ) 2 elde edilebilir. (17.2) 42 <DUÕoDSODU <DUÕoDSODUÕ EHOLUOHPHQLQ WHPHO \ROX ELU |UWHQ oLIWLQ KHU LNL ELOHúHQLQLQ R1/a ve R2/a ile verilen kesirsel \DUÕoDSODUÕQÕNXOODQPDNWÕU2QODUÕúÕNH÷ULOHULQLQDQDOL]LQGHQEXOXQDELOLUOHU(÷HULNLWD\IGDJ|UOHELOL\RUYH ölçülebiliyorsa, aGH÷HULYHEXQGDQGDGR÷UXVDOoDSODUGR÷UXGDQKHVDSODQDELOLU Garmany ve ark. (1980), bilinen tüm O-WU\ÕOGÕ]ODUÕQELUOLVWHVLQLYHUPLúOHUGLU2-WU\ÕOGÕ]ODULoin, kütleler LOH \DUÕoDSODUÕQ GR÷UXGDQ KHVDSODQDELOGL÷L GXUXPODUÕQ VD\ÕVÕ oRN GúNWU g]HWOH 2-WU \ÕOGÕ]ODUÕQ kütlelerinin 20 M’den büyük ve üst limitinin 60 – 100 MROGX÷XV|\OHQHELOLU(QE\NNWOHOHL2-türü çift +' VLVWHPL 3ODVNHWW \ÕOGÕ]Õ ROXS NWOH IRQNVL\RQX f(M) = 12.40 M ¶GLU %XQXQOD ELUOLNWH \ROGDúÕQ WD\IÕQÕQ PXKWHPHOHQ HWUDIÕQGDNL JD] DNÕPÕQGDQ HWNLOHQPLú ROPDVÕ QHGHQL\OH NWOH IRQNVL\RQXQXQ EX GH÷HULQLQ\RUXPODQPDVÕVRQGHUHFH]RUGXU'H÷LúLNoDOÕúPDODUGDQEDú\ÕOGÕ]LoLQ de 60 – 90 MDUDVÕQGDNLNWOHWDKPLQOHULHOGHHGLOPLúWLU – 100 MYH\ROGDúLoLQ Çizelge 17.1. O-WUWD\IVDOoLIWOHULQ\|UQJHHOHPDQODUÕ\ODNWOHYH\DUÕoDSGH÷HUOHUL HD veya BD 1337 Tayf Türü O9.5 P (gün) 3.5 12323 19820 25638/9 35921 36486 37041 37043 47129 48099 57060 O9 O9 O9.5 O9.5 O9.5 O9.0 O8.5 O7.5 O6.5 O8.5 3.1 3.4 2.7 4.0 5.7 21.0 29.1 14.4 3.1 4.4 57061 75759 93205 93206 QZ Car 93403 100213 135240 149404 150136 151564 E326331 152218 152219 152248 155775 159176 165052 166734 167771 175514 191201 193611 E228766 E228854 +40°4220 198846 199579 206267 209481 215835 O9.0 O9 O3 O9 O9 O6 O7-8 O9 O9 O5 O9.5 O8 O9 O9.5 O7 O9.5 O7 O7 O7 O8 O8.0 B0.3 B0V O7 O6.5 O7 O9.8V O6.5 O6 O8.5 O5.5 154.9 33.3 6.1 20.7 6.0 15.1 1.39 3.9 9.8 2.7 4.6 5.6 5.4 4.2 6.0 7.0 3.4 6.1 34.5 4.0 1.6 8.33 2.88 10.7 1.9 6.6 3.00 48.6 3.7 3.1 2.1 QXPDUDVÕ M1sin3i M2sin3i 10.1 12.9 18.9 9.2 21.6 8.1 f (M) M1 M2 R1 R2 Ref. 19 18.3 23 22.5 13.9 11.5 8.9 9.5 1 2 21.7 8.4 13.0 10.0 3 40.5 58* 23.9 64* 19.1 9.0 8 4 19 23 23 30 18.6 12.3 14.8 5 6 63.3 24.5 10.1 6.4 8 52.5 23.8 31.0 15.8 17.1 7.3 11.6 6.2 8 3 34.3 36.8 12.5 13.7 8 40.2 39.6 18.0 19.7 8 28 19.1 22.1 46.4 26.9 10.7 17.5 22.5 18.6 19.0 9.6 11.4 11.0 16.2 9.2 3.5 9.8 11.3 7 8 7.5 8 3 21.8 23.0 10.7 11.6 8 0.004 0.382 0.605 1.530 15.9 9.4 12.400 0.63 20 0.38 24 17.8 39 14.3 15 1.690 0.200 10.500 5.2 23.5 3.4 15.8 1.6 14.8 2.7 8.2 1.590 0.102 0.412 13.4 10.7 24.4 22.5 10.8 2.5 28 2.7 11.4 2.2 28 2.3 13.9 14.2 34 37.3 31 16.2 13.0 14.4 23 32.7 9 16.9 0.689 0.556 43.9 0.374 18.3 6.2 23.4 6.4 2.9 19.1 Referanslar: 1.Wood (1963); 2. Hutchings and Hill (1987); 3. Popper (1980); 4. Hutchings and Cowley (1976); 5. Sahade (1959); 6. Hutchings (1977); 7. Vitrichenko (1971); 8. Doom and de Loore (1984). * 100 M ve 90 M’lik kütle GH÷HUOHUiGHUHI¶GHQDOÕQPÕúWÕU 43 Çizelge 17.2. Conti (1975)’e göre, O-WU\ÕOGÕ]ODUÕQNWOHYH\DUÕoDSODUÕ Tayf Türü 03 04 05 05.5 06 06.5 M/ M ZAMS 120 90 60 45 37 30 R/ R V 14.5 13.5 11.8 11.0 10.2 9.6 R/ R If 19.1 20.0 20.9 20.9 21.9 21.9 M/ M ZAMS 28 25 23 21 19 18 Tayf Türü 07 07.5 08 08.5 09 09.5 R/ R V 8.7 8.3 8.3 7.9 7.8 7.8 R/ R If 22.9 22.9 23.4 24.6 24.6 24.0 O-WU \ÕOGÕ]ODU LoLQ DoÕVDO oDSODU 8QGHUKLOO YH DUN 8QGHUKLOO YH +DQEXU\ %URZQ YH DUN WDUDIÕQGDQ HOGH HGLOPLúWLU <|UQJH HOHPDQODUÕ ELOLQHQ 2-WU WD\IVDO oLIWOHU LoLQ NWOH YH \DUÕoDS GH÷HUOHUL dL]HOJH ¶GH YHULOPLúWLU <DUÕoDSODUÕQ GR÷UXGDQ |OoPOHUL RUWDODPDVÕ 5 olan ve 5 – 20 R DUDVÕQGD GH÷LúHQ \DUÕoDS GH÷HUOHUL YHUPHNWHGLU 'H÷LúLN WD\I WU YH ÕúÕWPD VÕQÕIÕQGDQ 2-WU \ÕOGÕ]ODU LoLQ &RQWL¶GHQDOÕQDQNWOHYH \DUÕoDSGH÷HUOHULdL]HOJH¶GHYHULOPLúWLU dHúLWOLÕúÕWPDVÕQÕIODUÕQGDQ2WU\ÕOGÕ]ODUÕQ\DUÕoDSODUÕdL]HOJH¶WHYHULOPLúWLU Çizelge 17.3. O-WU\ÕOGÕ]ODULoLQ8QGHUKLOOYHDUNYH8QGHUKLOOWDUDIÕQGDQ\DSÕODQ55 tahminleri Tayf Türü O9.5 O9 O8.5 O8 O6.5 O6 O5 O4 O3 V 7.4 8.6 III II 10.1 9.2 23.8 30.2 15.9 16.5 16.2 17.0 If 18.3 19.8 Ia 36.9 9.5 12.5 11.9 11.7 20.3 19.8 3. O-WU\ÕOGÕ]ODUGDoLIWOHULQVÕNOÕ÷Õ O-WU \ÕOGÕ]ODUÕQ \DNODúÕN ¶Õ ± 7) oLIW VLVWHPGLU YH NWOH RUDQODUÕ oR÷XQOXNOD ¶WHQ E\NWU Bu bulgu, \NVHN D\ÕUPDOÕ WD\IODUÕQÕQ DOÕQPDVÕQD RODQDN VD÷OD\DFDN RUDQGD SDUODN RODQ 67 O-türü yÕOGÕ]ÕQ oLIW ROPD VÕNOÕ÷ÕQÕ LQFHOH\HQ *DUPDQ\ YH DUN WDUDIÕQGDQ EXOXQPXúWXU Muhtemelen, örnek içerisinde EHOLUOHQHPHPLú RODUDN NDOan çiftler ancak bir kaç tanedir. Wolf – 5D\HW \ÕOGÕ]ODUÕQÕQ oLIW ROPD VÕNOÕ÷Õ GD 2türü sistemlerinkine benzer olup FLYDUÕQGDGÕU olan çift sistem yoktur. dR÷X VLVWHP \DNODúÕN RODUDN LOH güQ DUDVÕQGDNL G|QHPOHUH VDKLSWLU oRN D] VD\ÕGD VLVWHP – 100 gün DUDVÕQGD G|QHPOHUH VDKLSWLU Kütle oranlarÕ ELU FLYDUÕQGD maksimuma sahiptir ve bu durum muhtemelen ROXúXP PHNDQL]PDVÕ\OD DoÕNODQDELOLU %LOHúHQOHUL ROGXNoD IDUNOÕ NWOHOHUH VDKLS 3DUoDODQDUDN ROXúDQ gözükmektedir. VLVWHPOHUGH VLVWHPOHUGH ELOHúHQOHULQ NDEDFD HúLW NWOHOL ROPDVÕQÕ EHNOHPHN 0XKWHPHOHQ HúLW ROPD\DQ NWOHOHUH VDKLS ELOHúHQOHUH J|WUHQ PHNDQ oDOÕúPDPDNWDGÕU J|VWHUPHNWHGLU|UQHNGD÷ÕOÕPÕ ùHNLO PHYFXW |UQHNOHU LoLQ NWOH RUDQÕ DNOD \DWNÕQ izmalar, büyük kütleli YH G|QHP GD÷ÕOÕPÕQÕ PJQHNVLNROGX÷XQGDQWDPDPODQPD\ÕEHNOHPHNWHGLU q = 0.8 – FLYDUÕQGD PDNVLPXP \DSQ ELU q q-GD÷ÕOÕPÕQÕQ PDNVLPXP Abt ve Levy (1978)’e göre, tüm dönemler dikkate .ÕVD G|QHPOL GL÷HU WD\I WUQGHQ oLIWOHU GH \DNODúÕN RODUDN GD÷ÕOÕPÕQD VDKLSOHUGLU ùHNLOGHQ J|UOHFH÷L ]HUH GDKD X]XQ G|QHPOL VLVWHPOHUGH yerinin küçük q GH÷HUOHULQH GR÷UX ND\PD H÷LOLPL YDUGÕU -0.25 DOÕQGÕ÷ÕQGDWD\IVDOoLIWOHUq EHQ]HULELUIUHNDQVGD÷ÕOÕPÕQDVDKLSWLUEN]ùHNLO +LGURMHQ \DQPDVÕ VUHVLQFH NWOHOL oLIWOHULQ KHU LNL ELOHúHQL GH U]JDUODU QHGHQL\OH NWOH ND\EHGHUOHU NWOH ND\EÕ ÕúÕWPD YH GROD\ÕVÕ\OH NWOH LOH LOLúNLOL ROGX÷XQGDQ HQ E\N NWOH ND\EÕ EDúODQJÕoWD HQ E\N NWOHOL RODQELOHúHQGHROXU6RQXoRODUDND\UÕNHYUHVUHVLQFHNWOHRUDQÕELUGH÷HULQHGR÷UXGH÷LúLU2 -türü çiftler 44 ùHNLO (YULPOHúPHPLú NWOHOL \DNÕQ oLIWOHULQ NWOH RUDQÕ GD÷ÕOÕPÕ NÕVD G|QHPOL VLVWHPOHU *DUPDQ\ &RQWL YH 0DVVH\¶GHQDOÕQPD.ÕVDYHX]XQG|QHPOLOHULQWRSOXFDGD÷ÕOÕPÕ$EWYH/HY\¶WDUDIÕQGDQYHULOPLúWLU HYULPOHULQHELUFLYDUÕQGDNLNWOHRUDQODUÕ\ODEDúODGÕNODUÕQGDQ –GDKD|QFHGHEHOLUWWL÷LPL]LJLELEXRUDQ\ÕOGÕ] - U]JDUODUÕ\OD GDKD GD JoOHQHQ ELU NDUDNWHULVWLNWLU KHU LNL \ÕOGÕ] GD \DNODúÕN RODUDN D\QÕ WDULKoH\H VDKLSWLU - \DQLELOHúHQOHUDQDNROGDQQHUHGH\VHSHú SHúHHYULPOHúLUOHU%XLVH; ÕúÕQoLIWOHULQLQHYULPL LoLQVRQGHUHFH önemli sonuçlara sahiptir. .WOHOL \ÕOGÕ]ODU KLGURMHQL &12 oO oHYULPL LOH KHO\XPD G|QúWUUOHU hoO &12 oHYULPL GHQJH\H larda meydana gelirler. H÷LOLPOLGLU \DQL oHYULPGHNL WP UHDNVL\RQODU D\QÕ KÕ] .WOHOL \ÕOGÕ]ÕQ LoLQGH EX GHQJH\H ELU NDo RQELQ \ÕOGD \DQL QNOHHU ]DPDQ |OoHNOHULQLQ oRN NoN ELU NHVULQGH XODúÕOÕU 'HQJH NXUXOGX÷XQGD oR÷X &12 HOHPHQWOHUL 14 1¶\H G|QúWUOU ú|\OH NL Lo QNOHHU \DQPD E|OJHOHULQGHNL 1 EROOX÷XNR]PLNEROOX÷XQ\DNODúÕNNDWÕLNHQ&LVHNDWFLYDUÕQGDELUEROOXNHNVLNOL÷LJ|VWHULU 8 helyum 12 Üçlü α LúOHPOHUL o +H oHNLUGH÷LQL, bir & SDUoDFÕ÷ÕQD YH LNLQFLO α−\DNDODPD LúOHPOHUL GH \DQPDVÕ EDúODU C’u, O’e ve O’niQ ELU NÕVPÕQÕ GD Ne ve Mg’D G|QúWUU dHNLUGHNWH KLGURMHQ \DQPDVÕ VRQXQGD \ÕOGÕ] ELU Wolf -5D\HW \ÕOGÕ]ÕQÕQ, |QFHELU:1 \ÕOGÕ]ÕQÕQ VRQUDGDELU:& \ÕOGÕ]ÕQÕQ kimyasal kompozisyonuna sahip olur. dHNLUGHNWHKLGURMHQ \DQPDVÕ VRQXQGD PHUNH]L VÕFDNOÕN .¶QLQ]HULQH oÕNDUYH PHUNH]LNÕVÕPGD 17.2.2. WOLF – RAYET YILDIZLARI Wolf – 5D\HW \ÕOGÕ]ODUÕQÕQ \DNODúÕN \DUÕVÕ \DNÕQ çift sistemlere aittir ve bunODUÕQGD KHPHQ KHPHQ ¶X ELU O-WU \ÕOGÕ] LoHULU O-WU ELOHúHQOL :ROI – 5D\HW \ÕOGÕ]ODUÕQÕQ E\N NÕVPÕ oLIW oL]JLOL oLIWOHUGLU (SB2) böylece her ikL ELOHúHQLQ de GLNLQH KÕ] GH÷LúLPOHUL |OoOHELOPHNWHGLU Bununla birlikte, :5 ELOHúHQLQGHNL VDOPD oL]JLOHULQLQ JHQLúOHPHVL YH EXQXQ GD \|UQJH o|]POHPHOHULQGH -30’a varan belirsizliklere yol DoPDVÕ QHGHQL\OH oR÷X GXUXPGD WD\IVDO \|UQJHQLQ EHOLUOHQPHVL RODQDNVÕ]GÕU dLIW oL]JLOL :5 \ÕOGÕ]ODUÕQÕQ ölçülen parametreleri ÇizelgH¶WHYHULOPLúWLU Dönemler, O-WUoLIWOHUGHROGX÷XJLELoR÷XQOXNODJQOHUPHUWHEHVLQGHGLUMsin3iGH÷HUL:5NWOHOHULQLQ10 – 20 MFLYDUÕQGDROGX÷XQDLúDUHWHGHU <|UQJHLQLNOL÷L:5oLIWOHULQLQVDGHFHVÕQÕUOÕELUNÕVPÕLoLQ \DÕúÕN H÷ULVLQGHQ \D GD SRODULPHWULGHQ HOGH HGLOHELOPLú YH ELOHúHQOHULQ NWOHOHUL EHOLUOHQHELOPLúWLU Elde edilen NWOHOHU dL]HOJH ¶WH YHULOPLúWLU :5 \ÕOGÕ]ODUÕQÕQ NWOHOHUL - 5 M ’den, 40 - 50 M ¶H \D\ÕOÕUNHQ RUWDODPD NWOH:1 \ÕOGÕ]ODUÕLoLQ M , WC türleri için de 13.5 M ’dir. 2UWDODPD NWOHRUDQÕ :52% :1YH:&WUOHULLoLQVÕUDVÕ\ODYH¶GLU Tek çizgili ve oldukca küçük kütle fonksiyonlu f ( M ) = ( M 2 sin i ) 3 /( M 1 + M 2 ) 2 < 0.3 (17.3) 45 bir oRN :5 \ÕOGÕ]Õ EHOLUOHQPLúWLU YH EX GXUXP RQODUÕQ, GúN NWOHOL ELOHúHQOHUH VDKLS ROGX÷XQD LúDUHW HGHr. Çizelge 17.5’de, bu tür sistemlerin dönem, kütle ve gökada düzlemine olan z X]DNOÕNODUÕQD LOLúNLQ YHULOHU o OLVWHOHQPLúWLU YöUQJH LQLNOL÷Lnin bilinmHGL÷L GXUXPODUGD 7 ’lik bir RUWDODPD GH÷HU ve görünmeyen ikinci ELOHúHQLoLQGHM ¶OLNELUNWOHNDEXOHGLOPLúWLU Çizelge 17.4. 2%ELOHúHQOL:ROI-5D\HW\ÕOGÕ]ODUÕQÕQNWOHOHUL +'øVLP Tayf Türü Dönem E320102 HD90657 HD94546 HD190918 CX Cep HD193576(a) HD193077 HD193928 HD211853 (GP Cep) E311884 HD92740 HD186943 HD197406 HD214419(b) CD-45° AS422 22 HD62910 HD63099 HD94305 HD113904(c) HD97152 HD193793 HD152270 HD68273 HD137603 HD168206(d) WN3+O5-7 WN4+04-6 WN4+O7 WN4.5+O9.5Ia WN5+O8V WN5+O6 WN6+c?(ya da B ?) WN6 WN6+O (O+O)(ecl) WN6+O5 WN7+abs. WN4+O9.5V WN7 WN7+O WN7 WNC WN6+WC?? WC5+O7 WC+O6-8 WC6+O9.5/B0I WC7+O9.5-BOI WC7+O4.5 WC7+O5-8 WC8+O9I(9HO WC5+BOIa WC8+O8-9III-V 8.83? 8.255 4.831 112.8 2.1269 4.2124 2.324 21.64 6.688 6.34 80.35 9.55 4.317 1.641 23.9 22? 85.37 14.7 18.82 18.431 7.886 7.9y 8.893 78.50 26.9 29.712 'Õú (÷LP MWR MOB >8 61±5(ecl) 46 15 >50 78±1 ----78±1 >5.5 12±2 (7) (15) 5-12 10 >20-80 (q=0.55) (14) 97 24±4 (17) (35) 12-2 26 >10-60 0 0.64 67-90 76.9 0.1 0 0 ----0 67±4 65±1 ------(55) ----43±3 >9 35±8 80±7 <20. 76±4 43±6 >48 16 (60) 31±1 ------(10) >15 --11±3 >17 7(+12,-3) 19(+7,-2) (>5) (12±1) 51±15 (q=2?) (35) (12.4) 2 ------(35) >32 --18±5 140 18(+34,-7) 35(+13,-3) (>27) 24±1 merkezlik 0 0.04 0. 0.43 0 0 0 --0 DoÕVÕ 0 0 0.7 0 0.4 0 0 (26) WR 21 31 133 151 139 138 141 153 47 22 127 148 155 145 8 9 30 48 42 79 11 70 113 Referanslar: Smith and Maeder, 1989; Schulte-Ladbeck, 1989; Van der Hucht et. al. 1988. (a): V44&\JE&4&HSF0XVG&%6HU Çizelge 17.5. Küçük kütle fonksiyonlu tek çizgili Wolf-5D\HW\ÕOGÕ]ODUÕ WR kütleleri, 57o¶ONELU\|UQJHH÷LNOL÷LYH0¶OLNELU\ROGDúNWOHVLNDEXOHGLOHUHNKHVDSODQPÕúWÕU +'øVLP HD187282 HD50896 HD97950 HD143414 HD191765 HD192163 HD193077 HD197406 HD86161 HD96548 HD177320 HD209BAC HD164270 * Tayf Türü WN4 WN5 WN6 WN6 XN6 WN6 WN6 WN7 WN8 WN8 WN8 WN8 WC9 Dönem 3.85 3.763 3.772 7.690 7.44 4.50 2.3238 4.3173 10.73 4.762 1.7616 2.3583 1.7556 f (M) 0.003 0.015 0.154 0.007 0.0055 0.00024 0.0009 0.28 0.00024 0.0005 0.0019 0.0005 0.00146 MWR 14 5.7 1.1 8.6 10 53 27 0.6* 53 36 18 36 21 .DUD'HOLN%LOHúHQOL%\N.WOHOL%LU:5<ÕOGÕ]Õ2OPD2ODVÕOÕ÷Õ z (pc) -324 -160 -63 -973 +55 +67 +37 +735 -110 -209 -502 +192 -242 46 Xat ¶OL ELU \ROGDúÕQÕQ – 5D\HW \ÕOGÕ]ÕQÕQ NLP\DVDO NDrakteristiklerine %WQ NWOHOL \DNÕQ oLIWOHU ELU 2% \ÕOGÕ]Õ LOH oHNLUGH÷LQGH KHO\XP \DNDQ ROXúWXUGX÷X ELU GXUXPGDQ JHoHFHNWLU %X \ROGDú ELU :ROI sahip olacak fakat bir Wolf – 5D\HW \ÕOGÕ]Õ JLEL J|UQPH\HELOHFHNWLU $QFDN \DOQÕ]FD HQ E\N NWOHOL RODQODUGD \ÕOGÕ] U]JDUODUÕ ELU :ROI – 5D\HW WD\IÕ UHWPH\H \HWHFHN NDGDU JoO RODFDNWÕU Roche lobu WDúPDVÕ VRQUDVÕQGDNL GúN NWOH NDOÕQWÕODUÕ KÕ]OD E]OHUHN .¶OLN HWNLQ VÕFDNOÕNODUD XODúDFDNODUGÕU (÷HUEX \ÕOGÕ]:ROI – 5D\HW \ÕOGÕ]ODUÕQÕQVDOPD |]HOOLNOHULQLUHWPH]LVH oHNLUGH÷LQGH KHO\XP \DNDQ \ÕOGÕ] J|UQPH]RODUDNNDODFDNWÕU 2%1dø)7/(5ø 2% \ÕOGÕ]ODUÕ JoO D]RW YH ]D\ÕI NDUERQ oL]JLOHUL J|VWHULUOHU 2QODU JHQHOOLNOH \]H\OHULQGH KLGURMHQ \DQPDVÕQÕQ &12 UQOHULQL J|VWHUHQ 2% \ÕOGÕ]ODUÕ RODUDN \RUXPODQÕUODU Onlar, H-5 GL\DJUDPÕQGD =$06 Onlar, \DNÕQÕQGD 9 ÕúÕWPD VÕQÕIÕ ROGX÷X NDGDU =$06¶ÕQ oRN X]DNODUÕQGD , ÕúÕWPD VÕQÕIÕ GD EXOXQXUODU :DOERUQ YH %LVLDFFKL /RSH] YH )LUPDQL WDUDIÕQGDQ D\UÕQWÕOÕ RODUDN LQFHOHQPLúOHUGLU 2%1 \ÕOGÕ]ODUÕ DUDVÕQGD oLIW ROPD VÕNOÕ÷Õ HQ D] ¶GLU %ROWRQ YH 5RJHUV EHONLGH %100’dür. 2%1 \ÕOGÕ]ODUÕQD |UQHNOHU dL]HOJH ¶GD YHULOPLúWLU dLIW ROGX÷X GR÷UXODQDQODU LoLQ G|QHP YH HD 163181 için kütleler M1 = 13 M, M2 = 22 M’ dir (Hutchings, 1975); BN bLOHúHQL\ROGDúÕQGDQmGDKDSDUODNWÕUYHEX nedenle sistemin,JHoPLúWH5RFKHOREXWDúPDVÕJHoLUGL÷LGúQOHELOLU NWOHIRQNVL\RQODUÕYHULOPLúWLU*HQHOOLNOH 2%1 \ÕOGÕ]Õ GDKD E\N ÕúÕWPDOÕ RODQ ELOHúHQGLU Çizelge 17.6. 2%1<ÕOGÕ]ODUÕ– OBN Çiftleri .LPOL÷L HD12323 HD72754 HD163181 HD193516 HD201345 E235679 HD48279 HD218195 Tayf Türü ON9V BN2pe BN0.5Iae BN0.7IV ON9V BN2.5Ib f (M) 0.0033 18.8 0.043 Tayfsal çift 5.9 Dönem (gün) 3.07 33.07 12 4.01 225.2 1DUWPÕú&QRUPDO 1DUWPÕú&QRUPDO Referans BR T H BR BR BR W W BR: Bolton and Rogers, 1978; T: Thackery,1971; H: Hutchings, 1975; W: Walborn, 1976 17.2.4. OB KAÇAKLARI Blaauw (1961), Vitrichenko, Gershberg ve Metik (1965), Bekenstein ve Bowers (1974), Cruz-Gonzales ve DUN 6WRQH YH &DUUDVFR YH DUN WDUDIÕQGDQ \DSÕODQ NLQHPDWLN oDOÕúPDODUGDQ – 40 km s-1) sahiplerdir.%XQODU³NDoDN\ÕOGÕ]ODU´ olarak isimlendirilir. O-WUNDoDNODUÕQNHVUL (Conti, Leep ve Lore, 1977) ile %49 (Stone, 1979) DUDVÕQGD tahmin edilmektedir. %ODDXZ NDoDN \ÕOGÕ]ODUÕQ E\N NWOHOL \DNÕQ oLIW VLVWHPOHULQ RULMLQDO EDú EXOXQGX÷X]HUHED]Õ2% \ÕOGÕ]ODUÕoRN\NVHNKÕ]ODUD \ÕOGÕ]ÕQÕQVSHUQRYDSDWODPDVÕQGDQVRQUDNLELUHYULPDúDPDVÕROGX÷XQXLOHULVUPHNWHGLU(÷HUEXJHUoHNLVH NDoDNODUÕQ E\N ELU NÕVPÕQÕQ VÕNÕúÕN ELU ELOHúHQ LoHUPHVL JHUHNLU %XQXQOD ELUOLNWH oLIW NDoDNODUÕQ DQFDN küçük bir kesrinin, standart kütleli X-ÕúÕQoLIWOHULQLQG|QHPOHULRODQ–JQDUDOÕ÷ÕQGDNLG|QHPOHUHVDKLS ROPDODUÕ QHGHQL\OH EXQODUGDNL RODVÕ VÕNÕúÕN FLVLPOHULQ EHOLUOHQHELOPH RODVÕOÕ÷Õ oRN NoNWU .DoDNODUÕQ WD\IODUÕ QRUPDOGLU YH NLP\DVDO ELOHúLPOHULQGH ELU DQRUPDOOLN J|UOPH] OB kaoDNODUÕQÕQ NXUDPVDO olarak EHNOHQHQNHVUL5RFKHOREXWDúPDVÕVÕUDVÕQGDNLNWOHDNWDUÕPÕLoLQ\DSÕODQNDEXOOHUHVÕNÕFDED÷OÕGÕU(÷HUEDú \ÕOGÕ] WDUDIÕQGDQ ND\EHGLOHQ NWOHQLQ \DOQÕ]FD ¶VL \ROGDú WDUDIÕQGDQ \Õ÷ÕúWÕUÕOPÕúVD NL EX \D\JÕQ RODUDN kabul edLOHQGH÷HUGLUEXGXUXPGD2-WU\ÕOGÕ]ODUÕQ\DNODúÕNRODUDN¶LVÕNÕúÕNELUELOHúHQHVDKLSROPDOÕGÕU (Meurs ve van den Heuvel, 1989)..RUXQXPOXGXUXPGDEXNHVULQGH÷HULROXU %\NNWOHOL\DNÕQoLIWOHULQHYULPL 'DKD|QFHEHOLUWLOGL÷L]HUH%|OPNWOHDNWDUÕPÕEDú\ÕOGÕ]ÕQPHUNH]LKLGURMHQ \DQPDHYUHVLVÕUDVÕQGD $YH\DNDEXN\DQPDVÕVÕUDVÕQGD%\DGDKHO\XPXQWNHWLOPHVLQGHQVRQUD&EDúOD\DELOLU A durumu, son GHUHFH NÕVD G|QHPOL VLVWHPOHU LOH VÕQÕUOÕGÕU oQN EX GXUXP 5RFK OREODUÕQÕQ NoN ROPDVÕ DQODPÕQD JHOLU (÷HU VLVWHP ELU NDo KDIWDOÕN ELU G|QHPH VDKLS LVH EX GXUXPGD NWOH DNWDUÕPÕ DQFDN EDú \ÕOGÕ]ÕQ NÕUPÕ]Õ GHY 47 HYUHVLQH HYULPOHúPHVLQGHQ VRQUD EDúOD\DFDNWÕU <DOQÕ]FD VRQ GHUHFH E\N G|QHPOL VLVWHPOHULQ EDú \ÕOGÕ]ODUÕ \ROGDúODUÕQD NWOH DNWDUPDGDQ NÕUPÕ]Õ GHY HYUHVLQGHQ JHoHUHN HYULPOHúHELOLUOHU Böylece büyük NWOHOL \DNÕQ oLIWOHULQ E\N ELU NÕVPÕ % GXUXPX NWOH DNWDUÕPÕQGDQ JHoHUHN HYULPOHúLUOHU %X QHGHQOH , B durumu kütle Bir örnek olarakEDúODQJÕoG|QHPLJQRODQ M+22.5 M sisteminin, 0.5 E\N NWOHOL \DNÕQ oLIWOHUGHNL NWOH DNWDUÕPÕQD LOLúNLQ HYULP KHVDSODPDODUÕQÕQ oR÷X DNWDUÕPÕQÕGLNNDWHDOÕUODU \Õ÷ÕúPD oDUSDQOÕ E|\OHFH EDú \ÕOGÕ]GDQ ND\ERODQ PDGGHQLQ ¶VL \ROGDú WDUDIÕQGDQ \Õ÷ÕúWÕUÕOPDNWDGÕU Hú]DPDQOÕHYULPLùHNLO¶GHJ|VWHULOPLúWLU (YULPLQHQ|QHPOLDGÕPODUÕLVHdL]HOJH¶GHYHULOPLúWLU :5 oLIWOHUL \D GÕú NDWPDQODUÕQ \ÕOGÕ] U]JDUODUÕ\OD DWÕOPDVÕ \ROX\OD \D GD EDú \ÕOGÕ]GDQ \ROGDúD NWOH DNWDUÕPÕ LúOHPL\OH ROXúXUODU Merkezi hidrojen yanPDVÕ VÕUDVÕQGD \ÕOGÕ] U]JDUODUÕ QHGHQL\OH NWOH D]DOÕU q (=M2/M1 NWOH RUDQÕ YH G|QHP DUWDU 'DKD E\N NWOHOL \ÕOGÕ]ODUGD EX HWNL GDKD JoO ROGX÷XQGDQ (denklem 15.34). ùHNLO%DúODQJÕoG|QHPLJQRODQ0 +22.5 M sisteminin evrimi (de Loore ve De Greve, 1992). dL]HOJH%DúODQJÕoG|QHPLJQRODQ0 Zaman \ÕO %Dú%LOHúHQLQ(YULP%DVDPD÷Õ 0 8181000 8339000 Anakol 8365000 .WOHDNWDUÕPÕQÕQLON 8367670 8371020 8376770 9136970 %Dú\ÕOGÕ]ÕQNÕUPÕ]ÕQRNWDVÕ XC1=0 EDVDPD÷ÕQÕQEDúODQJÕFÕ 0LQLPXPÕúÕQÕPJF +HOLXPWXWXúPDVÕ øONNWOHND\ÕSEDVDPD÷ÕQÕQ sonu .DUERQWXWXúPDVÕ +22.5 M sisteminin evrimi Dönem (gün) 8.94 10.11 10.17 Kütle Nokta 25 23.26 23.18 A B C Anakol 10.18 23.16 D øONWRSODQPDQÕQ 10.32 10.96 16.30 15.18 E F 9.69 17.85 G øNLQFL%LOHúHQLQ (YULP%DVDPD÷Õ EDúODPDVÕ øONWRSODQPD EDVDPD÷ÕQÕQ Kütle Nokta 22.50 21.41 21.36 21.35 basa mak 24.78 27.44 I J K 27.99 L M N O sonu 4.91 24.07 H 27.63 P Böylece, WR çiftleri, EDú \ÕOGÕ]ÕQ KLGURMHQFH ]HQJLQ GÕú NDWPDQODUÕQÕ \D \ÕOGÕ] U]JDUODUÕ YDVÕWDVÕ\OD WÕSNÕ kaybetmesi yoluyla ya da bu NDWPDQODUÕ \ROGDúÕQD DNWDUPDVÕ VXUHWL\OH ROXúXUODU Büyük kütleli ZAMS sistemleriQLQ EDú \ÕOGÕzODUÕQÕQ WHN \ÕOGÕ]ODUGD ROGX÷X JLEL \DQL \ROGDú LOH KHU KDQJL ELU HWNLOHúLP ROPDNVÕ]ÕQ HYULPL\D6FKZDU]VFKLOGNULWHUOHULQLGLNNDWHDODQNODVLNHYULPNRGXLOH\DGDPHUNH]LIÕUODWPD\ÕLoHUHQHYULP kodu ile hesaplanabilir. 48 q (=M2/M1 YH JHUoHN G|QHPLQEDúODQJÕo G|QHPLQH RUDQÕ P/Pi parametrelerinin, hidrojen yanmasÕNWOHDNWDUÕPÕYH:ROI–5D\HWHYUHOHULVÕUDVÕQGDNLHYULPOHULúXúHNLOGHGLU .WOHNWOHRUDQÕ - <ÕOGÕ]U]JDUODUÕHYUHVLVÕUDVÕQGDKHPEDúKHPGH\ROGDú \ÕOGÕ]ÕQNWOHOHULD]DOÕU%Dú\ÕOGÕ]ÕQ \DQLGDKD E\NNWOHOLELOHúHQLQNWOHND\EÕQÕQGDKDE\NROPDVÕQHGHQL\OHNWOHRUDQÕ - büyür. büyür, dönem küçülür. Wolf –5D\HWHYUHVLVÕUDVÕQGDKHO\XP\ÕOGÕ]ÕQÕQNWOHVL– 5 10-5 M\ÕO-1RUDQÕQGDD]DOÕUE|\OHFHNWOH .WOH DNWDUÕPÕ VÕUDVÕQGD NRUXQXPOX NWOH DNWDUÕPÕ GLNNDWH DOÕQGÕ÷ÕQGD NWOH RUDQÕ RUDQÕYHG|QHPE\U BuQODU JHUHN 6FKZDU]VFKLOG NULWHUOHULQLQ X\JXODQPDVÕ JHUHNVH PHUNH]L IÕUODWPDQÕQ GLNNDWH DOÕQPDVÕ GXUXPXODUÕQGD RUWD\D oÕNDQ JHQHO H÷LOLPOHUGLU %\N NWOHOL \DNÕQ oLIWOHU NWOH DNWDUÕPODUÕ LoLQ Schwarzschild kriterlerinin dikkate alan ve korunumlu ve korunumsuz HYULP KHVDSODPDODUÕ 9DQEHYHUHQ YH DUN WDUDIÕQGDQ YH PHUNH]L IÕUODWPDOÕ HYULP KHVDSODPDODUÕ GD 'RRP 6\EHVPD YH GH /RRUH YH 'H *UHYH WDUDIÕQGDQ \DSÕOPÕúWÕU .ODVLN \|QWHP YH PHUNH]L IÕUODWPD LOH HOGH HGLOHQ VLVWHP SDUDPHWUHOHUL DUDVÕQGDNL IDUNODU 'H *UHYH YH GH /RRUH ¶Q \XNDUÕGDEHOLUWLOHQKHVDSODPD VRQXoODUÕQD . qEDú\ÕOGÕ]ÕQ gerçek kütlesi ve P/Pi parametrelerinLQ GH÷LúLPLQL J|VWHUPHNWHGLU .WOH DNWDUÕPÕ VÕUDVÕQGD YH NRUXQXPOX NWOHDNWDUÕPÕGLNNDWHDOÕQGÕ÷ÕQGD VLVWHPLQ RODQ EDúODQJÕoNWOH RUDQÕ M ¶OLNELUEDú \ÕOGÕ]LoLQ GH÷HULQH YH M ¶OLN ELU EDú \ÕOGÕ] LoLQ GH GH÷HULQH oÕNDU (÷HU WP PDGGHQLQ VLVWHPL WHUN HWWL÷L GD\DQDUDNROXúWXUXODQùHNLO¶GHDoÕNRODUDNRUWD\DNRQPXúWXU ùHNLOVÕUDVÕ\ODNWOHRUDQÕ YDUVD\ÕOÕUVDNWOHRUDQÕGDKDD]DUWDUYHDoÕVDOPRPHQWXPND\EÕQHGHQL\OHG|QHPNoOU ùHNLO %\N NWOHOL \DNÕQ oLIWOHULQ NWOH RUDQÕQÕQ \ÕNDUÕGD EDú \ÕOGÕ]ÕQ NWOHVLQLQ RUWDGD YH JHUoHN G|QHPLQ EDúODQJÕo G|QHPLQH RUDQÕQÕQ DOWWD KLGURMHQ \DQPD HYUHVLQGH % GXUXPX NWOH DNWDUÕP HYUHVLQGH YH :5 HYUHVL VÕUDVÕQGDNLHYULPL6RO6FKZDU]VFKLOGoHNLUGHNOHULVD÷PHUNH]LIÕUODWPD 49 $WPRVIHUGHNL KLGURMHQ EROOX÷X \DNODúÕN RODUDN ¶Q DOWÕQD GúW÷QGH NWOH DNWDUÕPÕ VRQD HUHU IÕUODWPD KLGURMHQFH ]HQJLQ ]DUIÕQ NWOHVLQL D]DOWWÕ÷ÕQGDQ ¶ON EX HúLN GH÷HUH Merkezi 6FKZDU]VFKLOG GXUXPXQGDNLQHQD]DUDQGDKD|QFHXODúÕOÕUYHE|\OHFH\ROGDúDGDKDD]NWOHDNWDUÕOPÕúROXU 35 – 40 M¶L DúDQ EDú \ÕOGÕODU LoLQ YH 3 – 5 gQ DúDQ G|QHPOHU LoLQ % GXUXPX NWOH DNWDUÕPÕ PH\GDQD gelmez. %X \ÕOGÕ]ODU oHNLUGHNWH KLGURMHQ \DQPDVÕ VRQUDVÕQGD derhal +5 GL\DJUDPÕQÕQ PDYL NÕVPÕQD GR÷UX \RO DOÕUODU YH NÕUPÕ]Õ GHYOHU E|OJHVLQH HYULPOHúPH]OHU øNL ELOHúHQ DVOD HWNLOHúPH] YH WHN \ÕOGÕ] gibi HYULPOHúLUOHU 35 – 40 M ¶OLN EXHúLN GH÷HU FLYDUÕQGDNWOH DNWDUÕPÕQGDQ \ÕOGÕ] U]JDUODUÕ\ODNWOH ND\EÕQD GR÷UX \DYDú ELU JHoLú YDUGÕU \ÕOGÕ] QH NDGDU E\N NWOHOL LVH ]DUIÕQÕQ, \ÕOGÕ] U]JDUODUÕ\OD sürüklenerek sistemi terk eden NÕVPÕRNDGDUbüyükYH\ROGDúDDNWDUÕODQNÕVPÕGDRNDGDUNoNROXU :5HYUHVLQLQEDúODQJÕFÕQGDNLNDOÕQWÕQÕQEDú \ÕOGÕ]ÕQ EDúODQJÕoNWOHVLQLQELUIRQNVL\RQXRODUDNLIDGHHGLOHQ NWOHVL dL]HOJH ¶GH YHULOPLúWLU :5 \ÕOGÕ]ODUÕQÕQ PRGHOOHQPHVLQGH PHUNH]L IÕUODWPDQÕQ dahil edilmesi, D\QÕEDúODQJÕoNWOHVLLoLQNODVLN\|QWHPHQD]DUDQGDKDE\NELU:5\ÕOGÕ]ÕYHULU Çizelge 17.8 α'H÷HUL Parametrelendirme 0 Mf = 0.590 Mi – 4.40 0.25 Mf = 0.550 Mi – 3.00 1.5 Mf = 0.816 Mi – 5.237 Problem 17.1: 20, 40, 60, 80 ve 100 MNWOHOLEDú\ÕOGÕ]NDOÕQWÕODUÕQÕQNWOHDNWDUÕPÕVRQXQGDNLNWOHOHULQL NODVLN HYULP GXUXPX YH PHUNH]GHQ IÕUODWPD GXUXPX LoLQ NDUúÕODúWÕUÕQÕ] GH÷HULQGHNLELU NWOH RUDQÕQGDQ YH JQON ELU G|QHP GH÷HULQGHQ EDúOD\DUDN G|QHP VRQXQGDNL NWOH RUDQÕ YH G|QHP GH÷HUOHULQL KHVDSOD\ÕQÕ] :5 oLIWOHULQLQ NRUXQXPOX HYULP LOH HOGH HGLOHQ NWOH RUDQODUÕ J|]OHQHQ GH÷HUOHU LOH X\XPOX GH÷LOGLU 20 – 30 M kütOHOL :5 \ÕOGÕ]ODUÕQÕ DoÕNOD\DELOPHN DPDFÕ\OD EWQ VLVWHPOHU LoLQ EDúODQJÕo NWOH RUDQODUÕQÕn 0.5’ten NoNROGX÷Xnu kabul etmek gerekir ki bu da,DoÕNoDJ|]OHPOHULOHoHOLúHQELUGXUXPGXU(÷HUWHUVLQHRODUDN NRUXQXPOXYDUVD\ÕPÕ\ODWDKPLQHGLOHQNWOHRUDQODUÕEWQ:5\ÕOGÕ]ODUÕLoLQROGXNoDE\NWU EDú \ÕOGÕ]ÕQ ND\EHWWL÷L NWOHQLQ ELU NÕVPÕQÕQ VLVWHPL WHUN HWWL÷L YDUVD\ÕOÕUVD NWOH DNWDUÕPÕ VÕUDVÕQGD \ROGDú GDKD D] NWOH \Õ÷ÕúWÕUPÕú YH E|\OHFH GH GDKD NoN ELU NWOH GH÷HULQH XODúPÕú ROXU NL EX GD :5 \ÕOGÕ]ODUÕ LoLQJ|]OHPOHUOHGDKDL\LX\XúDQELUGXUXPGXU :5 \ÕOGÕ]ODUÕQÕQ J|]OHQHQ G|QHPOHULQLQDoÕNODPDVÕELU SUREOHP WHúNLOHWPH] – JQ EDúODQJÕoG|QHPOL oLIWOHU % GXUXPX NWOH DNWDUÕP HYUHVLQH HYULPOHúHELOLUOHU VLVWHPL WHUN HGHQ PDGGH D\QÕ ]DPDQGD DoÕVDO momentum da götürür. .XUDPVDO HYULP \ROODUÕQÕQ J|]OHPOHU LOH NDUúÕODúWÕUPDVÕQGDQ EDú \ÕOGÕ]ÕQ ND\EHWWL÷L α = 1.5) modeller GXUXPXQGD\DNODúÕNRUWDGHUHFHGHQPHUNH]LIÕUODWPDOÕ α PRGHOOHULoLQ\DNODúÕN PDGGHQLQ |QHPOL ELU NÕVPÕQÕQ VLVWHPL WHUN HWWL÷L DQODúÕOÕU E\N PHUNH]L IÕUODWPDOÕ %\NNWOHOL \DNÕQoLIWOHULQHYULPLQGHPHUNH]GHQIÕUODWPDQÕQGDKLO HGLOPHVLQLQ RUWD\DNR\GX÷X|QHPOL ELU VRQXo oHNLUGHNWH KLGURMHQ \DQPDVÕ VÕUDVÕQGD XODúÕODQ \DUÕoDSÕQ NODVLN 6FKZDU]VFKLOG GXUXPXQGD HOGH HGLOHQGHQ GDKD E\N ROPDVÕ E|\OHFH GH $ GXUXPX LoLQ HOGH HGLOHQ PDNVLPXP dönemin daha büyük ROPDVÕGÕU %X LVH J|]OHQHQ :5 oLIWOHULQLQ |QHPOL ELU NÕVPÕQÕQ $ \D GD $% GXUXPODUÕQGDQ ELUL \ROX\OD ROXúWXNODUÕDQODPÕQDJHOLU – 5D\HW \ÕOGÕ]ÕQGDQ böylesi bir gariplik ancak, kütle RUDQÕQÕQ \DNODúÕN RODUDN FLYDUÕQGD ROPDVÕ GXUXPXQGD PH\GDQD JHOHELOLU çünkü bu durumda, her iki WR evresi, yani EDú YH \ROGDúÕQ :5 HYUHOHUL, bir biUOHULQL oRN \DNÕQGDQ WDNLS HGHU. Ancak \Õ÷ÕúPD \ÕOGÕ]ÕQÕQ 'H÷LúLN HYULP DúDPDODUÕ ]LQFLUL EDúODQJÕo NWOH RUDQÕQD VÕNÕ VÕNÕ\D ED÷OÕGÕU øNL :ROI ROXúDQ oLIW VLVWHPOHU JLEL JDULS \DSÕODUÕQ ROXúXPX ROGXNoD VÕUDGÕúÕGÕU JHQoOHúPHVL YH |PUQQ X]DPDVÕ ELU oRN GXUXPGD EDú \ÕOGÕ]ÕQ :5 HYUHVLQLQ \ROGDúÕQ :5 HYUHVLQLQ EDúODPDVÕQGDQGDKD|QFHVRQDH rmesine neden olur. 50 *|]OHPOHULOHNDUúÕODúWÕUPD %Dú \ÕOGÕ]Õ M NWOHVLQH VDKLS NWOH RUDQÕ YH EDúODQJÕo G|QHPL JQ RODQ E\N NWOHOL ELU \DNÕQ oLIWVLVWHPLQ HYULPL=$06¶WDQ EDú \ÕOGÕ]ÕQ EH\D] FFHHYUHVLQH \RODOÕU +HULNL ELOHúHQGHKLGURMHQ \DQPD HYUHVL VLUDVÕQGD \ÕOGÕ] U]JDUODUÕ\OD NWOH ND\EHGHU 0HUNH]L KLGURMHQLQ WNHQPHVLQGHQ NÕVD ELU VUH VRQUD NWOHDNWDUÕPÕEDúODU.WOH DNWDUÕPÕ NRUXQXPOX RODUDNPH\GDQD JHOLU +HULNLELOHúHQLQ +5GL\DJUDPÕQGDNL L – Log Teff YH ùHNLO ¶GHNL Mvis – Log Teff GL\DJUDPODUÕQGD J|VWHULOPLúWLU Log L’den Mvis¶H G|QúP &RQWL ¶nin WPÕúÕQÕP G]HOWPHOHUL NXOODQÕODUDN \DSÕOPÕúWÕU Çizelge 17.9 ise sistem parametrelerinin evrimini göstermektedir. HYULPL ùHNLO ¶GHNL /RJ 4. Bir 26 + 23.4 M VLVWHPLQLQ EDú NDOÕQ oL]JL YH \ROGDú LQFH oL]JL ELOHúHQLQLQ +5 GL\DJUDPÕQGDNL HYULP ùHNLO \ROODUÕ+DUIOHUPHWLQLoLQGHDoÕNODQPÕúWÕU<DWD\HNVHQLQVWNÕVPÕQGDWD\IWUOHULGHEHOLUWLOPLúWLU ùHNLO%LU0 sisteminin Mvis – Log TeffGL\DJUDPÕQGDNLHYULPL 51 Çizelge 17%DúODQJÕoG|QHPLJQRODQELU26 + 23.4 M sisteminin evrimi HRD 106\ÕOOÕN 1RNWDODUÕ \DúODU A 0 B 7.97 C 8.27 D 8.28 E 8.281 F 8.282 G 8.282 H 8.282 I 8.283 J 8.283 K 8.286 L 8.291 Kütle 1 Kütle 2 26 23.4 23.92 22.86 13.70 22.84 23.69 22.84 19.17 27.35 17.22 29.30 15.66 30.95 14.69 31.83 13.79 32.72 12.89 33.62 11.62 34.88 11.42 35.31 log Teff 1 log Teff 2 4.57 4.56 4.36 4.55 4.42 4.55 4.21 4.54 4.12 4.28 4.10 4.10 4.12 4.22 4.13 4.30 4.13 4.40 4.14 4.51 4.15 4.60 4.18 4.60 log L 1 log L 2 4.89 4.78 5.25 4.82 5.29 4.85 5.28 4.87 5.06 5.77 5.12 5.12 5.16 5.78 5.22 5.77 5.27 5.73 5.33 5.65 5.42 5.40 5.46 5.29 -Mbol 1 -Mbol 2 7.53 7.24 8.44 7.36 8.54 7.44 8.51 7.49 7.96 9.74 8.11 8.11 8.21 9.76 8.36 9.74 8.49 9.64 8.64 9.44 8.86 8.81 8.96 8.64 -Mvis 1 -Mvis 2 3.9 3.95 6.10 4.32 6.00 4.33 7.5 4.40 7.50 7.80 7.60 8.40 7.20 8.34 7.40 6.40 7.79 4.50 7.94 6.19 8.16 5.56 7.76 5.39 5.21 4.60 5.13 4.59 5.05 4.59 5.03 4.58 5.00 4.59 4.57 4.53 4.46 4.50 5.22 5.30 4.86 5.31 4.65 5.32 4.56 5.32 4.46 5.35 5.36 5.40 5.44 5.48 8.36 8.56 7.46 8.59 6.94 8.61 6.71 8.64 6.46 8.68 8.71 8.81 8.91 9.01 3.90 5.06 3.86 5.06 2.96 5.11 2.46 5.14 2.21 5.16 5.06 5.06 5.31 5.06 Wolf-5D\HW(YUHVLQLQ%DúODJÕFÕ M 8.330 N 8.454 P 8.654 11.32 35.18 7.69 35.10 5.28 Q 8.779 4.70 R 8.880 4.27 S T U V 10.000 11.000 12.000 12.540 34.66 34.03 32.92 32.39 ùHNLO J|UVHO E|OJHGH EDú YH \ROGDúÕQ DUDVÕQGDNL J|UQU SDUODNOÕN IDUNODUÕQÕ J|VWHUPHNWHGLU 3DUODNOÕN IDUNÕQÕQ m ¶GHQ D] ROGX÷X GXUXPGD KHU LNL ELOHúHQLQ GH \DOQÕ]FD J|UVHO E|OJHGH J|UQG÷ YDUVD\ÕPÕ\OD , KDQJL ELOHúHQLQ EDú \ROGDú \D GD KHU LNLVL GH J|UVHO E|OJHGH J|UOHELOHFH÷LQL EHOLUOH\HELOLUL] ùHNLO DQDNROGD D\UÕN HYUH VUHVLQFH KHU LNL ELOHúHQLQ GH J|UQU ROGX÷XQX RUWD\D NR\PDNWDGÕU %Dú \ÕOGÕ]ÕQ E]OPH HYUHVL ER\XQFD SDUODNOÕN IDUNÕ 1m’in üstündedir, E|\OHFH \DOQÕ]FD EDú \ÕOGÕ] J|UOHELOLU Kütle Kütle DNWDUÕPÕQÕQ EDúODPDVÕQGDQ KHPHQ VRQUD \ROGDúÕQ ÕúÕWPDVÕ DUWDU YH E|\OHFH KHU LNL ELOHúHQ GH J|UOU DNWDUÕPÕQGDQ VRQUD KHO\XP \DNDQ \ÕOGÕ]ÕQ ÕúÕWPDVÕ DUWÕN J|UVHO E|OJHGH J|UOU RODQ \ROGDúÕQÕQNLQGHQ oRN – GDKDGúNWU$UWÕNVLVWHPJ|UOPH\HQELU:ROI 5D\HWELOHúHQOLELU2 -türü\ÕOGÕ]GÕU 52 ùHNLO %LU 0 çiftinin, NWOH DNWDUÕPÕQGDQ KHPHQ |QFH DNWDUÕP VÕUDVÕQGD YH VRQUDVÕQGD EDú YH \ROGDú ELOHúHQOHULQLQ J|UVHO SDUODNOÕNODUÕ DUDVÕQGDNL IDUN $QDNROGD D\UÕN HYUH VÕUDVÕQGD KHU LNL ELOHúHQ GH J|UQUGU .ÕUPÕ]Õ UHG SRLQW LOH PDYL QRNWD %3 EOXH SRLQW DUDVÕQGD ∆0 IDUNÕ P¶GHQ ID]ODGÕU YH E|\OHFH \DOQÕ]FD EDú \ÕOGÕ] görülür..WOHDNWDUÕPÕQGDQKHPHQVRQUD\ROGDúÕQÕúÕWPDVÕDUWDUYHE|\OHFHKHULNLELOHúHQGHJ|UOU.WOHDNWDUÕPÕQGDQ QRNWD 53 VRQUD KHO\XP \DNDQ \ÕOGÕ]ÕQ ÕúÕWPDVÕ DUWÕN J|UVHO E|OJHGH J|UOU GXUXPGD RODQ \ROGDúÕQ ÕúÕWPDVÕQGDQ oRN GDKD örülmeyen bir Wolf –5D\HWELOHúHQOLELU2-WU\ÕOGÕ]GÕU GúNWU$UWÕNVLVWHPJ 53 BÖLÜM 18 <$.,1dø)7(95ø0ø1ø1621$ù$0$/$5, 18*LULú <DNÕQ oLIWOHULQ NDUDUOÕ QNOHHU \DQPD VUHoOHULQLQ VRQXQGDNL NDGHUOHUL EDú \ÕOGÕ]ÕQ NWOHVLQH ED÷OÕGÕU (÷HU NDOÕQWÕ&KDQGUDVHNKDUOLPLWLQLQDOWÕQGDNDOÕ\RUVDRELUEH\D]FFHGLU(÷HU \ROGDúWDQ5RFKHOREXQXGROGXUPDVÕ GXUXPXQGDELUNWOHDNWDUÕPÕV|]NRQXVXLVHELUSDWODPDPH\GDQDJHOHELOLUEX na7LS,VSHUQRYDVÕ denir. (÷HU veya bir kara delik NDOÕQWÕ&KDQGUDVHNKDUOLPLWLQLDúÕ\RUVD7LS,,VSHUQRYDVÕROXúXUYHNDOÕQWÕELUQ|WURQ\ÕOGÕ]Õ RODELOLU\DGDJHUL\HKLoELUNDOÕQWÕNDOPD\DELOLU 7LS ,D VSHUQRYDODUÕ ELU EH\D] FFH ND\QDNOÕGÕUODU (÷HU R ELU oLIW VLVWHPLQ \HVL LVH QRUPDO ELU \ÕOGÕ] RODQ , Beyaz cücenin yüzeyi öyle güçlü bir úHNLOGH ÕVÕQÕU NL kadar güçlü nükleer reaksiyonlar meydana gelir. Bu nedenle bu tür süpernovalar çok \ROGDúWDQ EH\D] FFHQLQ \]H\LQH PDGGH DNWDUÕODELOLU \ÕOGÕ]Õ IHODNHWH X÷UDWDFDN SDUODNWÕU 7LS ,, YH PXKWHPHOHQ 7LS ,E VSHUQRYDODUÕ Lo NÕVPÕQGD EWQ PDGGHQLQ GHPLUH G|QúPú ROGX÷X E\N NWOHOLELU\ÕOGÕ]ÕQSDWODPDVÕVRQXFXQGDROXúXUODU<ÕOGÕ]E]OUYHSDWODU1RUPDORODUDN\ÕOGÕ]SDWODGÕ÷ÕQGDELU NÕUPÕ]Õ süper devdir. <ÕOGÕ] \DNODúÕN RODUDN ¶VL KLGURMHQGHQ LEDUHW RODQ VH\UHOPLú ELU GÕú NDWPDQD VDKLSWLU a hidrojen çizgileri görülür. 7LS , YH 7LS ,, VSHUQRYDODUÕQ ÕúÕN H÷ULOHUL 4.5’teJ|VWHULOPLúWLU %X úHNLOGH SDWOD\DQ ELU \ÕOGÕ]ÕQ WD\IÕQG DUDVÕQGDNLIDUNOÕOÕNODUùHNLO Tayfsal gözlemlerden elde edilen verilere göre, patlayan 104 km s-1 PHUWHEHVLQGHNL KÕ]ODUOD X]D\D DWÕOÕU $WÕODQ NDWPDQODU ELU NDo JQ LoHULVLQGH NDOÕQWÕVLVWHPLWHUNHWPLúROXUYHDUWÕN|QHPOLELUHWNLJ|VWHUemezler. 3DWODPD PH\GDQD JHOGL÷LQGH \|UQJH |÷HOHUL GH÷LúLU \ÕOGÕ]ÕQ GÕú NÕVÕPODUÕ %XQXQODELUOLNWHSDWODPDNUHVHORODUDNVLPHWULNGH÷LOGLU6SHUQRYDNDOÕQWÕODUÕDVOD tam olarak küresel simetrik GH÷LOOHUGLU YH E\N DVLPHWULOHU J|VWHULUOHU 'RSSOHU ND\PDODUÕQGDQ HOGH HGLOHQ KÕ] |OoPOHUL JHQLúOHPHQLQ Hú \|QOGD÷ÕOPDGÕ÷ÕQÕ RUWD\D NR\PDNWDGÕU 'DKDVÕJ|NDGDG]OHPLHWUDIÕQGDNLDWDUFDODUÕQGD÷ÕOÕPÕEX \ÕOGÕ]ODUÕQ GR÷XPODUÕ VÕUDVÕQGD HNVWUDGDQ \DNODúÕN RODUDN NP (Gunn ve Ostriker, 1970; Ruderman, 1972). 2ODVÕ HOHNWURPDQ\HWLN HWNLOHU YH SDWOD\DQ \ÕOGÕ]ÕQ G|QPHVL VRQXFXQGDGÕúNDWPDQODUÕQÕQDWÕOPDVÕVÕUDVÕQGDJ| RUWD\DoÕNDQEXHNVWUDWHNPHJ|VWHUL s-1¶OLN ELU |] KDUHNHW ND]DQGÕNODUÕQÕ RUWD\D NR\PDNWDGÕU zlenen asimetrilerLQQHGHQLRODUDNDWDUFDQÕQGR÷XPXVÕUDVÕQGD lir. 3DWODPDQÕQ ELU VRQXFX RODUDN EDú \ÕOGÕ]ÕQ GÕú NÕVÕPODUÕQÕQ DWÕOPDVÕ YH DWÕODQ EX NDWPDQODUÕQ GL÷HU ELOHúHQH oDUSPDVÕ\ODoLIWVLVWHPLQ\|UQJHVLGH÷LúL r. 9DUVD\ÕPODU Bir patlama öncesi sistemin, \|UQJH GH÷LúLPOHUL LOH VRQ DúDPD GDYUDQÕúODUÕQÕQ KHVDSODQPDVÕ LoLQ JHQHOOLNOH DúD÷ÕGDNLEDVLWOHúWLULFLYDUVD\ÕPODU\DSÕOÕU 1. VSHUQRYDSDWODPDVÕoLIWLQ\|UQJHG|QHPLQHJ|UHNÕVDRODQELU]DPDQGLlimi içerisinde olur; 2. SDWODPDVÕUDVÕQGDROXúDQQ|WURQ\ÕOGÕ]Õ\DNODúÕNRODUDN– 2 MFLYDUÕQGDELUNWOH\HVDKLSWLU 3. 6SHUQRYD NDEX÷XQXQ DWÕOPDVÕQGDNL DVLPHWULOHUL KHVDED NDWPDN DPDFÕ\OD, ROXúXPX VÕUDVÕQGD nötron -1 \ÕOGÕ]ÕQÕQNDEX÷XQRUWD\DoÕNWÕ÷ÕEDú \ÕOGÕ]ÕQPHUNH]LQHJ|UH vn = 100 km s ’lik göreli ELU|]KDUHNHWND]DQGÕ÷Õ kabul edilir. MRPHQWXPXQ NRUXQXPXQHGHQL\OH NUHVHO VLPHWULN RODUDN DWÕODQ NDWPDQODUWHUV \|QGH vs = vn Mn/ MsLOHYHULOHQELUKÕ]HOGHHGHUOHUEXUDGDMn ve MsVÕUDVÕ\ODQ|WURQ\ÕOGÕ]ÕQÕQYHNDEX÷XQNWOHVLGLU )ÕUODWÕODQ Hú PHUNH]OL GÕú NÕVÕPODUÕQ KÕ] YH \R÷XQOXNODUÕQÕQ Hú \|QO RODUDN GD÷ÕOGÕ÷Õ YDUVD\ÕOÕU 'DKDVÕ EX katmanlar, NDOÕQWÕ oLIW VLVWHPL WHUN HGLQFH÷H YH GROD\ÕVÕ\OH KHU KDQJL ELU |QHPOL HWNLOHUL NDOPD\ÕQFD\D Nadar bu GXUXPXQGH÷LúPHGHQNRUXQGX÷Xkabul edilir. %X LVH IÕUODWÕODQ NDWPDQODUÕQ NUHVHO VLPHWULVL GLNNDWH DOÕQGÕ÷ÕQGD \ROGDúÕQ \|UQJHVLQLQ Lo NÕVPÕQGDNL JHQLúOH\HQ NDWPDQODUÕQ QRNWD NWOH RODUDN dikkate DOÕQDELOHFH÷L DQODPÕQD JHOLU \ROGDúÕQ \|UQJHVLQLQ GÕú NÕVPÕQGDNLNDWPDQODUÕQVLVWHP]HULQHKHUKDQJLELUHWNLVL\RNWXU 54 +HO\XP\ÕOGÕ]ODUÕQÕQVRQDúDPDVÕ (YULPKHVDSODPDODUÕ0 ¶LQ DOWÕQGD NWOH\H VDKLS RODQKHO\XP \ÕOGÕ]ODUÕQÕQKHO\XP NDEXN \DQPDVÕ VÕUDVÕQGD JHQLúOH\HUHN DOW GHY \D GD VSHUGHYOHUH HYULPOHúHELOHFHNOHULQL J|VWHUPHNWHGLU E|\OHFH 5RFKH OREODUÕQGDQ ELU NHUH GDKD WDú arak ]DUIODUÕQÕ NÕVPHQ \D GD EHONL de tamamen kaybederler. dLIW VLVWHPOHUGH E|\OHVL HYULPOHúPH |UQHNOHUL.HVLP¶GHYHULOPLúWLU , sistematik olarak inceleyelim (bkz. Nomoto, 1981; Habets, 1983). ùLPGL KHO\XP \ÕOGÕ]ODUÕQÕQ LOHUL HYULPOHULQL KHP WHN \ÕOGÕ]ODU KHP GH ELU oLIW VLVWHPLQ ELOHúHQOHUL GXUXPX LoLQ 18.3.1. MHe < 2 M DURUMU a) 7HN\ÕOGÕ]ODU KabukdaKLGURMHQ\DQPDVÕVÕUDVÕQGD&2-oHNLUGH÷L\R]ODúÕUYHGÕúNDWPDQODUNÕVDELU]DPDQ|OoH÷LQGHJHQLúOHU C \DQPDVÕ EDúODU EDúODPD] WP oHNLUGHN \DQDU NDUERQ DQL \DQPDVÕ YH VRQXQGD GD ELU VSHUQRYD PXKWHPHOHQ 7LS,VSHUQRYDVÕRODUDNSDWODU$UQHWWYHJHUL\HKLoELUNDOÕQWÕNDOPD] b) Çift sistemler ÇiIWVLVWHPGXUXPXQGDGHYELOHúHQLQ]DUIÕQÕQ\ROGDúÕQDDNWDUÕOPDVÕQHGHQL\OHDQL\DQPDROXúPD] vH\DOQÕ]FDELU CO beyaz cücesi meydana gelir. 18.3.2. 2 M < MHe < 2.3 M DURUMU çok JoOELUúHNLOGH\R]ODúPDPÕúWÕU ve kaUERQGDKDVDNLQELUúHNLOGH\DQDUDN geride 1.2 – 1.4 MNWOHDUDOÕ÷ÕQGDNLGHMHQHUHELU2- Ne -0JoHNLUGH÷LEÕUDNÕU +HO\XPoHNLUGH÷LQGÕúÕQGDNL NÕVÕPODUGD \DNÕOÕUoHNLUGH÷LQ NWOHVL DUWDU YH ]DUI JHQLúOHU.DOÕQWÕ – 1.4 M kütleli bir O - Ne - Mg beyaz cücesidir. %XGXUXPGD&2oHNLUGHNNDOÕQWÕVÕ a) 7HN\ÕOGÕ]ODU - Ne - 0J oHNLUGH÷LQLQ , Elektron yakaODPDVSHUQRYDVÕVRQXQGDELUQ|WURQ\ÕOGÕ]ÕROXúWXUXU .DEXNWD KHO\XP \DQPDVÕ QHGHQL\OH 2 Chandrasekhar limitine yüksek olur ve zarf çöker. NWOHVL DUWDU XODúÕOGÕ÷ÕQGD PHUNH]L\H÷LQOLN0J]HULQGHHOHNWURQ\DNDODQPDVÕQD\RODoDFDNGHQOL b) Çift sistemler 5RFKHOREXWDúPDVÕPH\GDQDJHOLUYH]DUIDWÕOÕU 18.3.3. MHe > 2.3 M DURUMU - Ne - 0J oHNLUGH÷L, &KDQGUDVHNKDU OLPLWLQL DúDU YH EWQ oHNLrdek Sonunda, çekirdeNOHULQ SDUoDODQPDVÕ (photodisintegration) nedeniyle .DUERQ \DQPDVÕQGDQ VRQUD JHUL\H NDODQ 2 \DQPDVÕ HYUHOHULQGHQ JHoHUHN HYULPOHúLU çöken ELU)HoHNLUGH÷LROXúXUYHELUQ|WURQ\ÕOGÕ]Õ\DGDELUNDUDGHOLNPH\GDQDJHOLU a) 7HN\ÕOGÕ]ODU Kütleleri 2.8 M¶GHQE\NRODQ\ÕOGÕzlar,ELUoHNLUGHNSDUoDODQPDVÕVSHUQRYDVÕGXUXPXQDHYULPOHúLUOHU b) Çift sistemler 55 <DNODúÕN 0 ¶GHQ E\N NWOHOL JHQLú oLIWOHU – JQ G|QHPOL oHNLUGHN SDUoDODQPDVÕ VSHUQRYDVÕ GXUXPXQD HYULPOHúLUOHU =DUIÕQ 5RFKH OREX WDúPDVÕ\OD DWÕOPDVÕQGDQ |QFH NDEXNWD KHO\XP \DQPDVÕ \ROX\OD E\PHVLLoLQoHNLUGHNGDKDD]]DPDQDVDKLSROGX÷XQGDQNÕVDG|QHPOLoLIWOHU Özetle, deEXVÕQÕU0’dir. 4 M < M1 < 8 M DUDOÕ÷ÕQGD, \DNÕQ oLIW VLVWHPOHULQ EDú \ÕOGÕ]ODUÕ WHN \ÕOGÕ]ODUGD < M1 < 10-14 M DUDOÕ÷ÕQGD LVH \DNÕQ oLIWOHULQ EDú \ÕOGÕ]ODUÕ ELU 2-Ne-0J EH\D] FFHVL ROXúWXUXUODUNHQ, WHN \ÕOGÕ]ODU HOHNWURQ EDúODQJÕo NWOHVLQLQ ROGX÷XJLELDQLNDUERQWXWXúPDVÕQDHYULPOHúPHN\HULQHELU&2EH\D]FFHVLROXúWXUXODU0 \DNDODPDo|NPHVLQHHYULPOHúLUOHUYHVRQXQGDGDQ|WURQ\ÕOGÕ]ÕROXUODU .DUERQ \DQPDVÕQGDQ VRQUDNL 2 -Ne-0J NDOÕQWÕVÕ &KDQGUDVHNKDU OLPLWLQL DúDU YH VRQXo RODUDN GD WP oHNLUGHN \DQPDDúDPDODUÕQGDQJHoHU(QVRQRODUDNIRWRQODoHNLUGHNSDUoDODQPDVÕ\ROX\ODo|NHQELU)HoHNLUGH÷LROXúXU ve bir nötron\ÕOGÕ]Õ\DGDELUNDUDGHOLNPH\GDQDJHOLU %LU oLIW VLVWHP GXUXPXQGD ]DUIÕQ ELU NÕVPÕ \D GD WDPDPÕ ND\EHGLOLU oHNLUGHN WÕSNÕ ELU WHN \ÕOGÕ]GDNL JLEL GDYUDQÕU YHVRQXQGDELUQ|WURQ\ÕOGÕ]ÕROXúXU Son derece büyük çekirdek kütleleri (M > 60 M, yaklaúÕN 0¶OLN ELU WRSODP NWOH\H NDUúÕOÕN JHOLU GXUXPXQGDoHNLUGHNoLIWROXúXPo|NPHVLQHHYULPOHúLUYHPXKWHPHOHQne tek,QHGHoLIW\ÕOGÕ]GXUXPXnda geride ELUNDOÕQWÕEÕUDNPD] 18.4. Tip II –'úNNWOHOL;-ÕúÕQoLIWOHUL/0;5% /0;5%¶/(5ø1g=(//ø./(5ø DúN NWOHOL ND\QDNODU JHQHOOLNOH ]RQNODPD]ODU YH oR÷XQOXNOD J|NDGD PHUNH]L \DNÕQODUÕQGD \D GD NUHVHO NPHOHUGHEXOXQXUODU2QODUÕQELUoR÷XSDWOD\ÕFÕGÕU\DQL;-ÕúÕQ\H÷LQOL÷LELUVDQL\HLoHULVLQGHELUNDoNDGLUNDGDU artar ve bunu onlarca saniye süren azalma evresi izler. DúN NWOHOL VLVWHPOHUGHNL EDVNÕQ ÕúÕN ND\QD÷Õ PXKWHPHOHQ \ROGDúÕQ DWWÕ÷Õ PDGGH LOH EHVOHQHQ ELU \Õ÷ÕúPD GLVNLGLU G|NDGD úLúLPindeki kaynaklar ile küresel NPHOHUGHNL ND\QDNODUÕQ EHQ]HUOL÷L, RQODUÕQ WHN ELU VÕQÕI ROXúWXUGXNODUÕQÕ RUWD\D NR\PDNWDGÕU 'DKDVÕ SDWOD\ÕFÕ kaynaklarÕQ optik tayflarÕ, bir X-ÕúÕQoLIWLRODQ YH Balmer salma çizgili bir mavi süreklilik ile He II (4686 Å), N III ve C III (4640 Å) salma çizgileri gösteren Sco X-1’i QWD\IÕQDEHQ]HPHNWHGLU Bu tayf, NDWDNOLVPLN GH÷LúHQOHUGHNL \Õ÷ÕúPD GLVNi tayflarÕQD da benzemektedir. <ROGDúÕQ GúN ÕúÕWPDVÕ YH 6FR X-¶LQ NÕVD G|QHPL JQ VÕNÕúÕN ROPD\DQ \ÕOGÕ]ÕQ SDWOD\ÕFÕ \ÕOGÕ]ODUÕQ J|UQPH\HQ ELOHúHQOHULne benzer olarak ELUNÕUPÕ]ÕFFHROGX÷XQXDNODJHWLUmektedir. 18.4.2. KÜRESEL KÜME KAYNAKLARI Küresel kümelerde X-ÕúÕQND\QDNODUÕQÕQROXúXPRUDQÕ\NVHNWLUNPHGHND\QDNJ|]OHQPLúROXSEXRUDQ, 37 J|NDGD RUWDODPDVÕQGDQ oRN GDKD \NVHNWLU Tüm gökadada, ÕúÕWPDODUÕ 10 erg s-1 GH÷HULQL DúDQ ÕúÕWPDQÕQ EX -8 -1 GH÷HUL ×10 M \ÕO GH÷HULQGH ELU NWOH ND\EÕ RUDQÕQD NDUúÕOÕN JHOLU 100 FLYDUÕQGD X-ÕúÕQ ND\QD÷Õ bilinmektedir. 105 – 106 \ÕOGÕ]SF3JLEL \NVHN \R÷XQOXNODUGD \DNÕQoDUSÕúPDODU YH \DNDODPDODU \ROX\ODoLIW VLVWHP ROXúXPX J|NDGDQÕQGL÷HU \HUOerine göre GDKD \NVHNELURODVÕOÕ÷D VDKLSWLU <ÕOGÕ]ODUÕQ J|UHOL KÕ]ODUÕNoNWU YHE|\OHFH \ÕOGÕ] \DNDODPD VÕUDVÕQGD gerekli olan az miktardaki enerji ]DWHQ LON oDUSÕúPD VÕUDVÕQGD \HWHULQFH ND]DQÕOPÕú ROPDNWDGÕU .UHVHO NPH ND\QDNODUÕ PXKWHPHOHQ QRUPDO ELU \ÕOGÕ]ÕQ ELU Q|WURQ \ÕOGÕ]Õ WDUDIÕQGDQ yDNDODQPDVÕ\OH ROXúPXúODUGÕU 4 – 5 M DUDOÕ÷ÕQGDNL WHN \ÕOGÕ]ODU HQLQGH VRQXQGD oDUSÕúDFDNODUÕQGDQ NUHVHO 8 NPHOHUGH ROXúXPODUÕQÕQ LON \ÕOÕ LoHULVLQGH ELQOHUFH Q|WURQ \ÕOGÕ]ÕQÕQ ROXúPDVÕ EHNOHQLU Bu nötron \ÕOGÕ]ODUÕQÕQEHOOLELUNHVULNPH\LWHUNHWPLúROVDGDNoNELURUDQKDOHQPHYFXWWXU Onlar, kümedeki ortalama \ÕOGÕ] NWOHVLQL DúDQ NWOHOHUH VDKLSWLUOHU YH EX QHGHQOH GH NPHQLQ PHUNH]LQdH \Õ÷ÕOPÕúODUGÕU <ÕOGÕ] \R÷XQOX÷XQXQYHoDUSÕúPDRODVÕOÕ÷ÕQÕQ\NVHNROGX÷X\HUOHUGH\ÕOGÕ]\DNDODPDVUHoOHULPH\GDQDJHOHELOLU %LU NUHVHO NPHGHQ NDoPD KÕ]Õ \DNODúÕN RODUDN NP s-1’dir. 5DG\R DWDUFDODUÕ GR÷XPODUÕ VÕUDVÕQGD HNVWUD ELU LWPH ND]DQGÕNODUÕQGDQ J|UHFHOL RODUDN GDKD \NVHN KÕ]ODUD VDKLSWLUOHU YalnÕ]FD KÕ]ODUÕ NDoPD KÕ]ÕQGDQ daha , NoNRODQHQ \DYDúQ|WURQ \ÕOGÕ]ODUÕNPHGHNDOÕUODUdR÷XQ|WURQ \ÕOGÕ]ÕQÕQ E\NNDoDNKÕ]ODUÕPXKWHPHOHQ 56 oLIW VLVWHPOHULQHYULPOHúPLú ELOHúHQOHULQLQ SDWODPDVÕYH VLVWHPLQGD÷ÕOPDVÕQÕQ ELU VRQXFXGXUGúN KÕ]OÕQ|WURQ \ÕOGÕ]ODUÕLVHWHN\ÕOGÕ]ODUÕQ evrimlerinin son evreleridir. (YULPOHULQH oLIW VLVWHPOHUGH EDúOD\DQ NUHVHO NPHOHUGHNL Q|WURQ \ÕOGÕ]ODUÕ VLVWHPLQ GD÷ÕOPDVÕ\OD WHN \ÕOGÕ] haline gelebilir ve kümeyi terk edebilirler.7HN \ÕOGÕ]ODUÕQNPHGHNDODQQ|WURQ \ÕOGÕ]ÕNDOÕQWÕODUÕLVHGDKDVRQUD ELUELOHúHQ\DNDOD\DELOLUYHEXVXUHWOHGúNNWOHOL;-ÕúÕQoLIWOHULQHHYULPOHúHELOLUOHU 18.4.3 *g.$'$ùøùø0.$<1$./$5, *|NDGDúLúLPLQGHNL\ÕOGÕ]ODUNUHVHONPHOHUGHNLQGHQGDKDE\NKÕ]ODUDVDKLSWLUOHU'DKDVÕ \ÕOGÕ]\R÷XQOX÷X , Chandrasekhar limiti – oksijen beyaz cücelerinin,Q|WURQ\ÕOGÕ]ODUÕGXUXPXQDo|NHELOHFHNOHULEXOXQPXúWXUYHD\QÕ úH\LQ \DNÕQ oLIWOHUdeki O – Ne – 0J EH\D] FFHOHUL LoLQ GH JHoHUOL ROGX÷X J|UOPHNWHGLU Sistemler genellikle ED÷OÕVÕQÕUOÕNDOÕUODU0XKWHPHOHQ, bu X-ÕúÕQND\QDNODUÕNDWDNOLVPLNGH÷LúHQOHULQHYULPVHOUQüdürler. oRN GDKD GúNWU EX QHGHQOH \ÕOGÕ] \DNDODPDVÕ oRN ]RUGXU IDNDW J|] DUGÕ GD HGLOHPH] \DNÕQÕQGDNLNDUERQ X-ÕúÕQSDWOD\ÕFÕODUÕQÕQJ|]OHmsel karakteristikleri, bunlardaDQLWHUPRQNOHHUWHSNLPHOHU\DQLQ|WURQ\ÕOGÕ]ODUÕQÕQ \]H\OHULQGH KHO\XP ELUOHúPHOHUL ROGX÷XQX J|VWHUPHNWHGLU 'úN NWOHOL VÕIÕU \Dú DQDNRO oLIWOHUL ELU NWOH – oksijen beyaz cücesi ile ELU QRUPDO \ÕOGÕ]GDQ bir SDUODNOÕN DUWÕúÕ J|VWHUmeleri NÕVD ELU VUH LoHULVLQGH ÕúÕWPD PDNVLPXPXQD XODúÕp VRQUD GD oRN GDKD \DYDú ELU úHNLOGH ROPDN NRúXOX\OD HVNL SDUODNOÕNODUÕQDG|Qmeleri nedeniyle, birerNDWDNOLVPLN GH÷LúHQGLUOHU%H\D] FFH ELOHúHQLQ HWUDIÕQGD ELU \Õ÷ÕúPD GLVNL YDUGÕU .WOH DNWDUÕPÕ QHGHQL\OH EH\D] FFHQLQ NWOHVL DUWDU YH EX da elektron \DNDODPDo|NPHVLQHYHELUQ|WURQ\ÕOGÕ]ÕQÕQROXúPDVÕQDQHGHQROXU%X\ROODVLVWHPELUGúNNWOHOL;-ÕúÕQoLIWL olabilir. Bu son durum sonraki kesimde incelenecektir. DNWDUÕP HYUHVLQGHQ JHoPHN VXUHWL\OH ELU KHO\XP \D GD NDUERQ ROXúDQYHG|QHPOHULVDDWFLYDUÕQGDRODQVLVWHPOHUHHYULPOHúLUOHU %XDúDPDGDNLoLIWOHU\ÕOGÕ]ODUÕQ 18.5. 'úNNNWOHOL;-ÕúÕQoLIWOHULQLQRULMLQL (95ø00$''($.7$5,0, - 'úN NWOHOL ; ÕúÕQ oLIWOHUL YH oR÷X NDWDNOLVPLN GH÷LúHQOHU GúN NWOHOL QRUPDO \ROGDúÕQGDQ PDGGH çöNPú ELU \ÕOGÕ] GHMHQHUH ELU FFH ELU Q|WURQ \ÕOGÕ]Õ ya da bir kara delik) içerirler. øNL li =$06 ELOHúHQLQGHQ EDúOD\DQ ELU HYULP VHQDU\RVX ùHNLO ¶GH J|VWHULOPLúWLU %Dú \ÕOGÕ] 5RFKH \Õ÷ÕúWÕUPDNWD RODQ GúN NWOH OREXQX GROGXUPXúWXU NWOH DNWDUÕPÕ ELU RUWDN ]DUIÕQ ROXúPDVÕQD \RO DoDU YH EX ]DUI GDKD VRQUDNL DúDPDODUGD -cücesi ile bir normal ir. %X HYUHGH VLVWHP NDWDNOLVPLN GH÷LúHQ RODUDN DGODQGÕUÕOÕU 6RQUDNL ELU DúDPDGD DUWÕN normal olarak \ROGDú ELOHúHQRODQ úLPGLNL EDú \ÕOGÕ]ÕQ5RFKH OREXQXGROGXUDFD÷ÕQÕYH \DUÕ-D\UÕNHYUHVUHVLQFH \ROGDúÕQD PDGGH DNWDUDFD÷ÕQÕ GúQHELOLUL] %X DúDPDGDQ Vonra sistem, bir He- ya da CO-FFHVL LOH \ÕOGÕ] U]JDUODUÕ\ODNWOHND\EHWPHNWHRODQELUNÕUPÕ]ÕGHYELOHúHQLoHUPHNWHGLU <ROGDú5RFKHOREXQXGROGXUXUYH&2- JHQLúOH\HUHN J|UQPH] ROXU 2UWDN ]DUIÕQ ND\EROPDVÕQGDQ VRQUD VLVWHP ELU +H \D GD &2 \ROGDú \ÕOGÕ] LoHUPHNWHG FFHVLQHGR÷UXRODQNWOHDNWDUÕPÕRQXQNWOHVLQLQDUWPDVÕQDQHGHQROXU <Õ÷ÕúDQ PDGGH WDUDIÕQGDQ kenGL &KDQGUDVHNKDU OLPLWLQL DúPD\D ]RUODQDQ EH\D] FFH bir elektron yakalama o|NPHVLQH X÷UD\DELOLU &DQDO YH 6FKDW]PDQ YH &DQDO ,VHUQ YH /DED\ WDUDIÕQGDQ \DSÕODQ KHVDSODPDODU &KDQGUDVHNKDU ]RUODQDELOHFH÷LQLJ|VWHUPLúWLU OLPLWLQH oRN \DNÕQ RODQ ELU &2 -cücesinin bu anlamda bir çöküntüye 57 - ùHNLO'úNNWOHOL; ÕúÕQoLIWOHULLoLQRODVÕVHQDU\R Çift sistemlerdeki 3 – 8 M 56 51 erg mertebesinde olan DoDELOHQ \R]ODúPÕú &- \DQPDVÕ ROXU YH PDGGH 1L¶H G|QúU Üretilen ve yDNODúÕN HQHUML EH\D] FFH\L GD÷ÕWPD\D \HWHFHN E\NONWHGLU Özel NRúXOODU DOWÕQGD NDUERQ NDEXNWD \DNÕOGÕ÷ÕQGD NoN ELU NDOÕQWÕ NDODELOLU 7DDP DE 1RPRWR Bir CO-FFHVLQLQ EX QNOHHU SDWODPDVÕ WDP \D GD %LUEH\D]FFHQLQNWOH\Õ÷ÕúPDVÕQDNDUúÕWHSNLVLEH\D]FFHQLQNDUÕúÕPÕQDED÷OÕGÕU DUDOÕ÷ÕQGDNL NWOHOHUH VDKLS RODQ EDú \ÕOGÕ]ODUÕQ NDOÕQWÕODUÕ RODQ &2 EH\D] FFHOHULQGH WHUPRQNOHHU NDoD÷D \RO NÕVPHQPXKWHPHOHQELUWLS,VSHUQRYDVÕLOHELUWXWXODELOLU – 0J EH\D] FFHOHUL LoLQ oHNLUGHN \R÷XQOX÷X HOHNWURQ \DNDODPD HúLN Bu da elektron –\DNDODPDo|NPHVLQHYHELUQ|WURQ\ÕOGÕ]ÕQÕQROXúPDVÕQDQHGHQROXU (Miyaji ve ark. 1980, Sugimoto ve Nomoto, 1980). 'L÷HU WDUDIWDQ PDGGH \Õ÷ÕúWÕUDQ 1H GH÷HULQLQ|WHVLQHDUWDELOLU Belki de en önemli etken budur. %H\D]FFHELOHúHQLQVRQXQXEHOLUOH\HQGL÷HUELUHWNHQ\Õ÷ÕúPDQÕQRUDQÕGÕU , . 10-9 M\ÕO-1¶LQ DOWÕQGDNL \Õ÷ÕúPDRUDQODUÕLoLQ EXDQL SDUODPDODUR kadar güçlü olur ki, \Õ÷ÕúDQ PDGGHQLQ oRN E\N NÕVPÕ EHONL GH WDPDPÕ IÕUODWÕOÕU, böylece beyaz cücenin kütlesi artmaz. Büyük -9 \Õ÷ÕúPD RUDQODUÕ M\ÕO-1 - 10-8 M\ÕO-1 LoLQ DQLSDUODPDODU]D\ÕIWÕU, \Õ÷ÕúDQPDGGHQLQ oR÷X NDOÕU YH EH\D] cücenin kütlesi artar. 4.10-8 M\ÕO-1¶GHQE\N\Õ÷ÕúPDRUDQODUÕLoLQELUNDUERQWXWXúPDVÕROXúXU .oN \Õ÷ÕúPD RUDQODUÕ LoLQ ELULNWLULOHQ KLGURMHQ EHOLUOL ELU EDúODQJÕo NWOHVLQL DúWÕ÷ÕQGD JoO ELU QNOHHU DQL parlama IODú ile \DNÕOÕU 58 .h7/($.7$5,00(.$1ø=0$/$5, üçlü LMXRB’ler için genellikle Roche lobu cisim, VLVWHPLQ GDKD E\N NWOHOL ELOHúHQLGLU E|\OHFH NoN NWOHOL ELOHúHQGHQRODQ NWOH DNWDUÕPÕ NDUDUOÕ RODFDNWÕU 5RFKHOREX WDúPDVÕLoLQ LNLPHNDQL]PD YDUGÕU çekimsel 'úNNWOHOL \ÕOGÕ]ODUÕQ JoO \ÕOGÕ]U]JDUODUÕRODPD\DFD÷ÕQGDQ J WDúPDVÕ \ROX\OD NWOH DNWDUÕPÕ gereklidir. 6ÕNÕúÕN ÕúÕPDLOHDoÕVDOPRPHQWXPND\EÕ\DGDQNOHHUHYULP /0;5%¶OHU LoLQ HYULP KLND\HVL úLPGLOLN WDP RODUDN DoÕN GH÷LOGLU %L] EXUDGD ED]Õ RODVÕ GXUXPODUÕ J|]GHQ JHoLUHFH÷L]EN]ùHNLO¶GHNLHYULPVHQDU\RVX - $QDNROFFHVLQGHQ5RFKHOREXWDúPDVÕ KüçükNWOHOL\R]ODúPÕú\ÕOGÕ]GDQ5RFKHOREXWDúPDVÕ <R]ODúPDPÕúKHO\XP\ÕOGÕ]ODUÕQGDQ5RFKHOREXWDúPDVÕ .ÕUPÕ]ÕGHYOHUGHQ5RFKHOREXWDúPDVÕ *|]GHQJHoLULOHFHNELUoRNGXUXPLoLQ\DUÕoDSYHNWOHDUDVÕQGDELULOLúNLJHUHNOLGLUEX amaçla R =γ Mδ (18.1) úHNOLQGHELUED÷ÕQWÕNXOODQÕODFDN ve fDUNOÕGXUXPODULoLQSDUDPHWUHOHULQIDUNOÕGH÷HUOHULDOÕQDFDNWÕU $QDNROFFHVLQGHQ5RFKHOREXWDúPDVÕ ani SDWODPDODUÕ J|VWHUHQ JHoLFL ND\QDNODUGÕU &HQ ;-4, Aql X-1 gibi). Bu ani patlamalar PXKWHPHOHQ FFH QRYDODUÕQ DQL SDWODPDODUÕ\OD benzerdir (Robinson, 1976). Bu geçici kaynaklardaki VÕNÕúÕN ROPD\DQ FLVLP 5RFKH OREX WDúPDVÕ\OD NWOH DNWDUDQ * – . WD\I WUQGHQ GúN %LU oRN GúN NWOHOL ; ÕúÕQ oLIWL ND\QDNODUÕ ; ÕúÕQ NWOHOLDQDNRO\ÕOGÕ]ODUÕRODUDNJ|UQUOHU Bir K5 V Çizelge 1.2’den elde edilebilir: kütle = 0.69 M\DUÕoDS R ELU Q|WURQ \ÕOGÕ]ÕQÕQ NWOHVL LoLQ – 1.5 M GH÷HUL DOÕQDELOLU %X GXUXPGD NWOH RUDQÕ YH 5RFKH %L] EXUDGD ELU . FFHVL LOH ELU Q|WURQ \ÕOGÕ]ÕQGDQ ROXúDQ ELU VLVWHPLQ HYULPLQL J|]GHQ JHoLUHFH÷L] \ÕOGÕ]ÕQÕQ\DUÕoDSYHNWOHVLLoLQWDKPLQLGH÷HUOHU \DUÕoDSÕEN]GHQNOHP R = 0.38 + 0.2 log 0.5 = 0.32 A (18.2) olur. <|UQJHQLQoHNLPVHOÕúÕPD (GR)LOHGH÷LúPHVLLoLQJHUHNOLNDUDNWHULVWLN]DPDQ|OoH÷LED÷ÕQWÕVÕQGDQHOGH edilebilir: J yörünge J yörünge =− 32 G 3 M 1 M 2 (M 1 + M 2 ) A −4 5 c5 V − (18.3) ve böylece t GR = − J yörünge J yörünge = 1.22 10 9 A 4 M 1M 2 (M 1 + M 2 ) \ÕO olur, burada M1, M2 ve AJQHúELULPOHULQGHGLU K cücesinin Roche lobunuGROGXUGX÷XQXYDUVD\DUVDN (18.4) 59 A= 0.83 R ≅ 2.59 R 0.32 (18.5) elde ederiz.%XQDNDUúÕOÕNJHOHQG|QHPLVHGHQNOHP¶GHQ log P = 1.5 log A − 0.5 log( M1 + M 2 ) − 0.936 = −0.474 (18.6) P ≅ 0.336 gün = 8.06 saat olur. Problem 18.1: G|] |QQH DOÕQDQ VLVWHP LoLQ oHNLPVHO ÕúÕPD ]DPDQ |OoH÷LQL KHVDSOD\ÕS, HOGH HWWL÷LQL] GH÷HUL QNOHHU]DPDQ|OoH÷LLOHNDUúÕODúWÕUÕQÕ] dHNLPVHO ÕúÕPD ]DPDQ |OoH÷L QNOHHU ]DPDQ |OoH÷LQLQ \DNODúÕN RODUDN DNWDUÕPÕWDPDPHQ5RFKHOREX üçte biri mertebesindedir böylece kütle nun büzülmesiyle yönetilir. Problem 18.2: Denklem 18.2’yi, 15.16’da yerine yazarak ve α DODUDN NWOH DNWDUÕP KÕ]Õ LoLQ ELU WDKPLQ \DSÕQÕ] M M A 2 = 2( 1 − 1) 1 − . A M2 M 1 t GR (18.7) <DUÕoDSLOHNWOHDUDVÕQGD úHNOLQGHELUED÷ÕQWÕNDEXOHGLOLUVH A 1 M = (δ − ) 1 A 3 M1 HOGHHGLOLUYH ED÷ÕQWÕODUÕQÕQ NDUúÕODúWÕUÕOPDVÕQGDQ LVHNWOHDNWDUÕPKÕ]Õ (18.8) M 1 M1 LoLQ\DNODúÕNELULIDGH elde edebiliriz. $QDNROFFHOHULLoLQED÷ÕQWÕVÕQGDγ = 1 ve δ =0.5DOÕQDELOLUE|\OHFH M 1 1 1 = M 1 tGR M 1 / M 2 − 13 / 12 (18.9) ya da M 1 1 1 ≈ M 1 tGR M 1 / M 2 − 1 elde ederiz. (18.10) 60 Problem 18.3: (18.3), (18.9) ve (15.13) ED÷ÕQWÕODUÕQÕ ELUOHúWLUHUHN NWOH DNWDUÕP KÕ]ÕQÕ, \ÕOGÕ] NWOHVLQLQ ELU fonksiyonu olarak KHVDSOD\ÕQÕ] Çizelge 1.2’den yararlanarak, γ ve δ SDUDPHWUHOHUL LoLQ \XNDUÕGD |QHULOHQ GH÷HUOHULGR÷UXOD\ÕQÕ] %X GXUXP ELU DQDNRO FFHVL LoLQ NWOH DNWDUÕPÕQÕQ QHGHQ ROGX÷X oHNLPVHO ÕúÕPDQÕQ M 1 ≈ 10 −10 M\ÕO-1 PHUWHEHVLQGHROGX÷XQXJ|VWHULU X-ÕúÕQÕúÕWPDVÕ LX = GM X M R mertebeVLQGH NWOHVL \DNODúÕN 0 FLYDUÕQGDGÕU, böylece küçük kütleli X-ÕúÕQ ND\QD÷Õ oLIWOHULQ ;-ÕúÕQ ÕúÕWPDODUÕ \DNODúÕN RODUDN 36 erg s-1 mertebesindedir. Bu ise küçük kütleli parlak X-ÕúÕQ ND\QDNODUÕQÕ DoÕNODPD\D \HWHUOL GH÷LOGLU %LU PDQ\HWLN \ÕOGÕ] U]JDUÕQÕQ QHGHQ -9 RODFD÷Õ G|QPH IUHQOHPHVL NWOH DNWDUÕPÕQÕ 10 M\ÕO-1 GH÷HULQLQ ELU NDo NDWÕQD NDGDU KÕ]ODQGÕUÕ\RU RODELOLU (Verbunt ve Zwan, 1981). ED÷ÕQWÕVÕ\OD YHULOLU %LU Q|WURQ \ÕOGÕ]ÕQÕQ \DUÕoDSÕ NP .oNNWOHOL<R]ODúPÕú\ÕOGÕ]ODUGDQ5RFKHOREXWDúPDVÕ 9 - %LU NÕUPÕ]Õ FFH Q|WURQ \ÕOGÕ]Õ VLVWHPLQLQ HYULPLQL \|QOHQGLUHQ oHNLPVHO ÕúÕPD \ÕOOÕN olurken, QNOHHU ]DPDQ 10 |OoH÷LQLQ ]DPDQ |OoH÷L bir zaman öOoH÷LQGH \ÕO PHUWHEHVLQGHGLU .WOH DNWDUÕPÕ QHGHQL\OH \ÕOGÕ] =$06¶DSDUDOHORODUDNDúD÷Õ\DGR÷UXHYULPOHúLU anakoluQ HQ DOWQRNWDVÕQD , kütlesi ∼0.1 M \DUÕoDSÕ ∼0.2 R YH ÕúÕWPDVÕ GD ∼0.01 L’dir. %|\OHFH DUWÕN ÕVÕVDO ]DPDQ |OoH÷L |QFHNLQLQ \DNODúÕN NDWÕ NDGDU YH EX QHGHQOH GH tGR LOH KHPHQ KHPHQ D\QÕ PHUWHEHGHGLU Tc NULWLN GH÷HULQ DOWÕQD LQHFH÷LQGHQ PHUNH]L KMLGURMHQ \DQPDVÕ GXUXU &FH \ÕOGÕ] \R]ODúÕU %X GXUXPGD NWOH- \DUÕoDS LOLúNLVL, .WOHQLQ D]DOPDVÕ\OD ÕVÕVDO ]DPDQ |OoH÷LGHGDKDKÕ]OÕ ELU úHNLOGH DUWDU &FHELOHúHQ XODúWÕ÷ÕQGD \DNODúÕNRODUDN R = 0.013(1 + X ) 5 / 3 M −1 / 3 (Paczynski 1967a) ya da R = 0.03M −1 / 3 (denklem 18.1’deki γ =0.03 ve δ =-GH÷HUOHULLoLQ ED÷ÕQWÕODUÕ LOHU verilir. R ≈ M −1 / 3 LOLúNLVL NWOHVL D]DOGÕ÷ÕQGD \ÕOGÕ]ÕQ JHQLúOH\HFH÷L DQODPÕQD JHOLU Bu ise \|UQJHQLQ JHQLúOH\HFH÷LQL LPD HGHU DNVL WDNWLUGH \R]ODúPÕú GH÷HQ ELOHúHQ 5RFKH OREXQX WDúDUGÕ %|\OHFH |QFHOHUL GDUDOÕ\RU RODQ \|UQJH \HQLGHQ JHQLúOHU EDúND ELU GH÷LúOH G|QHP ELU PLQLPXP GH÷HUH GR÷UX NÕVDOÕU 3DF]\QVNL YH 6LHQNLHZLF] YH :HEELQN YH DUN WDUDIÕQGDQ \DSÕODQ KHVDSODPDODU EX PLQLPXP G|QHPLQ \DNODúÕN RODUDN GN ROGX÷XQX RUWD\D NR\PXúWXU <R]ODúPÕú KHO\XP \ÕOGÕ]ÕQÕQ \DUÕoDSÕ D\QÕ NWOHOL bir H-]HQJLQ\R]ODúPÕúFFH\ÕOGÕ]ÕQ \DUÕoDSÕQGDQoRNGDKDNoNWU\DNODúÕNRODUDN \DUÕVÕNDGDU'ROD\ÕVÕ\OD yörüngesi de daha küçük olabilir. 5RFKH OREX WDúPD HYUHVL VÕUDVÕQGD ELU +H EH\D] FFHVLQGHQ ELU Q|WURQ -8 -1 \ÕOGÕ]ÕQDRODQNWOHDNWDUÕPKÕ]Õ M \ÕO GH÷HULQHXODúDELOLUYHEXGH÷HUSDUODNELU;-ÕúÕQND\QD÷ÕQÕQJFQ DoÕNOD\DELOLU <R]ODúPDPÕúELUKHO\XP\ÕOGÕ]ÕQGDQ5RFKHOREXWDúPDVÕ - ,VÕGHQJHVLQGHNLVDIKHO\XPGDQROXúPXú\ÕOGÕ]ODUÕQ\DNODúÕNNWOH \DUÕoDSLOLúNLVL3DF]\QVNLWDUDIÕQGDQ , (18.1) denklemindeki γ =0.2 ve δ =0.86 GH÷HUOHULQHNDUúÕOÕN JHOPHNWHGLU Bu da (18.8) ED÷ÕQWÕVÕQÕQ\DNODúÕNRODUDN úHNOLQGH YHULOPLúWLUEX ED÷ÕQWÕ 61 biçiminde, \D]ÕODELOHFH÷LDQODPÕQDJHOLU Problem 18.4: Küçük kütlHOL DQDNRO GXUXPXQGDQ EDúOD\DUDN EX GXUXP LoLQ \Õ÷ÕúPD KÕ]ÕQÕ |OoHNOHQGLULQL] A 4 4 X]DNOÕ÷ÕQÕQ \Õ÷ÕúPD KÕ]ÕQD LOLúNLQ denklemlere A úHNOLQGH JLUGL÷LQL YH E|\OHFH \Õ÷ÕúPD KÕ]ÕQÕQ kat büyük -8 -1 RODFD÷ÕQÕGROD\ÕVÕ\OHGH0 M \ÕO PHUWHEHVLQGHRODFD÷Õ gerçe ÷LQGHQ\DUDUODQÕQÕ] 'DKD JHQLú \|UQJHOL oLIWOHU EX úHNLOGH HYULPOHúPH\HELOLUOHU RQODU EXQXQ \HULQH ELU NÕUPÕ]Õ GHY ELOHúHQOL oRN JHQLúoLIWOHUGXUXPXQDHYULPOHúHELOLUOHU.LSSHQKDKQYHDUN Benzer sistemler, \ÕOGÕ] \R÷XQOX÷XQXQ oRN \NVHN ROGX÷X NUHVHO NPHOHUGHNL ELU NÕUPÕ]Õ GHYLQ ELU Q|WURQ \ÕOGÕ]ÕWDUDIÕQGDQ\DNDODQPDVÕ\ODGDROXúDELOLU (Sutantyo, 1975; Hills ve Day, 1976). %LUNÕUPÕ]ÕGHYGHQ5RFKHOREXWDúPDVÕ - in DWDVÕ ROan sistemler muhtemelen, helezonik ge dönemi 0.5 gün FLYDUÕQGDNLGH÷HUOHUHLQHU<DNODúÕN M NWOHOL\ÕOGÕ]ODULoLQEXGH÷HULQDOWÕQGDNLG|QHPOHUGHHYULPEDVNÕn bir .DWDNOLVPLN GH÷LúHQOHU LOH NoN NWOHOL ; ÕúÕQ oLIW VLVWHPOHULQ úHNLOGHGDUDODQ\|UQJHOLELURUWDN]DUIHYUHVLER\XQFDHYULPOHúLUOHU<|UQJHGDUDOÕUYH\|UQ úHNLOGH oHNLPVHO ÕúÕPD LOH \|QOHQGLULOLU YH EX GD \|UQJHQLQ GDUDOPDVÕQD \RO DoDU 7DDP YH DUN %X VLVWHPOHULQ ED]ÕODUÕQGD VRQUDNL HYULPOHúPH ELU DQDNRO \ÕOGÕ]Õ \D GD ELU NoN NWOHOL \R]ODúPÕú \ÕOGÕ]ÕQ 5RFKH OREXWDúPDVÕúHNOLQGHGLU Daha gHQLúVLVWHPOHUGHE\NNWOHOLELOHúHQNÕUPÕ]ÕGHYGXUXPXQDHYULPOHúHELOLU(÷HUEXELOHúHQLQNWOHVLoRN E\NGH÷LOVHELU\R]ODúPÕúKHO\XPoHNLUGH÷LJHOLúHELOLU+LGURMHQ\DQPDNDEX÷XGÕúDYHLoHUL\HGR÷UXJHQLúOHU Böylece hidrojence zengin zarf giderek KHO\XPFD ]HQJLQOHúLUNHQ KLGURMHQ \DQPDVÕQÕQ VRQXFXQGD GDKD ID]OD KHO\XPXQ oHNLUGH÷H HNOHQPHVLQLQ ELU VRQXFX RODUDN KHO\XP oHNLUGH÷LQ NWOHVL VUHNOL RODUDN DUWDU Enerjinin QHUHGH\VHWDPDPÕoHNLUGHNWHUHWLOLU Çekirdek kütlesindeki M C E\PHVLLOH\ÕOGÕ]ÕQL ÕúÕWPDVÕDUDVÕQGD M C ≈ vL úHNOLQGHELULOLúNLYDUGÕUJUDPPDGGHGHNLKLGURMHQ\DQPDVÕ X LOHVDOÕQDQHQHUML E = mc 2 = 0.7 × 0.007(3 ×1010 ) 2 = 4.41× 1018 HUJ V − dir, böylece L = 4.41 × 1018 M C olur; JQHú ELULPOHULQH G|QúWUG÷P]GH YH oHNLUGHN E\PHVLQL de \ÕO ELULPLQGHLIDGHHWWL÷LPL]GH M C = 1.32 × 10 −11 L elde ederiz.*HQLúOHPH]DPDQÕ.HOYLQ-+HOPKROW]]DPDQ|OoH÷LQGHQoRNE\NROGX÷Xndan, R >> t KH R çeNLPVHO ÕúÕWPD LKPDO HGLOHELOHFHN NDGDU Nüçüktür. dHNLUGHN NWOHVLQLQ E\PHVL \DUÕoDSÕQ E\PHVLQH YH ÕúÕWPDQÕQDUWPDVÕQDQHGHQROXU%XLVHGHYNROXQXQoÕNÕúÕQDNDUúÕOÕNJHOLU 62 , 0.2 M’lik bir çekirdek kütlesi için, yaNODúÕN×108\ÕOVUHQYH3×10-9 M\ÕO-1GH÷HULQGHELUNWOHDNWDUÕPKÕ]ÕEXOPXúODUGÕU .WOHDNWDUÕPKÕ]Õ:HEELQNYHDUNWDUDIÕQGDQKHVDSODQPÕúWÕURQODU 18.6. Kütleli X-ÕúÕQoLIWOHUL - .h7/(/ø; ,ù,1dø)7/(5ø1ø10;5%¶V7h5/(5ø çift X-ÕúÕQ ND\QDNODUÕQÕQ ELU Q|WURQ \ÕOGÕ]Õ \D GD ELU NDUD GHOLN NDUPDúÕNWD\IOÕJoO;-ÕúÕQND\QDNODUÕQÕQL\LELOLQHQELUVÕQÕIÕQÕQ\HVLGLUOHU2QODUD\QÕ]DPDQGD,JHQoÕúÕQÕPOÕ \ÕOGÕ]ODU LOHGHLOLúNLOLGLUOHU Bunlar, WU ND\QDNODURODUDNVÕQÕIODQGÕUÕOÕUODU%X JUXS IDUNOÕ |]HOOLNOHUH VDKLS LNL *|]OHPOHU VRQXFXQGD oR÷X EHONL GH EWQ LoHUGLNOHULQH GDLU NDQÕWODU EXOXQPXúWXU 2QODUÕQ ELU NÕVPÕ DWDUFD oLIW ; ÕúÕQ ND\QD÷Õ ELU NÕVPÕ GD ROGXNoD DOWJUXEDD\UÕODELOLUOHU 1. Standard sistemler: StandardVLVWHPOHU NDOÕFÕND\QDNODUGÕU \DQL;-ÕúÕQODUÕ G]HQOL ELUG|QHPOLOL÷H VDKLSWLU YH RSWLN ÕúÕN oÕNWÕODUÕ LVH VÕNÕúÕN \ÕOGÕ]ÕQ RSWLN ELOHúHQ ]HULQGH QHGHQ ROGX÷X oHNLPVHO ER]XOPDODUÕQ \RO DoWÕ÷Õ HOLSVRLGDO GH÷LúLPOHU J|VWHULU 2SWLN ELOHúHQ 5RFKH OREXQX QHUHGH\VH GROGXUPXúWXU YH VLVWHP G]HQOL RODUDN tutulmalar gösterebilir. Böylesi biU NDo RQ VLVWHP ELOLQPHNWHGLU YH VRQ GHUHFH JoO VDOPD oL]JLOHUL \DUGÕPÕ\OD RQODUÕWDQÕPODPDNNROD\GÕU -62 Bu sistemlerin atDODUÕ 2%-\ÕOGÕ]ODUÕGÕU Bu X-ÕúÕQ ND\QDNODUÕQÕQ ELU oR÷X DWDUFDGÕU Atma dönemleri 0.75- GN DUDVÕQGD GH÷LúLU X-ÕúÕQ VDODQ ELOHúHQLQ 'RSSOHU EHOLUOHPHOHUL YH EX ND\QDNODUÕQ ED]ÕODUÕQGDNL J|UVHO J|]OHPOHU Q|WURQ \ÕOGÕ]Õ LOH RSWLN ELOHúHQLQLQ \|UQJHOHULQin belirlenebilmesine olanak VD÷ODU Bu yörüngelerden yararlanÕODUDN VLVWHPLQ NWOH RUDQÕ YH ELOHúHQlerin kütleleri elde edilebilir. Nötron \ÕOGÕ]ODUÕQÕQEHOLUOHQHQNWOHOHUL M yöresinde iken,RSWLNELOHúHQOHULQLQNWOHOHUL0’den, 40 M’e kadar de÷HUOHUDODELOPHNWHGLU '|QHPOHUNÕVDROXSJQLOHJQDUDVÕQGDGÕUELUD\GDQELUD]GDKDX]XQELUG|QHPHVDKLSRODQ8 VLVWHPL ELU LVWLVQDGÕU 2. Geçici Sistemler: Bu grupta opWLN ELOHúHQOHU 5RFKH OREODUÕQÕ GROGXUPDPÕú RODQ %H \ÕOGÕ]ODUÕGÕU dR÷XQOXNOD tutulma yoktur ve düzenOL HOLSVRLGDO GH÷LúLP J|]OHQPH] Kütleleri –standard kütleli X-ÕúÕQ oLIWOHULQNLQGHQ GúNWU- 10 M ile 20 M DUDVÕQGD GH÷LúLU %X JUXED \H RODQ ELU oRN FLVLPGHQ DOÕQDQ ;-ÕúÕQ DNÕODUÕ VDELW ROPD\ÕSDQLSDWODPDODUJ|VWHUPHNWHGLU Büyük kütleli X-ÕúÕQoLIWOHULQGHQL\LELOLQHQOHULQED]Õ|]HOOLNOHULdL]HOJH¶GHYHULOPLúWLU Çizelge 18.1. Çok iyi bilinen X-ÕúÕQoLIWOHULVWDQGDUGND\QDNODUYHJHoLFLOHUYHRQODUÕQWHPHO|]HOOLNOHUL ;,úÕQÕ.D\QD÷Õ 4U1700-37 =HD153919 4U1900-40 =VelaX-1 =HD77581 Cyg X-1 =4U1956+35 =HDE226868 Cen X-3 =4U1119-60 4U1538-52 SMC X-1 LMC X-4 4U0352-+30 =X Per Tayf Türü %Dú\ÕOGÕ]ÕQ <ROGDú\ÕOGÕ]ÕQ Dönem <|UQJHDoÕNOÕ÷Õ O6.5f Kütlesi 30 kütlesi 2 3.41180 A (R biriminde) 20 B0.5Ib 21.7 1.5-3 8.96 51 O9.7Iab >25 9 5.607 43 O6.5IIIc 18 1 2.087 18.3 B0.5Iab O9.5V-III 20±8 15 20 3.73 0.9 1.3 3.893 1.4083 27.4 16.9 O9.5 ≈20 >2 580 820 Referanslar Vanbeveren (1977) Avni (1976) Mason ve ark. Tananbaum ve Tucker (1974) Van Paradijs Chevalier ve Ilovaisky (1974) De Loore ve ark. (1979) 63 - .h7/(/ø; ,ù,1dø)7/(5ø1ø1(95ø0ø Standard kütleli X-ÕúÕQoLIWOHUL - - .DOÕFÕVWDQGDUGNWOHOL; ÕúÕQoLIWOHULYH%H; ÕúÕQoLIWOHUL\ÕOGÕ]U]JDUODUÕ\ODNWOHND\EÕYHNWOHDNWDUÕPÕJLEL DUGÕúÕN VUHoOHULQ VRQXFX RODUDN ELU VSHUQRYD SDWODPDVÕQÕQ ROXúPDVÕ YH bu suretle o|NPú FLVLPOHULQ Q|WURQ \ÕOGÕ]ODUÕQÕQ\DGDNDUDGHOLNOHULQROXúPDVÕ\ROX\ODGR÷UXGDQGR÷UX\DNWOHOL\DNÕQoLIWVLVWHPOHUGHQROXúXUODU %XJQ NDEXO HGLOHQ JHQHO J|Uú LNL ÕúÕWPDOÕ ELOHúHQGHQ ROXúDQ ELU NWOHOL \DNÕQ oLIW VLVWHPLQ LON RODUDN NWOH GH÷LúLPL YH VRQXQGDNL ELU SDWOD mayla ve bu suretle X-ÕúÕQ ND\QD÷Õ GXUXPXQD Kütleli X-ÕúÕQ ND\QDNODUÕQÕQ HYULPLQH LOLúNLQ LON VÕNÕúÕN ELOHúHQLQ ROXúPDVÕ HYULPOHúWLNOHUL úHNOLQGHGLU YDQ GHQ +HXYHO YH +HLVH D\UÕQWÕOÕ KHVDSODPDODU GH /RRUH YH 'H *UHYH WDUDIÕQGDQ \D\ÕQODQPÕúWÕU 'DKD LOHUL ELU DúDPDGD NWOHOL \ÕOGÕ]5RFKHOREXQXGDGROGXU arak madde kaybeder. 6LVWHPLQG|QHPLúLGGHWOLELUúHNLOGHGúHUYHQ|WURQ\ÕOGÕ]Õ - KHOH]RQLNRODUDNELOHúHQLQH \DNODúÕU %X \ROOD oRNNÕVD G|QHPOL ELU oLIWLQ ROXúPDVÕ\ODLNLQFLELU ; ÕúÕQDúDPDVÕ ROXúDELOLU 6RQXQGD \ROGDú GD SDWODU YHLNL D\UÕ Q|WURQ \ÕOGÕ]ÕQGDQ ROXúDQ ELU VLVWHP RUWD\D oÕNDU øON VSHUQRYD SDWODPDVÕQGDQVRQUDSDWOD\DQ\ÕOGÕ]ÕQVLVWHPLQGDKDNoNNWOHOLELOHúHQLROPDVÕQGDQGROD\ÕVLVWHPED÷OÕNDOÕU %XQXQOD ELUOLNWH LNLQFL SDWODPDQÕQ VLVWHPL GD÷ÕWPD DoÕVÕQGDQ oRN GDKD \NVHN ELU RODVÕOÕ÷D VDKLS ROPDVÕQD UD÷PHQHQGHUELUNDoGXUXPGDVLVWHPED÷OÕNDOÕUYHLNLQ|WURQ\ÕOGÕ]ÕELUoLIWDWDUFDVLVWHPLROXúWXUXUODU Standard X-ÕúÕQND\QDNODUÕLoLQHYULPúHPDVÕùHNL¶GHJ|VWHULOPLúWLU - 3 MRODQ \ÕOGÕ]ODUÕ dikkate aliyoruz. .RUXQXPOX HYULPOHúPH \D GD RUWD GHUHFHGHQ NWOH ND\EÕ GXUXPXQGD EDú \ÕOGÕ]ÕQ o|NPH DQÕQGDNLNDOÕQWÕVÕGDKDNoNNWOHOLELOHúHQRODFDNWÕU&HPEHU\|UQJHOLELUoLIWVLVWHPLQELOHúHQOHULDUDVÕQGDNLA %XUDGD GR÷UXGDQoHNLUGHN o|NPHVLDúDPDVÕQD HYULPOHúWLNOHULLoLQ oHNLUGHN NWOHOHUL X]DNOÕ÷Õ A (1 + q) 2 q 0 = A0 (1 + q 0 ) 2 q (18.4) ED÷ÕQWÕVÕQDJ|UHGH÷LúLU DDKDNoN NWOHOLELOHúHQLQ SDWODPDVÕ, simetrik olmDVÕ KDOLQGH VLVWHPLGD÷ÕWPD\DFDN YH bir asimetrik patlama GXUXPXQGD ELOH VLVWHP GD÷ÕOPD\DELOHFHNWLU NRUXQXPOX RODUDN HYULPOHúHQ ELU VLVWHPGHNL VÕNÕúÕN \ÕOGÕ] SUDWLN RODUDN KHU GXUXPGD VLVWHPH ED÷OÕ NDODFDNWÕU 'H &X\SHU GH /RRUH YDQ GHQ +HXYHO De Cuyper ve ark. 1977).%WU\DGDJHo$WUNWOHDNWDUÕPÕQGDQVRQUDNLNDOÕQWÕNWOHVL log M 1 f = −1.13 + 1.42 log M 1 X =YHZ =LoLQ9DQEHYHUHQ log M 1 f = −1 + 1.4 log M 1 X =YHZ =LoLQ7XWXNRY YH<XQJHOVRQ (18.5) ED÷ÕQWÕODUÕLOHWDKPLQHGLOHELOLU hesaplamalara, NWOH RUDQÕQÕQ q-1 úHNOLQGHNLJ|UHOLRODUDNNoNEDúODQJÕoGH÷HUOHULLOH EDúODPDNJHUHklidir. Bununla birlikte bu seneryo, küçük q-1 GH÷HUOL VLVWHPOHULQ DúÕUÕ GH÷PH DúDPDVÕQD GR÷UX JHOLúHFHNOHUL JHUoH÷L \]QGHQ oRN GD JHUoHNoL görünmemektedir. Bunun nedeni, \Õ÷ÕúPD ]DPDQ |OoH÷LQLQ NWOH ND\EÕ ]DPDQ |OoH÷LQGHQ GDKD E\N ROPDVÕ E|\OHFH DOÕFÕ \ÕOGÕ]ÕQ GD 5RFKH OREXQX GROGXUPDVÕ YH EX VXUHWOH GH RUWDN ELU ]DUI LOH oHYULOL, dH÷HQ bir NRQILJXUDV\RQXQ RUWD\D oÕNPDVÕGÕU 'L÷HU WDUDIWDQ NWOH DNWDUÕPÕ QHGHQL\OH NoN NWOH RUDQOÕ VLVWHPOHUGHNL A X]DNOÕ÷ÕDNWDUÕPER\XQFDoRNNoOUYHNWOHOHUHúLWOHQGL÷Lnde sistem minimum D\UÕNOÕ÷DXODúÕU .RUXQXPOX NWOH DNWDUÕPÕ\OD LNL JQON \|UQJH G|QHPOHUL HOGH HGHELOPHN LoLQ q-1 LoLQ D\UÕNOÕN \DUÕ\DGúHU%|\OHFH NRUXQXPOXYDUVD\ÕPÕ DOWÕQGD JQGHQ GDKD NÕVDRODUDNJ|zlenen VSHUQRYD VRQUDVÕ \|UQJHG|QHPOHULQL DoÕNODPDN LPNDQVÕ] J|UQPHNWHGLU2UWDN ELU]DUI ROXúWXUXOGX÷XQGD L2 ya da L3¶GHQ NWOH ND\EÕ EHNOHQPHOLGLU %X \ROOD PH\GDQD JHOHQ NWOH ND\EÕ ELOHúHQOHULQ RUWDODPD \|UQJH DoÕVDOPRPHQWXPXQGDQçok daha büyük ELU|]DoÕVDOPRPHQWXPGH÷HULQHVDKLSWLU %LU FLYDUÕQGDNL NWOH RUDQODUÕ LoLQ H÷HU D\UÕODQ PDGGH DNÕPÕQÕQ DoÕVDO PRPHQWXPX RQXQ VLVWHPGHNL JHUoHN için birlikte dönme bunu VD÷ODU bu durumda L2QRNWDVÕQGDNL|]DoÕVDOPRPHQWXP|]\|UQJHDoÕVDOPRPHQWXPXQXQ\DNODúÕNRODUDNNDWÕROXU \HULQHLOLúNLQDoÕVDOPRPHQWXPGH÷HULQHHúLWROGX÷XNDEXOHGLOLUVH|UQH÷LQ/2 64 - ùHNLO6WDQGDUGNWOHOL; ÕúÕQoLIWOHULQLQHYULPLGH/RRUHYH'H*UHYH Böylece dJ J = 4( ) dM M (18.6) J ≈ M (M, sistemin toplam kütlesi) (18.7) ya da olur. Bu evre süresince kütle r.%X \ROODED]Õ;-ÕúÕQ YH:5oLIWOHULQLQ&HQ ;-3, SMC X-1, CX Cep (P = 1.6 6RQXoRODUDN ¶GHQ NoN NWOH RUDQOÕ VLVWHPOHU ELU RUWDN ]DUI HYUHVLQH HYULPOHúLUOHU YHDoÕVDOPRPHQWXP ND\EHGLOL g), CQ Cep (P J NÕVD \|UQJH G|QHPOHUL DoÕNODQDELOLU %LU FLYDUÕQGD NWOH RUDQOÕ VLVWHPOHU NRUXQXPOX 65 RODUDN HYULPOHúHELOLUOHU YH EX GD JQ \D GD GDKD X]XQ \|UQJH G|QHPOL VSHUQRYD VRQUDVÕ oLIWOHULQ RUWD\D oÕNPDVÕQD\RODoDU - ve B-WU WD\IVDO oLIWOHULQ \DOQÕ]FD ¶ ¶WHQ NoN NWOH RUDQODUÕQD sahiptir. dRN NÕVDG|QHPOL:5YH;-ÕúÕQoLIWOHULQLQ ROXúDELOPHVLLoLQEXVLVWHPOHUGHNWOHYHDoÕVDOPRPHQWXP (YULPOHúPHPLú NÕVD G|QHPOL 2 ND\ÕSODUÕQÕQ PH\GDQD JHOPHVL EHNOHQLU 6LVWHPOHULQ oRN E\N ELU NÕVPÕ NRUXQXPOX RODUDN HYULPOHúLU YH EX GD - VSHUQRYDSDWODPDVÕQGDQVRQUDJQGHQGDKDX]XQG|QHPOL; ÕúÕQoLIWOHULQLQROXúPDVÕQD\RODoDU Problem 18.4: Denklem 18.5’e uygun olarak kütle kaybedenEDúODQJÕoG|QHPLJQYHNWOHVL 25 M+ 20 M RODQ ELU =$06 VLVWHPL LoLQ KHO\XP \ÕOGÕ]Õ NDOÕQWÕVÕQÕQ NWOH DNWDUÕPÕQGDQ VRQUD Wolf-5D\HW \ÕOGÕ]ÕQÕQ U]JDUODUÕQHGHQL\OH0 GDKDNWOHND\EHWWL÷LQLYDUVD\DUDNVRQXoG|QHPGH÷HULQLKHVDSOD\ÕQÕ]. ùHNLO%DúODQJÕoG|QHPLJQRODQELU0 + 10 MVLVWHPLQLQHú]DPDQOÕHYULPL(YULPDúDPDODUÕD\UÕN\DUÕ-D\UÕN NWOHOL ELU KHO\XP \ÕOGÕ]Õ LOH 20.5 M kütleli bir YH GH÷HHQ úHNLOGH EHOLUWLOPLúWLU +HVDSODPDODUÕQ VRQXQGD VLVWHP 0 NWOHOL ELOHúHQ LoHUPHNWHGLU 6LVWHPLQ G|QHPL JQGU %\N NWOHOL ELOHúHQ \ÕOGÕ] U]JDUODUÕ\OD NWOH ND\EHWPHNWHGLU ama KHO\XP \ÕOGÕ]Õ GDKD GD HYULPOHúLU YH VRQXQGD SDWOD\DUDN JHUL\H ELU Q|WURQ \ÕOGÕ]Õ NDOÕQWÕVÕ EÕUDNÕU 6LPHWULN SDWO durumunda dönem 81 gün olur (de Loore ve ark. 1984). 18.6.3. Be X-,ù,1dø)7/(5ø1ø125ø-ø1ø Bu tür X-ÕúÕQND\QDNODUÕ NoNEDúODQJÕo NWOHOL 20MVLVWHPOHUWDUDIÕQGDQROXúWXUXOXUODU Bir örnek olarak, EDúODQJÕo G|QHPL JQ RODQ ELU 5 M + 10 M VLVWHPLQLQ Hú ]DPDQOÕ HYULPL ùHNLNO ¶WH J|VWHULOPLúWLU GH Loore ve ark. 1984). 6LVWHP \DNODúÕN PLO\RQ \ÕO VRQUD \DUÕ-D\UÕN GXUXPD JHOLU YH \DNODúÕN \ÕO VRQUD GH÷HQ HYUHVLQH HYULPOHúLU 6LVWHPGHQ NWOH DWÕOÕU VLVWHP \HQLGHQ \DUÕ-D\UÕN GXUXPD JHoHU YH \ÕO VRQUD KHO\XPXQ\DQPD\DEDúODPDVÕ\ODLNLELOHúHQGH÷HQGXUXPDJHOLUOHU Sonuç sistem, -3.42 M NWOHOLELUEDú\ÕOGÕ] ile 20.5 M NWOHOL ELU \ROGDú- 68 günlük bir yörünge dönemine sahiptir. 10 M¶GHQ EDúOD\DQ \Õ÷ÕúPD ELOHúHQL sonunda 20.5 M¶H XODúÕU EX ELOHúHQ =$06¶D SDUDOHO ELU \RO ER\XQFD HYULPOHúLU <DYDú NWOH DNWDUÕP HYUHVL EDúODGÕ÷ÕQGD HYULP \ROX =$06¶DGR÷UX NÕYUÕOÕU EXQGDQ VRQUD \ÕOGÕ]WÕSNÕ 0 NWOHOLELU =$06 \ÕOGÕ]Õ JLEL HYULPOHúLU%XVÕUDGDEDú\ÕOGÕ]ÕQKHO\XPNDOÕQWÕVÕHYULPLQLVUGUUYHSDWODU%XHYUHGHVLVWHP\DNODúÕN0 kütleli bir Be-ELOHúHQL LOH 0 NWOHOL ELU Q|WURQ \ÕOGÕ]Õ ELOHúHQLQGHQ ROXúDQ ELU %H-X-ÕúÕQ oLIWL ROXúWXUPXú olur.(YULPLQúHPDWLNELUJ|VWHULPLùHNLO¶WHYHULOPLúWLU 66 Be X-ÕúÕQoLIWOHULQLQROXúXPX ùHNLO 18.7. Kütleli X-ÕúÕQoLIWOHULQLQNRUXQXPVX]HYULPOHUL 'DKD |QFH GH÷LQLOGL÷L ]HUH NRUXQXPOX YDUVD\ÕPÕ \DNÕQ oLIW VLVWHPOHULQ HWNLOHúLPOL HYULPOHULQL yeterli bir úHNLOGHWDQÕPOD\DELOPHN EDNÕPÕQGDQ EDVLW NDOPDNWDGÕU YH NWOH DNWDUÕP HYUHVL ER\XQFD |QHPOL RUDQGD NWOH YH DoÕVDOPRPHQWXPND\EÕPH\GDQDJHOL\RURODELOLU'DKDVÕ\ÕOGÕ]U]JDUODUÕ\ODNWOHND\EÕGDGLNNDWHDOÕQPDOÕGÕU q = 0.8 –¶GDQGDKDNoNNWOHRUDQODUÕLoLQVHQHU\RoRNGH÷LúPH]YHNRUXQXPOXGXUXPGDNLQe benzer evrim örnekleri elde ederiz. $QFDNNWOHRUDQÕQÕQFLYDUÕQGDNLGH÷HUOHULQGHGXUXPIDUNOÕGÕU Böylesi bir durumda, her LNLELOHúHQLQHYULPVHO ]DPDQ|OoH÷LSUDWLN RODUDN D\QÕGÕU E|\OHFH HYULPOHúPLú EDú \ÕOGÕ]SDWODGÕ÷ÕQGD, \ROGDúÕQ kalan ömrü çokNÕVDGÕUùHNLO¶GHNWOHRUDQODUÕq = 0.75 ve q = 0.925 olan iki sistemin evrimiJ|VWHULOPLúWLU øNLQFL GXUXPGD LNL :5 \ÕOGÕ]OÕ ELU HYUH ROXúXU YH EXQX ELU NÕVD :5 NDoDN HYUHVL WDNLS HGHU %Dú \ÕOGÕ] - SDWODPDGDQ|QFH\ROGDúELOHúHQ]DWHQ5RFKHOREXQXWDúPD\DEDúODPÕúROXUE|\OHFH2%NDoDNDúDPDVÕLOH; ÕúÕQ ve kabul ediOPLúWLU EX GXUXPXQ G|QHP ]HULndeki etkisi DúDPDVÕ J|]OHQPH] %X |UQHNWH EDú \ÕOGÕ] WDUDIÕQGDQ DNWDUÕODQ PDGGHQLQ ¶VLQLQ VLVWHPL WHUN HWWL÷L EHUDEHULQGH GH DoÕVDO PRPHQWXPXQ ¶VLQL J|WUG÷ son derece güçlüdür. 18.8. Kütleli X-ÕúÕQoLIWOHULQLQVRQXoHYULPOHUL d(.ø06(/(ù=$0$1/,/,.9(d(.ø06(/.$5$56,=/,. <HWHULQFH NÕVD G|QHPOHU LoLQ oHNLPVHO NXYYHWOHU VSHUQRYD ROD\ÕQGDQ VRQUDNL ELU NDo PLO\RQ \ÕO LoHULVLQGH yörüngeQLQ oHPEHUOHúPHVLQH YH Hú]DPDQOÕ G|QPH\H QHGHQ ROXUODU Hemen hemen çember yörüngelere sahip olan X-ÕúÕQND\QDNODUÕ60&;-1, Cen X-3 ve Her X-oHPEHUVHOOHúPHROD\ÕQÕQ|UQHNOHULGLUOHUdHPEHUVHOOHúPH VUHFL LoLQ EHOLUOH\LFL HWNHQ \ÕOGÕ]ODUÕQ Lo NÕVÕPODUÕQÕQ DNÕúNDQOÕ÷Õ YLVNR]LWH¶GÕU Zahn (1977)’ye göre, dinamik ER]XOPDQÕQ úLGGHWLQLQ ÕúÕQÕP \ROX\OD D]DOWÕOPDVÕ kütleli X-ÕúÕQ oLIWOHUL LoLQ JHUHNOL RODQ NÕVD ]DPDQ |OoHNOHULQL DoÕNOD\DELOLU 67 Darwin (1908) ve Counselman (1973), (çHPEHUOHúPH YH Hú]DPDQOÕ G|QPeden sonraki) yörünge ve dolanma DoÕVDOPRPHQWXPODUÕRUDQÕQÕQ J orb ≤3 J rot (18.8) ROPDVÕ GXUXPXQGD VLVWHPLQ oHNLPVHO RODUDN NDUDUVÕ] RODFD÷ÕQÕ ve VÕNÕúÕN ELOHúHQLQ KHOH]RQLN ELU \|UQJH LOH ELOHúHQLQH\DNODúDFD÷ÕQÕLVSDWODPÕúODUGÕU'RODQPDDoÕVDOPRPHQWXPX J rot = k 2 MωR 2 (18.9) ile verilir, burada M ve R QRUPDO \ÕOGÕ]ÕQ NWOH YH \DUÕoDSÕ ω RQXQ DoÕVDO KÕ]Õ YH k ise gyration (dönme) \DUÕoDSÕGÕU<|UQJHDoÕVDOPRPHQWXPXLVH J orb = ω MmA 2 M +m ED÷ÕQWÕVÕ\ODYHULOLU EXUDGD (18.10) m VÕNÕúÕNELOHúHQLQ NWOHVL YH A LVH ELOHúHQOHU DUDVÕQGDNL X]DNOÕNWÕU LIDGHOHULQLQED÷ÕQWÕVÕQGDNXOODQÕOPDVÕ\ODG|QPH\DUÕoDSÕ k2 > (18.9) ve (18.10) k için mA 2 3R 2 ( M + m) (18.11) limitini elde ederiz. Kütleleri 15 M < M < 30 M DUDVÕQGD RODQ \ÕOGÕ]ODU LoLQ k2¶QLQ GH÷HUL ∼0.075 (ZAMS) GH÷HULQGHQPHUNH]LKLGURMHQLQWNHQPHVLGH÷HULQHGúHU'H*UHYHGH/RRUH6XWDQW\R Problem 18.5: ÇizHOJH¶GHYHULOHQVLVWHPOHULQNULWLNGH÷HUOHULQLKHVDSOD\ÕSVRQXoODUÕk2LoLQ\XNDUÕGDYHULOHQ GH÷HUOHULOHNDUúÕODúWÕUÕQYHEXVLVWHPOHULQoHNLPVHONDUDUOÕOÕNODUÕQDLOLúNLQVRQXoODUHOGHHGLQL] dø)7$7$5&$/$5ø/(.$d$.$7$5&$/$5,12/8ù808 P ¶GHQ ¶H NDGDU RODQ VLVWHPOHUGH 5RFKH OREX WDúPD\D EDúODUEDúODPD] RSWLN \ÕOGÕ]ÕQ ]DUIÕ KÕ]OD JHQLúOHU YH kütle kayÕS KÕ]Õ ∼10-3 M \ÕO-1 GH÷HULQH XODúÕU 0DGGH LQFH ELU \Õ÷ÕúPD GLVNLQGH ELULNWLULOLU %XQXQOD ELUOLNWH, Eddington limiti JHUH÷LQFH, aktaUÕODQ NWOHQLQ ∼10-7 M\ÕO-1 GH÷HULQGHQ GDKD E\N NÕVPÕ Q|WURQ \ÕOGÕ]Õ WDUDIÕQGDQ WXWXODPD] \DQL DNWDUÕODQ NWOHQLQ E\N ELU NÕVPÕ VLVWHPL WHUNH HGHU 'LVNLQ Lo NÕVPÕ (GGLQJWRQ ÕúÕWPDVÕQD XODúÕU E|\OFH PDGGHQLQ DWÕOPDVÕ ÕúÕQÕP EDVÕQFÕ \ROX\OD YH oR÷XQOXN GR÷UXOWXGDROXúXU6KDNXUD la da disk düzlemine dik ve Sunyayev, 1975) $WÕODQ PDGGH EHUDEHULQGH E\N PLNWDUGD |] DoÕVDO PRPHQWXP VÕNÕúÕN FLVPLQ \|UQJH DoÕVDO PRPHQWXPX J|WUU YH E|\OHFH \|UQJH KÕ]OÕ ELU úHNLOGH GDUDOÕU JHULGH \DOQÕ]FD E\N NWOHOL ELOHúHQLQ HYULPOHúPLú oHNLUGH÷LQLQ NDOGÕ÷Õ VRQD GR÷UX XODúÕOPDN ]HUH \|UQJHQLQ VSLUDO ELoLPLQGHNL GDUDOPDVÕ EHNOHQLU 6RQXQGD HYULPOHúPLú KHO\XP \ÕOGÕ]Õ ELU VSHUQRYD ROD\Õ LOH SDWODU YH H÷HU oLIW VLVWHPLP WRSODP NWOHVLQLQ \DUÕVÕQGDQ ID]ODVÕ DWÕOÕUVD oLIW VLVWHP GD÷ÕODELOLU %X VXUHWOH SDWODPD PHUNH]LQGHQ VDQL\HGH ELU NDo \] NLORPHWUH KÕ]OD X]DNODúDQ LNL DGHW NDoDN UDG\R DWDUFDVÕ ROXúXU %LU oRN UDG\R oLIWL ELOLQPHNWHGLU 2QODUÕQ ELU OLVWHVL ED]Õ |]HOOLNOHUL\OHELUOLNWHdL]HOJH¶GHYHULOPLúWLU Çizelge 18.2. Çift atarcalar øVLP PSR 0656+64 PSR 0820+02 PSR 1913+16 PSR 1937+215 Pyör 24sa41dk 1100 gün 7sa 75dk -- Patma (s) 0.196 0.865 0.059 0.0015 'ÕúPHUNH]OLN 0.06 0 0.617 68 a bir atma dönemine ve 108 gauss 12 gauss mertebesindeki daha PHUWHEHVLQGH ]D\ÕI ELU PDQ\HWLN DODQD VDKLSWLU %LOLQHQ GL÷HU oLIW DWDUFDODU LVH LVLPOL PLOLVDQL\H DWDUFDVÕ PLOLVDQL\HOLN VRQ GHUHFH NÕV E\N PDQ\HWLN DODQODUD YH GDKD X]XQ G|QHPOHUH VDKLSWLUOHU 0LOLVDQL\H DWDUFDODUÕ PXKWHPHOHQ LNL Q|WURQ \ÕOGÕ]ÕQÕQELUOHúPHVL\OHROXúPDNWDGÕUODU dLIW UDG\R DWDUFDVÕ 365 PXKWHPHOHQ NWOHOHUL ∼ 1.4 M RODQ LNL Q|WURQ \ÕOGÕ]Õ LoHUPHNWHGLU <|UQJHQLQ NoOPHVL JHQHO UHODWLYLWH NXUDPÕQD J|UH oHNLPVHO ÕúÕQÕPÕQ VDOÕQPDVÕ\OD WDKPLQ HGLOGL÷L ELoLPGH RUWD\DoÕ kar ve bu durum 3 108\ÕOLoHULVLQGHVLVWHPLQELUOHúPHVLQHQHGHQROXU 69 BÖLÜM 19 7(.YHdø)7<,/',=/$5,1<$3,YH(95ø002'(//(5ø 19.1. <DSÕPRGHOOHUL %ø567$1'$5'*h1(ù02'(/ø1ø1ød<$3,6,%DKFDOOYHDUN log Teff = 3.76, log L = 0 Mr, kütle; T ve ρVÕFDNOÕNYH\R÷XQOXNGH÷HUOHULXD÷ÕUOÕNoDKLGURMHQEROOX÷Xdur.HVLNOLoL]JLÕúÕQÕPoHNLUGH÷L LOHNRQYHNWLIGÕú]DUIDUDVÕQGDNLVÕQÕUÕJ|VWHUPHNWHGLU Mr log T Lr/L log ρ R / R Χ 0 0.0099 0.0385 0.1038 0.1620 0.2100 0.2580 0.3100 0.3900 0.4700 0.5500 0.6900 0.8300 0.9264 0.9602 0.9784 7.1903 7.1703 7.1399 7.0934 7.0569 7.0334 7.0086 6.9822 6.9430 6.9030 6.8615 6.7803 6.6675 6.5315 6.4346 6.3263 0.000 0.079 0.264 0.555 0.718 0.809 0.874 0.921 0.964 0.986 0.996 1.000 1.000 1.000 1.000 1.000 2.194 2.127 2.034 1.897 1.801 1.729 1.660 1.585 1.468 1.344 1.207 0.905 0.455 -0.111 -0.471 -0.772 0.000 0.046 0.076 0.113 0.138 0.156 0.173 0.190 0.217 0.245 0.275 0.336 0.430 0.554 0.641 0.718 0.355 0.417 0.497 0.592 0.641 0.668 0.688 0.702 0.716 0.724 0.728 0.731 0.732 0.732 0.732 0.732 0.9954 1.0000 5.9777 4.2366 1.000 1.000 -1.301 -6.553 0.849 1.000 6&+:$5=6&+ø/'.5ø7(5øø/(+(6$3/$1$10 ød<$3,6, 0.732 0.732 ¶/ø.%ø5+202-(1=$0602'(/ø1ø1 log Teff = 4.5941, log L = 5.0418, R = 7.201 R, Mbol = -7.864, X = 0.7, Z = 0.03. KonvHNWLIoHNLUGH÷LQNWOHVL0¶GLU.HVLNOLoL]JLNRQYHNWLIoHNLUGHNLOHÕúÕQÕPOÕGÕúNDWPDQODUDUDVÕQGDNL VÕQÕUÕJ|VWHUPHNWHGLU Mr/M log Tc log Lr/L log ρc R/R log (∇rad/∇ad) 0 0.0400 0.0853 0.1542 0.2071 0.2778 0.3215 0.3721 0.4975 0.5749 0.7663 1.0189 7.5526 7.5504 7.5485 7.5462 7.5446 7.5427 7.5416 7.5404 7.5375 7.5359 7.5320 7.5273 ........ 3.555 3.860 4.093 4.206 4.314 4.367 4.419 4.518 4.565 4.696 4.736 0.473 0.470 0.463 0.458 0.454 0.449 0.447 0.444 0.437 0.433 0.424 0.413 0.000 0.269 0.345 0.421 0.465 0.514 0.541 0.568 0.628 0.694 0.730 0.807 0.950 0.930 0.913 0.884 0.877 0.860 0.850 0.839 0.814 0.784 0.768 0.730 70 1.5532 2.3424 3.0605 5.1221 6.5549 8.3171 12.6712 15.3354 7.5183 7.5062 7.4960 7.4683 7.4496 7.4265 7.3650 7.3221 4.842 4.925 4.967 5.019 5.031 5.038 5.337 5.337 0.392 0.363 0.339 0.280 0.243 0.200 0.067 -0.031 0.937 1.089 1.203 1.469 1.624 1.794 2.173 2.403 0.660 0.573 0.506 0.353 0.272 0.191 0.055 0.006 18.9169 21.9517 25.0006 27.7135 28.5000 30.0000 7.2558 7.1895 7.1015 6.9737 6.9098 4.5900 5.337 5.337 5.337 5.337 5.337 5.337 -0.178 -0.336 -0.596 -0.976 -1.182 -12.000 2.728 3.037 3.533 3.988 4.249 7.201 -0.034 -0.070 -0.093 -0.119 -0.093 ........ 19.1.36&+:$5=6&+ø/'.5ø7(5øø/(+(6$3/$1$10¶/ø.%ø5+202-(1=$0602'(/ø1ø1 ød<$3,6, log Teff = 4.627, log L = 5.315, log Tsurf = 4.557, R = 8.487 R, Mbol = -8.548, X = 0.7, Z = 0.03. .RQYHNWLIoHNLUGH÷LQNWOHVL0 ’dir. Kesikli çizgi, konvekti IoHNLUGHNLOHÕúÕQÕPOÕGÕúNDWPDQODUDUDVÕQGDNL VÕQÕUÕJ|VWHUPHNWHGLU Mr/M log Tc log Lr/L log ρc R/R log (∇rad/∇ad) 0 0.0400 0.0976 0.2044 0.3175 0.4917 0.6566 0.7581 1.0088 1.5406 2.0342 5.1868 10.8218 15.1384 20.3504 24.2644 7.5687 7.5663 7.5644 7.5616 7.5592 7.5559 7.5531 7.5514 7.5476 7.5405 7.5344 7.5010 7.4470 7.4043 7.3456 7.2928 ........ 3.702 4.064 4.359 4.526 4.863 4.781 4.782 4.829 5.038 5.107 5.266 5.310 5.315 5.315 5.315 0.396 0.389 0.384 0.376 0.369 0.360 0.352 0.347 0.337 0.318 0.303 0.223 0.104 0.025 -0.121 -0.243 0.000 0.284 0.383 0.492 0.572 0.664 0.734 0.772 0.853 0.991 0.110 1.555 2.099 2.439 2.832 3.145 10.451 9.887 9.387 8.925 8.292 7.902 7.219 6.422 5.833 5.214 3.091 1.583 1.321 1.094 1.050 1.000 30.2375 35.2456 37.2063 38.0860 39.0724 39.7021 39.9600 7.1935 7.0644 6.9808 6.9224 6.8179 6.6658 6.4107 5.315 5.315 5.315 5.315 5.315 5.315 5.315 -0.472 -0.792 -1.110 -1.305 -1.631 -2.148 -2.930 3.688 4.353 4.771 5.047 5.527 6.168 7.013 0.865 0.829 0.789 0.815 0.779 0.808 0.858 71 19.1.4. ROXBURGH .5ø7(5øø/(+(6$3/$1$10¶/ø.%ø5+202-(1=$0602'(/ø1ø1ød YAPISI log Teff = 4.59, log L = 5.257, log Tsurf = 4.557, R = 9.416 R, Mbol = -8.40, X = 0.7, Z = 0.03. .RQYHNWLIoHNLUGH÷LQNWOHVL0 VÕQÕUÕJ|VWHUPHNWHGLU ¶GLU.HVLNOLoL]JLNRQYHNWLIoHNLUGHNLOHÕúÕQÕPOÕGÕúNDWPDQODUDUDVÕQGDNL Mr/M 0.0000 0.0231 0.1599 1.0666 6.3386 24.4712 31.8283 log Tc 7.5082 7.5066 7.5025 7.4874 7.4324 7.2444 7.0960 log Lr/L ......... 3.383 4.181 4.859 5.223 5.257 5.257 log ρc 0.193 0.189 0.179 0.142 0.027 -0.419 -0.728 R/R 0.000 0.276 0.529 1.012 1.936 3.635 4.415 log (∇rad/∇ad) 15.996 15.990 15.976 15.922 15.729 15.050 14.587 35.9454 39.9900 39.9999 40.0000 6.9791 6.1892 5.4209 4.5123 5.257 5.257 5.257 5.257 -1.065 -3.564 -6.141 -12.000 5.074 8.216 9.188 9.455 14.121 1.0854 7.856 0.000 19.2. 7HN\ÕOGÕ]ODULoLQHYULPPRGHOOHUL g, çekim; Tc ve ρcVÕFDNOÕNYH\R÷XQOX÷XQPHUNH]GHNLGH÷HUOHULGLU <DúODUPLO\RQ\ÕOELULPLQGHYHULOPLúWLU 19.2.1. ÖBEK I YILDIZLARI –%h<h.0(5.(=ø),5/$70$l = α.Hp ; α = 1 M = 1.2 M, X = 0.7, Z = 0.02 Chiosi ve ark. (1987) <Dú 0 801.488 1625.39 2417.61 4287.25 4728.40 4740.35 4768.50 4885.65 4987.07 5030.63 5047.00 5108.61 5122.68 5131.03 5137.13 5138.97 log L/ L log Teff log g log Tc log ρc Χc 0.326 0.369 0.416 0.464 0.556 0.768 0.703 0.650 0.900 1.200 1.400 1.500 2.002 2.297 2.599 2.999 3.189 3.816 3.816 3.815 3.810 3.778 3.795 3.754 3.727 3.702 3.690 3.681 3.675 3.645 3.625 3.603 3.573 3.558 4.443 4.402 4.349 4.283 4.063 3.917 3.818 3.766 3.416 3.066 2.829 2.708 2.085 1.710 1.322 0.798 0.549 7.2155 7.2354 7.2586 7.2835 7.3522 7.4987 7.4887 7.5593 7.5492 7.5235 7.5395 7.5518 7.6361 7.6803 7.7334 7.8136 7.8547 1.9794 2.0297 2.0765 2.1173 2.243 3.03334 3.7985 4.2662 4.8958 5.0877 5.1761 5.2163 5.4366 5.5326 5.6335 5.782 5.8627 0.700 0.599 0.501 0.400 0.101 0.000 0 0 0 0 0 0 0 0 0 0 0 M = 1.5 M, X = 0.7, Z = 0.02 Chiosi ve ark. (1987) <Dú 0 579.907 1150.3 1974.21 2735.46 2738.44 2741.12 2746.38 log L/ L log Teff log g log Tc log ρc Χc 0.738 0.791 0.847 0.942 1.205 1.055 1.012 1.099 3.885 3.881 3.872 3.839 3.816 3.749 3.73 3.712 4.404 4.336 4.245 4.017 3.661 3.545 3.511 3.354 7.2754 7.2923 7.3108 7.3435 7.543 7.5388 7.5691 7.6171 1.9211 1.9427 1.9606 2.0057 2.8594 3.5296 3.7613 4.0529 0.7 0.604 0.499 0.3010 0 0 0 0 72 2755.5 2765.95 2771.03 2780.27 2784.53 2790.63 2800.37 2803.44 2804.45 1.402 1.799 2.000 1.854 2.000 2.200 2.611 2.802 2.877 3.694 3.670 3.657 3.667 3.658 3.644 3.614 3.599 3.594 2.976 2.485 2.233 2.419 2.235 1.979 1.450 1.199 1.101 7.7019 7.7935 7.8391 7.9102 7.9066 7.8942 7.8915 7.9024 7.9756 4.4237 4.774 4.9375 5.223 5.3006 5.4002 5.5784 5.6585 5.6804 0 0 0 0 0 0 0 0 0 M = 2 M, X = 0.7, Z = 0.02 Chiosi ve ark. (1987) <Dú 0 326.237 579.747 960.011 1263.96 1266.42 1268.66 1272.92 1273.49 1274.44 1280.66 1321.98 1374.56 1416.58 1418.71 1418.96 1420.75 1429.74 1443.19 1445.92 1447.9 1448.15 1448.67 1449.03 1449.08 log L/ L log Teff log g log Tc log ρc Xc/Yc 1.228 1.298 1.363 1.481 1.656 1.522 1.798 2.465 2.560 2.387 1.810 1.751 1.808 1.997 2.200 2.122 2.047 2.105 2.408 2.608 2.905 3.002 3.200 3.288 3.307 3.98 3.974 3.964 3.921 3.849 3.724 3.691 3.641 3.634 3.648 3.691 3.697 3.697 3.682 3.666 3.672 3.678 3.673 3.649 3.633 3.61 3.602 3.586 3.579 3.578 4.420 4.326 4.220 3.933 3.470 3.104 2.693 1.829 1.704 1.932 2.683 2.767 2.709 2.458 2.192 2.293 2.392 2.317 1.918 1.654 1.265 1.135 0.873 0.757 0.732 7.3256 7.3395 7.353 7.3824 7.5304 7.6338 7.74 7.9653 8.035 8.0425 8.0526 8.0642 8.0986 8.2211 8.2455 8.2015 8.1091 8.1099 8.1468 8.1396 8.0908 8.0773 8.0373 8.0054 8.0005 1.7883 1.7933 1.7988 1.8291 2.262 3.5484 4.0396 4.754 4.793 4.5359 4.4193 4.3396 4.259 4.5591 4.845 4.9289 5.0465 5.1821 5.5317 5.7087 5.9537 5.9967 6.0851 6.1411 6.1475 0.7 0.599 0.501 0.29 0.001 0 0 0.98 0.979 0.972 0.949 0.802 0.404 0.011 0 0 0 0 0 0 0 0 0 0 0 M = 3 M, X = 0.7, Z = 0.02 Chiosi ve ark. (1987) <Dú log L/ L log Teff log g log Tc log ρc Xc/Yc 0 104.416 227.232 321.77 398.08 424.186 428.629 429.117 429.544 429.844 430.001 430.429 434.237 460.441 463.855 463.863 463.876 463.913 465.175 1.902 1.968 2.072 2.173 2.269 2.316 2.470 2.236 2.595 2.807 2.919 3.005 2.602 2.506 2.718 2.726 2.731 2.694 2.761 4.099 4.094 4.08 4.05 3.982 3.945 4.016 3.707 3.658 3.64 3.632 3.624 3.659 3.679 3.652 3.651 3.651 3.655 3.647 4.400 4.312 4.152 3.932 3.565 3.366 3.500 2.498 1.942 1.657 1.511 1.396 1.940 2.113 1.794 1.783 1.776 1.828 1.733 7.3766 7.3871 7.4041 7.4254 7.4628 7.51 7.6512 7.7485 7.8743 7.963 8.0104 8.0822 8.1022 8.1949 8.338 8.3347 8.3202 8.2959 8.2129 1.5763 1.5703 1.5726 1.5897 1.6632 1.8075 2.4675 3.435 3.8898 4.1685 4.306 4.185 3.992 4.006 4.5301 4.5545 4.5784 4.6308 5.0882 0.7 0.608 0.47 0.31 0.11 0.19 0 0 0 0 0.98 0.97 0.901 0.1 0 0 0 0 0 73 466.92 467.909 468.198 468.498 468.619 468.706 468.733 468.736 3.011 3.327 3.503 3.803 4.001 3.921 4.089 4.100 3.625 3.600 3.586 3.562 3.549 3.554 3.545 3.545 1.396 0.979 0.744 0.349 0.100 0.200 0.005 0.018 8.2536 8.3185 8.3354 8.2942 8.2143 8.1358 8.1068 8.1034 5.3714 5.6757 5.8494 6.1699 6.4017 6.6541 6.7247 8.1034 0 0 0 0 0 0 0 0 M = 5 M, X = 0.7, Z = 0.02 Chiosi ve ark. (1987) <Dú log L/ L log Teff log g log Tc log ρc Xc/Yc 0 32.6348 60.3164 92.938 119.289 120.591 120.671 120.68 120.729 120.798 120.825 120.888 120.971 123.484 126.624 128.198 128.212 128.216 128.221 128.344 128.515 128.629 128.659 128.673 128.679 2.712 2.789 2.87 3.011 3.184 3.238 3.312 3.272 3.244 3.115 3.401 3.603 3.724 3.405 3.452 3.497 3.527 3.542 3.556 3.699 3.904 4.101 4.222 4.402 4.463 4.236 4.232 4.223 4.193 4.100 4.136 4.171 4.162 4.016 3.667 3.625 3.608 3.598 3.629 3.702 3.622 3.618 3.617 3.615 3.602 3.585 3.569 3.565 3.556 3.554 4.358 4.266 4.147 3.887 3.343 3.431 3.498 3.502 2.947 1.680 1.226 0.954 0.793 1.240 1.482 1.115 1.072 1.051 1.031 0.835 0.563 0.304 0.162 0.052 0.122 7.4308 7.4414 7.4546 7.4806 7.5646 7.6405 7.7304 7.7303 7.7929 7.9032 7.9485 8.0486 8.1348 8.1696 8.2209 8.3761 8.401 8.4074 8.4028 8.4189 8.5101 8.5914 8.5634 8.4149 8.3387 1.2975 1.2928 1.2874 1.3055 1.5124 1.7308 2.2045 2.3533 2.8427 3.2947 3.449 3.7669 3.7512 3.5317 3.5617 4.0079 4.1124 4.171 4.2189 4.8225 4.3841 6.0799 6.51 6.8788 7.0239 0.7 0.599 0.486 0.296 0.021 0.001 0 0 0 0 0 0 0.972 0.701 0.223 0.001 0 0 0 0 0 0 0 0 0 M = 9 M, X = 0.7, Z = 0.02 Chiosi ve ark. (1987) <Dú log L/ L log Teff log g log Tc log ρc Xc/Yc 0 8.64708 16.8651 26.5255 34.5502 35.0071 35.0247 35.0273 35.0299 35.0557 35.9597 36.5093 36.9585 36.9733 36.9742 36.9908 36.9992 37.0154 37.0195 3.577 3.654 3.746 3.898 4.101 4.129 4.101 4.004 4.352 4.524 4.282 4.337 4.350 4.393 4.401 4.498 4.584 4.690 4.707 4.378 4.376 4.369 4.342 4.243 4.247 3.799 3.627 3.587 3.575 3.601 3.784 3.59 3.586 3.585 3.577 3.572 3.566 3.565 4.315 4.23 4.111 3.852 3.253 3.241 1.476 0.887 0.376 0.157 0.503 1.162 0.392 0.331 0.32 0.191 0.085 0.044 0.064 7.4852 7.4954 7.5086 7.5348 7.6212 7.8961 8.0422 8.0638 8.0855 8.1952 8.2383 8.2770 8.4120 8.4746 8.4863 8.5728 8.6183 8.7388 8.8343 0.996 0.99 0.9872 1.0052 1.2131 2.3793 2.9697 3.0441 3.1163 3.2652 3.16 3.2245 3.6037 3.8043 3.8468 4.3552 4.5916 5.2874 5.8423 0.7 0.607 0.494 0.302 0.022 0 0 0 0.98 0.969 0.514 0.214 0.004 0 0 0 0 0 0 74 19.2.2. ÖBEK I YILDIZLARI –g1(0/ø.219(.7ø)FIRLATMA: l = α.Hp ; α = 1.5 -1 1.75; Roxburgh M = 6 M, X = 0.7, Z = 0.03 Doom (1987) <Dú M/M - M log L/L log Teff Χat Mcc Χc/Yc 0.0000 1.1903 2.0266 3.2399 4.8807 6.9954 9.6120 12.7389 16.6400 21.3344 26.4344 31.1333 35.5172 39.0643 42.3994 45.3914 48.1764 50.7548 55.4573 59.0801 62.3067 65.2278 67.9515 69.0181 69.5051 69.7308 69.8946 69.9393 69.9460 69.9560 69.9626 69.9829 69.9895 69.9962 69.9995 70.0062 70.0128 70.0228 70.0295 6.0000 NML (kütle 2.9730 2.9730 2.9750 2.9810 2.9890 3.0050 3.0140 3.0310 3.0530 3.0790 3.1090 3.1380 3.1690 3.1930 3.2180 3.2410 3.2610 3.2800 3.3170 3.3460 3.3720 3.3950 3.4200 3.4360 3.4490 3.4610 3.4870 3.5270 3.5450 3.5310 3.4950 3.4840 3.4880 3.4870 3.4850 3.4770 3.4650 3.4420 3.4220 4.2660 4.2660 4.2650 4.2650 4.2640 4.2630 4.2620 4.2600 4.2570 4.2530 4.2490 4.2440 4.2380 4.2320 4.2260 4.2190 4.2120 4.2050 4.1880 4.1710 4.1540 4.1360 4.1200 4.1180 4.1210 4.1260 4.1430 4.1680 4.1750 4.1690 4.1490 4.0610 4.0270 3.9900 3.9910 3.9270 3.8770 3.7780 3.6700 0.7000 2.4000 2.3300 2.3400 2.3400 2.3200 2.31 2.2800 2.2600 2.2000 2.1800 2.1000 2.0500 1.9700 1.9200 1.8600 1.7800 1.7300 1.7100 1.6000 1.4800 1.3900 1.3200 1.2100 1.1700 1.1600 1.1600 1.1600 1.0300 0.7600 0.7600 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.7000 0.6960 0.6930 0.6790 0.6690 0.6560 0.6400 0.6180 0.5910 0.5580 0.5270 0.4990 0.4580 0.4250 0.3940 0.3940 0.3340 0.2710 0.2140 0.1600 0.1070 0.0480 0.0230 0.0110 0.0050 0.0010 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 ND\EÕ\RN 6.0000 0.7000 75 M = 10 M, X = 0.7, Z = 0.03 Doom (1987) <Dú M/M 0.0000 0.2276 0.4305 0.7491 1.2134 1.8398 2.6461 3.6429 4.8322 6.8142 8.9101 10.8589 12.6354 14.2517 17.0242 19.2400 20.1640 22.3847 23.5933 25.0516 25.8907 27.0125 27.2854 27.3565 27.3642 27.3672 27.3688 27.3704 27.3736 27.3767 27.3791 27.3815 27.3839 27.3863 27.3887 27.3895 10 10 -M NML log L/L 3.7160 3.7160 3.7100 3.7130 3.7190 3.7280 3.7400 3.7550 3.7730 3.8050 3.8400 3.9750 3.9090 3.9410 3.9970 4.0530 4.0730 4.1320 4.1650 4.2070 4.2320 4.2730 4.2940 4.3210 4.3400 4.3560 4.3690 4.3690 4.3360 4.3090 4.3040 4.3060 4.3090 4.3080 4.3020 4.0640 log Teff 4.3870 4.3870 4.3970 4.3870 4.3970 4.3870 4.3860 4.3850 4.3830 4.3800 4.3770 4.3740 4.3700 4.3650 4.3550 4.3410 4.3340 4.3120 4.2950 4.2690 4.2510 4.2270 4.2290 4.2540 4.2680 4.2770 4.2810 4.2800 4.2590 4.2150 4.1680 4.1080 4.0310 3.9260 3.7510 3.5930 Χat Mcc Χc/Yc 0.7000 4.9300 4.7700 4.8700 4.8700 4.8600 4.8400 4.8200 4.7600 4.7500 4.6300 4.5800 4.4600 4.4100 4.2800 4.1800 4.0000 3.8900 3.7200 3.5900 3.4300 3.3300 3.1600 3.1300 3.0600 2.9100 2.2900 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.7000 0.6980 0.6960 0.6930 0.6880 0.6800 0.6700 0.6570 0.6410 0.6130 0.5800 0.5470 0.5140 0.4810 0.4190 0.3540 0.3240 0.2440 0.1940 0.1270 0.0840 0.0220 0.0050 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.7000 76 M = 20 M, X = 0.7, Z = 0.03; α = 1.5 Prantzos ve ark. (1987) <Dú M/M -M log L/L log Teff Χat Mcc Χc/Yc 0.0000 0.1546 0.4541 0.6944 1.0039 1.8443 2.6067 3.5196 4.3706 5.1230 5.7840 6.3970 6.9527 7.4351 7.8351 8.1843 8.7780 9.2394 9.9342 10.0730 10.1986 10.3160 10.7062 11.0719 11.2561 11.2834 11.2969 11.3101 11.3104 11.3118 11.3138 11.3150 11.3160 20.0000 19.9900 19.9700 19.9500 19.9200 19.8400 19.7600 19.6500 19.5300 19.4000 19.2800 19.1500 19.0200 18.8900 18.7700 18.6500 18.4200 18.2100 17.7200 17.6300 17.5400 17.1800 16.7300 16.4500 16.4000 16.3800 16.3600 16.3600 16.3600 16.3600 16.3500 16.3500 16.3500 7.72E-8 7.61E-8 7.90E-8 8.25E-8 8.68E-8 9.99E-8 1.14E-8 1.33E-7 1.55E-7 1.77E-7 2.01E-7 2.20E-7 2.52E-7 2.82E-7 3.14E-7 3.48E-7 4.19E-7 4.94E-7 6.66E-7 7.15E-7 7.61E-7 8.10E-7 1.03E-6 1.42E-6 1.67E-6 1.64E-6 1.62E-6 1.66E-6 1.68E-6 1.83E-6 2.29E-6 2.69E-6 3.31E-6 4.5730 4.5740 4.5790 4.5870 4.5970 4.6270 4.6550 4.6890 4.7240 4.7560 4.7840 4.8090 4.8340 4.8570 4.8770 4.8960 4.9280 4.9550 4.9980 5.0070 5.0150 5.0230 5.0520 5.0820 5.1040 5.1090 5.1140 5.1340 5.1370 5.1550 5.1800 5.1820 5.1780 5.5200 4.5200 4.5180 4.5170 4.5160 4.5160 4.5140 4.5050 4.5000 4.5000 4.4900 4.4860 4.4780 4.4710 4.4630 4.4550 4.4380 4.4210 4.3840 4.3730 4.3640 4.3660 4.3150 4.2580 4.2380 4.2490 4.2590 4.2790 4.2910 4.2730 4.2300 4.1750 4.0970 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 12.7200 12.9100 12.9100 12.9100 12.8900 12.8800 12.6800 12.4700 12.2500 11.9100 11.1600 11.6300 11.6300 11.4500 11.2100 11.1400 11.0700 10.8000 10.3310 10.2710 10.2130 0.7000 0.6960 0.6870 0.6790 0.6690 0.6390 0.6100 0.5720 0.5340 0.4970 0.4620 0.4270 0.3930 0.3620 0.3340 0.3080 0.2610 0.2220 0.1560 0.1420 0.1290 0.1170 0.0740 0.0300 0.0070 0.0040 0.0020 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 77 M = 40 M, X = 0.7, Z = 0.03; α = 1.5 Prantzos ve ark. (1987) <Dú M/M -M log L/L log Teff Χat Mcc Χc/Yc 0.0000 0.1537 0.2499 0.3917 0.5680 0.7865 1.1048 1.4842 2.0537 2.5516 2.9816 3.3591 3.6630 3.9588 4.1702 4.3708 4.6966 4.8516 4.9890 5.1114 5.2257 5.4254 5.5168 5.6967 5.8970 6.0244 6.2314 6.3157 6.3886 6.4002 6.4010 6.4016 6.4024 6.4028 6.4040 6.4061 6.4063 6.4085 6.4101 6.4192 6.4277 6.4348 6.4412 6.4486 6.4925 6.5208 6.5528 6.5923 6.6077 6.6401 6.6605 6.6955 6.7074 6.7822 6.7870 40.0000 39.9300 39.8800 39.8200 39.7300 39.6100 39.4600 39.1800 38.7800 38.3800 37.9900 37.5900 37.2300 36.8700 36.5400 36.2300 35.6500 35.3400 35.0400 34.7500 34.4600 33.9000 33.6100 32.9900 32.1800 31.6200 30.6500 30.2400 29.8900 29.8400 29.8300 29.8200 29.8200 29.8100 29.8000 28.3600 28.2900 28.1600 28.0700 27.5200 27.0100 26.5800 26.2000 25.7600 23.1200 21.4200 19.5000 17.1300 16.2100 14.2600 13.0400 10.9400 10.2300 5.7400 4.0000 4.68E-7 4.68E-7 4.84E-7 5.02E-7 5.28E-7 5.61E-7 5.99E-7 6.48E-7 7.59E-7 8.52E-7 9.90E-7 1.10E-6 1.25E-6 1.36E-6 1.50E-6 1.64E-6 1.93E-6 2.09E-6 2.27E-6 2.44E-6 2.63E-6 3.03E-6 3.25E-6 3.73E-6 4.31E-6 4.50E-6 4.88E-6 4.87E-6 4.56E-6 6.49E-6 7.56E-6 8.03E-6 8.67E-6 9.41E-6 1.66E-5 5.43E-4 6.00E-5 6.00E-5 6.00E-5 6.00E-5 6.00E-5 6.00E-5 6.00E-5 6.00E-5 6.00E-5 6.00E-5 6.00E-5 6.00E-5 6.00E-5 6.00E-5 6.00E-5 6.00E-5 6.00E-5 6.00E-5 6.00E-5 5.2730 5.2720 5.2760 5.2830 5.2920 5.3050 5.3200 5.3410 5.3720 5.4010 5.4280 5.4530 5.4730 5.4930 5.5110 5.5270 5.5540 5.5670 5.5790 5.5910 5.6010 5.6220 5.6310 5.6520 5.6750 5.6910 5.7180 5.7340 5.7510 5.8370 5.8590 5.8680 5.8770 5.8810 5.8970 5.9110 5.9150 5.9310 5.9450 5.8960 5.8190 5.7980 5.7770 5.7670 5.7070 5.6590 5.5750 5.5220 0.4800 5.3980 5.3350 5.2080 5.1560 4.6580 4.4700 4.6110 4.6110 4.6100 4.6090 4.6080 4.6060 4.6040 4.6170 4.5960 4.5930 4.5860 4.5810 4.5730 4.5670 4.5610 4.5540 4.5390 4.5310 4.5220 4.5140 4.5060 4.4900 4.4810 4.4670 4.4570 4.4670 4.4900 4.5140 4.5620 4.5540 4.5310 4.5220 4.5070 4.4850 4.3110 4.2950 4.6130 4.6170 4.6040 4.7060 4.7190 4.7220 4.7220 4.7220 4.7100 4.6990 4.6820 4.6700 4.6610 4.6430 4.6300 4.6000 4.5890 4.4720 4.4000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.6990 0.6890 0.6680 0.6080 0.5750 0.5400 0.5390 0.5390 0.5380 0.5380 0.3700 0.5360 0.3810 0.3730 0.3560 0.3360 0.2630 0.2070 0.1400 0.0040 0.0040 0.7800 0.7190 0.7170 0.6320 0.6020 0.5420 0.5090 0.4530 0.4360 0.3490 0.3360 31.6600 31.9300 31.8400 31.7400 31.6200 31.2500 31.0700 30.8800 30.3000 29.9100 29.4200 29.1300 28.8100 28.5200 28.2600 28.0600 27.6900 275300 27.3700 27.2300 27.1000 26.8700 26.7800 26.5800 26.3400 26.1900 25.8900 25.7500 25.7100 0.0000 0.0200 3.1400 9.8800 13.6900 22.6500 23.7800 23.9700 23.1500 23.8800 24.6000 25.0100 24.7500 24.7700 24.3500 21.7600 20.0800 18.2000 15.7800 14.8600 12.9500 11.7400 9.6000 8.8800 4.4400 3.1800 7.0000 0.6920 0.6860 0.6770 0.6650 0.6510 0.6320 0.6000 0.5550 0.5130 0.4740 0.4380 0.4060 0.3750 0.3480 0.3240 0.2820 0.2610 0.2420 0.2240 0.2070 0.1760 0.1620 0.1310 0.0970 0.0740 0.0340 0.0170 0.0020 0.0000 0.0000 0.9700 0.9700 0.9700 0.9690 0.9660 0.9660 0.9630 0.9610 0.9430 0.9230 0.9140 0.8990 0.8820 0.8480 0.7810 0.6540 0.5790 0.5520 0.4980 0.4660 0.4180 0.4030 0.3300 0.3000 78 M = 60 M, X = 0.7, Z = 0.03; α = 1.5 Prantzos ve ark. (1987) <Dú M/M -M log L/L log Teff Χat Mcc Χc/Yc 0.1256 0.3215 0.4665 0.6465 0.8615 1.6434 2.0141 2.3233 2.5968 2.8898 3.0756 3.4525 3.6088 4.0021 4.2543 4.4367 4.5687 4.7614 4.8953 5.0004 5.0084 5.0099 5.0116 5.0126 5.0143 5.0252 5.0296 5.0357 5.0433 5.0472 5.0557 5.0764 5.0901 5.1197 5.1461 5.1823 5.2392 5.2899 5.3325 5.3826 5.4253 5.4624 5.4905 5.5139 5.5160 59.8700 59.6400 59.4600 59.2300 58.9400 57.7000 57.0200 56.3800 56.7500 55.7490 54.4500 53.2100 52.6200 50.8900 49.5900 48.5500 47.7800 46.6200 45.7900 45.1400 45.0900 45.0800 45.0300 44.9700 44.8700 44.2200 43.9600 43.5900 43.1400 42.9000 42.3900 41.1500 40.3300 38.5500 36.9700 34.7900 31.3800 28.3400 25.7800 22.7800 20.2200 17.9900 16.3100 14.9000 14.7700 1.11E-6 1.20E-6 1.26E-6 1.32E-6 1.42E-6 1.71E-6 1.96E-6 2.17E-6 2.41E-6 2.77E-6 3.03E-6 3.62E-6 3.94E-6 4.81E-6 5.55E-6 5.81E-6 5.90E-6 6.15E-6 6.22E-6 5.90E-6 5.74E-6 6.54E-6 6.00E-5 6.00E-5 6.00E-5 6.00E-5 6.00E-5 6.00E-5 6.00E-5 6.00E-5 6.00E-5 6.00E-5 6.00E-5 6.00E-5 6.00E-5 6.00E-5 6.00E-5 6.00E-5 6.00E-5 6.00E-5 6.00E-5 6.00E-5 6.00E-5 6.00E-5 6.00E-5 5.6200 5.6300 5.6390 5.6490 5.6650 5.7120 5.7390 5.7630 5.7790 5.8070 5.8220 5.8560 5.8690 5.9090 5.9460 5.9630 5.9810 6.0080 6.0290 6.0530 6.0920 6.1520 6.1760 6.1810 6.1420 6.1170 6.1110 6.1060 6.1030 6.1000 6.0930 6.0830 6.0750 6.0470 6.0330 5.9960 5.9530 5.8890 5.8390 5.7850 5.7000 5.6390 5.5860 5.5530 5.5690 4.6490 4.6460 4.6440 4.6420 4.6400 4.6350 4.6290 4.6250 4.6180 4.6100 4.6040 4.5930 4.5870 4.5840 4.5890 4.6040 4.6240 4.6530 4.6830 4.7360 4.7960 4.8270 4.7350 4.7280 4.7550 4.7750 4.7790 4.7840 4.7880 4.7900 4.7910 4.4900 4.7900 4.7840 4.7820 4.7750 4.7650 4.7550 4.7450 4.7340 4.7170 4.7040 4.6960 4.6930 4.6980 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.6990 0.6990 0.6540 0.6040 0.5540 0.4700 0.4140 0.3420 0.2890 0.2850 0.2840 0.2810 0.2770 0.2690 0.2250 0.0230 0.1650 0.1060 0.0660 0.0000 0.8760 0.8580 0.7810 0.7120 0.6070 0.4610 0.3470 0.2600 0.1970 0.1160 0.0760 0.0420 0.0230 0.0210 52.0500 51.7590 51.3040 51.1420 51.9340 49.3040 48.4230 47.8410 47.8410 47.4030 46.6930 46.2940 45.7050 45.3910 44.5810 43.8870 43.4170 43.2190 42.8060 42.4580 27.9650 0.0930 25.1000 39.2480 41.7150 42.0050 42.0130 41.9290 41.7630 41.6510 41.1830 39.9530 39.0970 37.4490 35.8030 33.7460 30.2180 27.2770 24.7030 21.6940 19.1840 16.8310 15.1000 13.2740 10.8520 0.6910 0.6740 0.6620 0.6450 0.6250 0.0544 0.5020 0.4640 0.4290 0.3890 0.3620 0.3050 0.2790 0.2110 0.1630 0.1260 0.0990 0.0560 0.0260 0.0020 0.0000 0.0000 0.9690 0.9680 0.9650 0.9470 0.9370 0.9210 0.8980 0.8860 0.8600 0.8000 0.7600 0.6790 0.6090 0.5190 0.3910 0.2900 0.2150 0.1490 0.0860 0.0470 0.0210 0.0010 0.0000 79 M = 80 M, X = 0.7, Z = 0.03; α = 1.5 Prantzos ve ark. (1987) <Dú M/M -M log L/L log Teff Χat Mcc Χc/Yc 0.0000 0.1142 0.1900 0.2925 0.4246 0.5865 0.7852 1.4952 1.7614 2.0253 2.3109 2.5306 2.7320 2.9547 3.2032 3.4022 3.8650 4.1352 4.3768 4.3817 4.3830 4.3855 4.3865 4.3899 4.3917 4.4046 4.4127 4.4307 4.4707 4.5076 4.5635 4.6007 4.6360 4.6851 4.7282 4.7596 4.8005 4.8045 4.8050 4.8060 80.0000 79.7900 79.6500 79.4400 79.1600 78.8000 78.3300 76.3900 75.5600 74.6600 73.5600 72.6200 71.6700 70.5000 69.0600 67.8000 64.6300 62.5400 60.5100 60.4300 60.3500 60.2000 60.1400 59.9700 59.8800 59.1100 58.6200 57.5400 55.1400 52.9200 49.5700 47.3400 45.2200 42.2700 39.6900 37.8000 35.2100 35.1100 35.0800 35.0200 1.89E-6 1.91E-6 1.98E-6 2.06E-6 2.15E-6 2.15E-6 2.45E-6 2.96E-6 3.27E-6 3.59E-6 4.11E-6 4.49E-6 4.91E-6 5.57E-6 6.05E-6 6.61E-6 7.05E-6 8.10E-6 7.37E-6 6.00E-5 6.00E-5 6.00E-5 6.00E-5 6.00E-5 6.00E-5 6.00E-5 6.00E-5 6.00E-5 6.00E-5 6.00E-5 6.00E-5 6.00E-5 6.00E-5 6.00E-5 6.00E-5 6.00E-5 6.00E-5 6.00E-5 6.00E-5 6.00E-5 5.8480 5.9480 5.8500 5.8560 5.8630 5.8730 5.8890 5.9370 5.9570 5.9730 5.9950 6.0160 6.0350 6.0560 6.0850 6.1050 6.1570 6.2000 6.2490 6.3700 6.3960 6.4110 6.3740 6.2580 6.3010 6.2970 6.2930 6.2890 6.2700 6.2520 6.2330 6.2090 6.1840 6.1600 6.1296 6.1080 6.0940 6.1010 6.1080 6.1280 406670 4.6660 4.6680 4.6660 4.6640 4.6610 4.6590 4.6530 4.6490 4.6440 4.6360 4.6320 4.6310 4.6270 4.6340 4.6390 4.6880 4.7140 4.8130 4.7830 4.7530 4.8160 4.8120 5.0120 4.8230 4.8300 4.8310 4.8310 4.8300 4.8260 4.8260 4.8200 4.8180 4.8130 4.8090 4.8080 4.8110 4.8150 4.8180 4.8260 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.6870 0.6570 0.6210 0.5810 0.4060 0.2850 0.1510 0.1450 0.1390 0.1300 0.1280 0.1220 0.1180 0.0590 0.0000 0.9070 0.8230 0.7040 0.5320 0.4320 0.3850 0.2340 0.1700 0.1040 0.1510 0.0430 0.0410 0.0400 71.9000 71.6630 71.6670 71.4410 71.0330 70.6030 69.7680 67.7370 66.8680 66.2150 65.3680 64.7470 64.1890 63.5770 62.8630 62.1550 60.7490 59.2960 58.3610 37.1730 45.3360 52.5240 56.5870 59.1570 58.1090 57.8080 57.3740 56.2930 53.9340 51.7670 48.4050 46.3280 44.2570 41.2340 38.7740 36.7930 34.1190 33.1140 32.1400 0.0000 7.000 0.6900 0.6820 0.6720 0.6580 0.6400 0.6180 0.5300 0.4930 0.4560 0.4130 0.3780 0.3440 0.3050 0.2590 0.2190 0.1250 0.0610 0.0000 0.0000 0.0000 0.9590 0.9560 0.9520 0.9480 0.9090 0.8810 0.8200 0.8740 0.5820 0.4320 0.3440 0.2680 0.1740 0.1050 0.0580 0.0060 0.0010 0.0000 0.0000 80 19.2.3.ÖBEK I YILDIZLARI –.hdh.0(5.(=øFIRLATMA I=aHP; α=0.25 M = 1 M; X = 0.7; Z = 0.02; Maeder ve Meynet (1988) <$ù M/M − M log L/L log Teff 7.000+06 3.249+09 5.670+09 7.277+09 8447+09 9.197+09 9.701+09 1.039+10 1.098+10 1.158+10 1.173+10 1.191+10 1.197+10 1.195+10 1.226+10 1.235+10 1.243+10 1.248+10 1.253+10 1.257+10 1.260+10 1.263+10 1.265+10 1.267+10 1.268+10 1.270+10 1.271+10 1.273+10 1.274+10 1.274+10 1.275+10 1.275+10 1.276+10 1.276+10 1.276+10 1.277+10 1.277+10 1.277+10 1.277+10 1.277+10 1.277+10 1.277+10 1.277+10 1.000 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 I 1 l 1 1 0.999 0.999 0.998 0.998 0.997 0.996 0.994 0.993 0.992 0.99 0.988 0.985 0.982 0.969 0.962 0.953 0.941 0.926 0.905 0.877 0.837 0.784 NML NML NML NML NML NML NML NML NML NML NML NML NML NML NML NML NML NML NML NML -10.968 -10.813 -10.658 -10.5 -10.343 -10.108 -10.19 -9.862 -9.704 -9.536 -9.373 -9.197 -9.043 -8.876 -8.45 -8.28 -8.095 -7.918 -7.744 -7.746 -7.342 -7.145 -6.945 -0.207 -0.075 0.006 0.069 0.118 0.156 0.186 0.234 0.080 0.322 0.327 0.321 0.319 0.318 0.428 0.517 0.622 0.712 0.820 0.921 1.023 1.122 1.221 1.321 1.42 1.564 1.517 1.717 1.815 1.915 2.015 2.115 2.215 2.315 2.56 2.66 2.76 2.86 2.96 3.06 3.16 3.26 3.346 3.739 3.751 3.757 3.759 3.759 3.758 3.757 3.755 3.750 3.734 3.725 3.710 3.704 3.700 3.678 3.676 3.673 3.671 3.668 3.666 3.663 3.66 3.656 3.653 3.648 3.639 3.643 3.631 3.626 3.617 3.612 3.602 3.598 3.590 3.563 3.555 3.540 3.529 3.520 3.501 3.481 3.468 3.446 Xat 0.700 0.700 0.700 0.700 0.700 0.700 0.700 0.700 0.700 0.700 0.700 0.700 0.700 0.700 0.698 0.696 0.692 0.689 0.686 0.684 0.682 0.681 0.681 0.681 0.681 0.681 0.681 0.681 0.681 0.681 0.681 0.681 0.681 0.681 0.681 0.681 0.681 0.681 0.681 0.681 0.681 0.681 0.681 Mcc 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Xc/Yc 0.700 0.472 0.279 0.143 0.031 0.002 0.000 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.18 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 M = 1.3 M; X = 0.7; Z = 0.02; α = 0.25; Maeder ve Meynet (1988) <$ù 2.000+007 4.510+009 6.777+009 7.630+009 8.038+009 8.114+009 8.123+009 8.128+009 8.153+009 M/M 1.300 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 − M NML NML NML NML NML NML NML NML NML log L/L 0.401 0.477 0.579 0.611 0.631 0.709 0.781 0.763 0.763 log Teff 3.816 3.797 3.791 3.776 3.764 3.778 3.79 3.777 3.755 Xat 0.700 0.700 0.700 0.700 0.700 0.700 0.700 0.700 0.700 Mcc 0.075 0.2054 0.1664 0.1404 0.1131 0.0962 0.0546 0 0 Xc/Yc 0.682 0.473 0.28 0.143 0.03 0.002 0 0.98 0.98 81 8.179+009 8.193+009 8.206+009 8.219+009 8.235+009 8.283+009 8.315+009 8.343+009 8.368+009 8.393+009 8.414+009 8.433+009 8.449+009 8.459+009 8.470+009 8.474+009 8.478+009 8.484+009 8.491+009 8.497+009 8.503+009 8.507+009 8.511+009 8.514+009 8.517+009 8.519+009 8.521+009 8.523+009 8.524+009 8.524+009 8.527+009 8.527+009 8.528+009 8.529+009 8.529+009 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.299 1.299 1.299 1.298 1.298 1.297 1.297 1.297 1.296 1.295 1.295 1.294 1.293 1.291 1.29 1.287 1.285 1.281 1.278 1.273 1.266 1.258 1. 247 1.234 1.216 1.193 1.168 NML NML NML NML NML -11.545 -11.384 -11.232 -11.077 -10.914 -10.753 -10.601 -10.435 -10.277 -10.117 -10.029 -9.984 -10.082 -9.917 -9.758 -9.592 -9.426 -9.269 -9.097 -8.932 -8.763 -8.608 -8.435 -8.262 -8.091 -7.911 -7.732 -7.531 -7.346 -7.21 0.737 0.713 0.684 0.658 0.646 0.744 0.845 0.942 1.041 1.144 1.246 1.344 1.448 1.547 1.646 1.7 1.729 1.67 1.768 1.867 1.967 2.066 2.166 2.266 2.366 2.466 2.56 2.66 2.76 2.86 2.96 3.06 3.16 3.26 3.331 3.74 3.73 3.72 3.71 3.7 3.685 3.68 3.677 3.673 3.67 3.665 3.662 3.658 3.653 3.648 3.645 3.643 3.647 3.639 3.634 3.627 3.622 3.615 3.605 3.598 3.589 3.582 3.572 3.561 3.551 3.539 3.527 3.505 3.492 3.481 0.700 0.700 0.700 0.700 0.700 0.698 0.695 0.692 0.69 0.687 0.685 0.685 0.685 0.685 0.685 0.685 0.685 0.685 0.685 0.685 0.685 0.685 0.685 0.685 0.685 0.685 0.685 0.685 0.685 0.685 0.685 0.685 0.685 0.685 0.685 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 1.5M X = 0.7 - Z = 0.02 - α=0.25 - Maeder ve Meynet, 1988 • <$ù M Log( M ) Log L Log Teff Xat Mcc Xc-Yc 8.500+006 1.5 NML 0.577 3.821 0.314 0.699 0.700 3.338+009 1.5 NML 0.758 3.835 0.258 0.474 0.700 4.586+009 1.5 NML 0.845 3.818 0.2025 0.282 0.700 5.076+009 1.5 NML 0.872 3.795 0.1725 0.143 0.700 5.333+009 1.5 NML 0.891 3.78 0.1335 0.028 0.700 5.390+009 1.5 NML 0.976 3.801 0.114 0.002 0.700 5.397+009 1.5 NML 1.037 3.817 0.0675 0 0.700 5.404+009 1.5 NML 1.021 3.783 0 0.98 0.700 5.415+009 1.5 NML 1.002 3.76 0 0.98 0.700 82 5.425+009 1.5 NML 0.968 3.745 0 0.98 0.700 5.432+009 1.5 NML 0.92 3.729 0 0.98 0.700 5.437+009 1.5 NML 0.883 3.719 0 0.98 0.700 5.441+009 1.5 NML 0.855 3.709 0 0.98 0.700 5.445+009 1.5 NML 0.848 3.703 0 0.98 0.700 5.460+009 1.5 NML 0.94 3.688 0 0.98 0.698 5.470+009 1.5 NML 1.046 3.683 0 0.98 0.695 5.480+009 1.5 -10.99 1.147 3.679 0 0.98 0.691 5.489+009 1.5 -10.839 1.242 3.675 0 0.98 0.688 5.498+009 1.5 -10.684 134 3.67 0 0.98 0.686 5.507+009 1.5 -10.52 1.443 3.666 0 0.98 0.685 5.515+009 1.499 -10.365 1.541 3.662 0 0.98 0.684 5.523+009 1.499 -10.203 1.642 3.656 0 0.98 0.683 5.530+009 1.498 -10.04 1.741 3.649 0 0.98 0.683 5.535+009 1.498 -9.96 1.791 3.647 0 0.98 0.683 5.538+009 1.497 -9.878 1.841 3.644 0 0.98 0.683 5.542+009 1.497 -9.803 1.888 3.641 0 0.98 0.683 5.547+009 1.496 -10.058 1.734 3.651 0 0.98 0.683 5M X = 0.7- Z = 0.02- Maeder ve Meynet, 1988 <$ù M • Log( M ) Log L Log Teff Xat Mcc Xc-Yc 1.250+06 5.000 NML 2.720 4.244 0.700 1.520 0.697 4.900+07 5.000 NML 2.851 4.219 0.700 1.310 0.476 7.565+07 5.000 NML 2.958 4.188 0.700 1.025 0.280 8.868+07 5.000 NML 3.019 4.155 0.700 0.840 0.140 9.636+07 5.000 NML 3.065 4.130 0.700 0.705 0.032 9.842+07 5.000 NML 3.110 4.159 0.700 0.635 0.002 9.881+07 5.000 NML 3.156 4.191 0.700 0.390 0.000 9.886+07 5.000 NML 3.117 4.159 0.700 0.000 0.000 9.898+07 5.000 NML 3.166 4.057 0.700 0.000 0.000 9.907+07 5.000 NML 3.131 3.946 0.700 0.000 0.000 9.912+07 5.000 NML 3.084 3.862 0.700 0.000 0.000 9.916+07 5.000 NML 3.023 3.766 0.700 0.000 0.981 9.918+07 5.000 NML 2.979 3.707 0.700 0.000 0.981 9.920+07 5.000 NML 2.924 3.662 0.700 0.000 0.981 9.920+07 5.000 NML 2.924 3.662 0.700 0.000 0.981 9.950+07 4.997 -7.793 3.454 3.588 0.690 0.300 0.973 1.045+08 4.952 -8.314 3.160 3.631 0.690 0.406 0.859 83 1.054+08 4.948 -8.324 3.168 3.641 0.690 0.416 0.790 1.063+08 4.944 -8.302 3.214 3.666 0.690 0.420 0.749 1.068+08 4.941 -8.315 3.248 3.698 0.690 0.425 0.740 1.073+08 4.939 -8.365 3.272 3.740 0.690 0.430 0.754 1.212+08 4.837 -7.960 3.445 3.674 0.690 0.624 0.309 1.235+08 4.810 -7.891 3.460 3.651 0.690 0.635 0.186 1.243+08 4.798 -7.850 3.453 3.625 0.690 0.662 0.104 1.250+08 4.788 -7.816 3.455 3.610 0.690 0.661 0.050 1.260+08 4.769 -7.635 3.553 3.586 0.690 0.095 0.000 9M X = 0.7 - Z = 0.02 - α=0.25 - Maeder ve Meynet, 1988 <$ù • M Log(- M ) Log L Log Teff Xat Mcc Xc-Yc 7.301+005 9.000 NML 3.603 4.390 0.700 3.438 0.692 1.360+007 9.000 NML 3.756 4.369 0.700 2.970 0.472 2.089+007 8.999 -9.691 3.873 4.342 0.700 2.484 0.285 2.494+007 8.997 -9.252 3.949 4.310 0.700 2.132 0.148 2.808+007 8.995 -3.894 4.015 4.279 0.700 1.718 0.024 2.861+007 8.994 -8.905 4.048 4.312 0.700 1.664 0.001 2.870+007 8.994 -8.921 4.079 4.338 0.700 1.007 0.000 2.872+007 8.994 -8.850 4.061 4.303 0.700 0.000 0.000 2.874+007 8.994 -8.239 4.093 4.147 0.700 0.000 0.000 2.875+007 8.994 -7.936 4.069 3.995 0.700 0.000 0.000 2.876+007 8.993 -7.669 4.026 3.842 0.700 0.000 0.000 2.876+007 8.993 -7.450 3.992 3.743 0.700 0.000 0.981 2.877+007 8.993 -7.175 3.910 3.633 0.700 0.000 0.981 2.877+007 8.993 -7.149 3.876 3.616 0.700 0.000 0.981 2.877+007 8.993 -7.149 3.876 3.616 0.700 0.000 0.981 2.880+007 8.995 -6.535 4.321 3.539 0.686 0.773 0.975 3.007+007 8.705 -6.762 4.127 3.574 0.686 1.149 0.776 3.020+007 8.681 -6.771 4.176 3.611 0.686 1.163 0.750 3.022+007 8.679 -6.824 4.190 3.649 0.686 1.163 0.744 3.050+007 8.663 -7.526 4.232 3.899 0.686 1.195 0.636 3.091+007 8.656 -7.878 4.260 4.001 0.686 1.264 0.562 84 3.225+007 8.628 -7.699 4.298 3.981 0.686 1.493 0.268 3.309+007 8.578 -6.717 4.294 3.694 0.686 1.535 0.055 3.312+007 8.571 -6.633 4.287 3.636 0.686 1.534 0.048 3.315+007 8.563 -6.604 4.247 3.573 0.686 1.533 0.038 3.331+007 8.518 -6.451 4.339 3.539 0.686 0.009 0.000 20M X = 0.7 - Z = 0.02 - α=0.25 - Maeder, 1990 <$ù • M -log(- M ) Log L Log Teff Qcc Xat Xc logTc Log ρc 0.016 19.993 7.387 4.639 4.552 0.543 0.7 0.695 7.564 0.709 0.156 19.93 7.303 4.69 4.544 0.522 0.7 0.622 7.562 0.679 0.295 19.853 7.214 4.743 4.537 0.499 0.7 0.541 7.565 0.668 0.416 19.771 7.123 4.795 4.527 0.476 0.7 0.46 7.572 0.470 0.516 19.686 7.028 4.843 4.516 0.45 0.7 0.382 7.58 0.678 0.604 19.593 6.929 4.89 4.499 0.425 0.7 0.301 7.591 0.695 0.68 19.492 6.821 4.935 4.477 0.401 0.7 0.219 7.603 0.721 0.729 19.409 6.74 4.967 4.456 0.382 0.7 0.159 7.615 0.750 0.772 19.323 6.657 4.997 4.429 0.362 0.7 0.1 7.629 0.791 0.799 19559 6.6 5.017 4.409 0.349 0.7 0.061 7.645 0.736 0.827 19.183 6.542 5.040 4.392 0.335 0.7 0.018 7.679 0.939 0.839 19.149 6.532 5.055 4.41 0.329 0.7 0.002 7.736 1.109 0.H42 19.141 6.537 5.088 4.461 0.227 0.7 0 7.89 1.607 0.842 19.14 6.535 5.084 4.454 0.052 0.7 0.981 7.934 1.786 0.843 19.138 6.34 5.114 4.316 0 0.7 0.981 8.107 2.450 0.843 19.135 6.103 5.134 4.155 0.109 0.7 0.979 8.206 2.748 0.844 19.132 5.777 5.151 4.007 0.19 0.7 0.978 8.215 2.749 0.844 19.123 5.435 5.168 3.86 0.208 0.7 0.977 8.218 2.748 0.845 19.078 5.234 5.184 3.7 0.212 0.7 0.972 8.225 2.762 0.847 18.956 5.461 5.153 3.557 0.229 0.7 0.956 8.247 2.821 0.847 18.947 5.452 5.161 3.552 0.218 0.7 0.954 8.248 2.823 85 0.847 18.937 5.444 5.168 3.55 0.219 0.7 0.950 8.253 2.837 0.851 18.809 5.432 5.177 3.549 0.228 0.7 0.901 8.258 2.843 0.856 18.633 5.421 5.183 3.549 0.237 0.7 0.850 8.253 2.819 0.861 18.439 5.414 5.187 3.548 0.244 0.7 0.802 8.262 2.838 0.869 18.128 5.402 5.195 3.548 0.256 0.7 0.752 8.262 2.824 0.882 17.588 5.379 5.206 3.547 0.277 0.7 0.699 8.265 2.816 0.892 17.151 5.357 5.217 3.546 0.295 0.7 0.649 8.272 2.823 0.903 16.684 5.345 5.224 3.546 0.312 0.7 0.600 8.276 2.822 0.908 16.424 5.334 5.230 3.546 0.324 0.7 0.552 8.282 2.832 0.913 16.196 5.329 5.233 3.546 0.335 0.7 0.500 8.287 2.839 0.918 15.952 5.313 5.241 3.545 0.353 0.7 0.452 8.299 2.868 0.925 15.638 5.302 5.246 3.545 0.367 0.7 0.401 8.305 2.878 0.929 15.424 5.296 5.248 3.545 0.378 0.7 0.351 8.311 2.890 0.936 15.043 5.282 5.255 3.545 0.393 0.7 0.301 8.319 2.902 0.939 14.900 5.278 5.257 3.545 0.401 0.7 0.268 8.324 2.914 0.945 14.557 5.263 5.262 3.546 0.417 0.7 0.200 8.338 2.947 0.950 14.288 5.251 5.267 3.546 0.430 0.7 0.150 8.351 2.982 0.955 14.026 5.252 5.272 3.543 0.441 0.693 0.100 8.367 3.027 0.973 12.984 5.200 5.289 3.547 0.479 0.653 0.051 8.402 3.115 0.975 12.840 5.187 5.295 3.546 0.484 0.642 0.031 8.423 3.174 0.978 12.667 5.159 5.307 3.546 0.489 0.618 0.010 8.462 3.291 0.980 12.486 5.072 5.348 3.542 0 0.571 0 8.606 3.731 0.980 12.457 4.992 5.377 3.54 0 0.554 0 8.701 4.052 0.981 12.415 4.971 5.389 3.539 0 0.550 0 8.801 4.527 0.981 12.402 4.962 5.396 3.541 0 0.547 0 8.840 4.861 0.981 12.400 4.926 5.410 3.54 0 0.545 0 8.889 5.132 0.981 12.400 4.921 5.412 3.54 0 0.544 0 8.942 5.32 0.981 12.400 4.893 5.412 3.54 0 0.544 0 8.957 5.39 0.981 12.400 4.904 5.401 3.539 0 0.544 0 8.972 5.525 0.981 12.400 4.884 5.400 3.539 0 0.543 0 9.027 5.823 86 40M X = 0.7 - Z = 0.02 - α=0.25 – Maeder, 1990 <$ù 0.01 0.079 0.145 0.206 0.261 0.308 0.350 0.378 0.405 0.421 0.443 0.446 0.449 0.449 0.449 0.450 0.450 0.450 0.450 0.450 0.450 0.452 0.453 0.454 0.458 0.459 0.463 0.466 0.467 0.469 0.471 0.474 0.476 0.479 0.482 0.485 0.489 0.493 0.498 0.505 0.508 0.511 0.514 0.514 0.515 0.515 0.515 0.515 0.515 0.515 0.515 • M 39.981 39.859 39.693 39.482 39.208 38.85 38.356 37.877 37.237 36.732 35.888 35.771 35.658 35.653 35.643 35.636 35.626 35.604 35.525 35.474 34.111 26.703 23.642 22.735 22.407 22.303 20.786 19.467 18.657 17.333 15.938 14.161 12.489 11.191 10.148 9.23 8.42 7.693 6.986 6.288 6.009 5.748 5.572 5.534 5.497 5.492 5.489 5.488 5.488 5.487 5.487 -log(- M ) 6.835 6.679 6.538 6.390 6.213 6.038 5.844 5.694 5.553 5.475 5.388 5.387 5.403 5.401 5.317 5.145 4.743 4.21 3.882 3.788 3.419 3.407 3.493 4.71 5.188 4.398 4.398 4.398 4.142 4.222 4.008 4.138 4.276 4.396 4.502 4.606 4.705 4.803 4.908 5.023 5.072 5.122 5.157 5.164 5.172 5.173 5.174 5.174 5.174 5.174 5.174 Log L 5.369 5.414 5.458 5.5 5.539 5.576 5.61 5.634 5.658 5.674 5.697 5.702 5.725 5.723 5.726 5.735 5.739 5.739 5.717 5.724 5.812 5.827 5.827 5.827 5.824 5.819 5.762 5.695 5.669 5.628 5.575 5.49 5.405 5.33 5.263 5.198 5.136 5.075 5.011 4.942 4.914 4.893 4.942 5.008 5.127 5.147 5.167 5.17 5.173 5.178 5.195 Log Teff 4.652 4.643 4.643 4.623 4.606 4.584 4.553 4.519 4.470 4.427 4.362 4.374 4.444 4.439 4.311 4.167 4.000 3.855 3.713 3.681 3.669 3.688 3.717 4.044 4.351 4.433 4.75 4.83 4.724 4.748 4.647 4.686 4.726 4.759 4.788 4.814 4.839 4.862 4.887 4.914 4.927 4.945 4.991 5.024 5.043 5.045 5.047 5.048 5.048 5.049 5.057 60M X = 0.7 - Z = 0.02 - α=0.25 - Maeder, 1990 Qcc 0.705 0.677 0.651 0.624 0.593 0.566 0.542 0.523 0.505 0.493 0.481 0.48 0.388 0.271 0.222 0.226 0.297 0.329 0.37 0.378 0.397 0.522 0.605 0.628 0.659 0.667 0.742 0.788 0.786 0.782 0.793 0.75 0.733 0.719 0.701 0.688 0.676 0.666 0.649 0.636 0.632 0.624 0 0 0 0 0 0 0 0 0 Xat 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.653 0.581 0.536 0.327 0.322 0.322 0.227 0.001 0 0.981 0.697 0.559 0.482 0.456 0.425 0.391 0.354 0.319 0.278 0.23 0.209 0.191 0.176 0.173 0.171 0.17 0.17 0.17 0.17 0.169 0.169 Xc 0.695 0.62 0.542 0.462 0.381 0.301 0.221 0.162 0.101 0.061 0.007 0.002 0 0.981 0.981 0.98 0.98 0.98 0.979 0.979 0.975 0.95 0.927 0.898 0.802 0.781 0.7 0.626 0.599 0.55 0.494 0.452 0.4 0.349 0.3 0.25 0.2 0.15 0.1 0.05 0.031 0.01 0 0 0 0 0 0 0 0 0 logTc 7.606 7.602 7.605 7.611 7.619 7.628 7.640 7.650 7.665 7.680 7.740 7.779 7.992 8.049 8.149 8.200 8.228 8.235 8.239 8.239 8.246 8.287 8.295 8.3 8.305 8.299 8.312 8.318 8.318 8.32 8.321 8.321 8.322 8.324 8.327 8.331 8.337 8.345 8.357 8.379 8.394 8.427 8.571 8.701 8.8 8.824 8.877 8.899 8.91 8.922 9.053 Log ρc 0.487 0.460 0.452 0.456 0.468 0.488 0.517 0.547 0.593 0.640 0.823 0.940 1.596 1.792 2.131 2.299 2.387 2.408 2.417 2.417 2.433 2.551 2.573 2.585 2.591 2.568 2.602 2.624 2.637 2.662 2.69 2.726 2.77 2.812 2.853 2.897 2.946 3.001 3.071 3.173 3.235 3.347 3.802 4.261 4.778 4.945 5.23 5.282 5.343 5.536 6.223 87 • <$ù M 0.080 0.562 1.070 1.532 1.971 2.338 2.722 2.956 3.169 3.331 3.453 3.473 3.491 3.492 3.494 3.495 3.495 3.496 3.497 3.498 3.499 3.499 3.556 3.586 3.616 3.646 3.667 3.682 3.701 3.727 3.75 3.776 3.801 3.829 3-862 3.895 3.933 3.976 4.025 4.087 4.116 4.154 4.182 4.187 4.192 4.193 4.194 4.194 4.194 4.194 4.194 59.966 59.784 59.491 59.070 58.409 57.489 55.753 54.018 51.948 50.177 48.373 47.978 47.697 47.687 47.65 47.644 46.243 45.394 44.239 41.695 39.783 39.771 37.495 36.291 35.089 33.887 33.061 32.460 27.561 20.486 17.152 14.720 13.009 11.574 10.330 9.376 8.509 7.735 7.050 6.361 6.090 5.779 5.580 5-544 5.507 5.502 5.498 5.498 5.498 5.497 5.497 -log(- M ) 6.514 6.338 6.151 5.939 5.12 5.497 5.219 5.065 4.979 4.932 4.701 4.746 4.826 4.814 4.894 4.768 2.375 3.282 2.611 2.738 2.926 4.398 4.398 4.398 4.398 4.398 4.398 4.398 3.392 3.732 3.928 4.095 4.231 4.356 4.481 4.587 4.693 4.797 4.898 5.011 5.058 5.115 5.155 5.163 5.170 5.171 5.172 5.172 5.172 5.172 5.172 Log L Log Teff Qcc Xat Xc logTc Log ρc 5.729 5.766 5.803 5.838 5.872 5.900 5.931 5.951 5.971 5.989 6.006 6.010 6.022 6.026 6.030 6.032 6.046 6.058 6.063 6.113 6.120 6.151 6.130 6.119 6.091 6.044 6.036 6.031 5.935 5.746 5.63 5.519 5.436 5.357 5.278 5.212 5.146 5.081 5.019 4.953 4.927 4.898 4.942 5.005 5.124 5.145 5.167 5.171 5.173 5.177 5.178 4.693 4.683 4.673 4.658 4.638 4.612 4.558 4.499 4.404 4.279 4.136 4.158 4.208 4.202 4.234 4.162 4.007 3.781 3.746 3.811 3.828 4.416 4.572 4.687 4.789 4.829 4.872 4.895 4.446 4.561 4.624 4.674 4.714 4.749 4.783 4.810 4.837 4.861 4.885 4.913 4.925 4.944 4.992 5.024 5.044 5.046 5.049 5.05 5.05 5.051 5.056 0.773 0.750 0.726 0.696 0.664 0.638 0.616 0.605 0.600 0.595 0.598 0.601 0.584 0.549 0.394 0.370 0.405 0.452 0.485 0.574 0.550 0.531 0.679 0.721 0.767 0.810 0.832 0.840 0.826 0.805 0.784 0.756 0.739 0.726 0.707 0.690 0.679 0.666 0.651 0.638 0.636 0.63 0 0 0 0 0 0 0 0 0 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.648 0.647 0.583 0.543 0.499 0.364 0.329 0.211 0.207 0.193 0.192 0.186 0.083 0 0.639 0.586 0.552 0.515 0.479 0.45 0.413 0.379 0.344 0.308 0.271 0.229 0.21 0.188 0.171 0.168 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.695 0.622 0.542 0.463 0.379 0.3 0.209 0.148 0.087 0.038 0.003 0.001 0 0.981 0.981 0.981 0.98 0.98 0.98 0.979 0.977 0.977 0.905 0.853 0.803 0.753 0.699 0.656 0.61 0.552 0.501 0.45 0.4 0.351 0.299 0.251 0.2 0.149 0.101 0.05 0.031 0.01 0 0 0 0 0 0 0 0 0 7.623 7.621 7.623 7.629 7.636 7.645 7.658 7.669 7.686 7.71 7.777 7.828 7.973 8.019 8.149 8.165 8.21 8.234 8.243 8.249 8.252 8.255 8.305 8.3 13 8.316 8.321 8.33 8.333 8.328 8.324 8.323 8.323 8.323 8.325 8.328 8.332 8.338 8.346 8.358 8.381 8.396 8.428 8.575 8.7 8.8 8.824 8.879 8.905 8.913 8.925 9.037 0.374 0.355 0.348 0.353 0.368 0.389 0.427 0.464 0.516 0.591 0.796 0.948 1.388 1.527 1.954 2.006 2.151 2.228 2.256 2.274 2.281 2.288 2.43 2.448 2.454 2.469 2.496 2.509 2.539 2.619 2.671 2.718 2.761 2.804 2.85 2.894 2.944 3.001 3.07 3.173 3.235 3.349 3.812 4.247 4.767 4.937 5.24 5.313 5.371 5.522 6.236 85M X = 0.7 - Z = 0.02 - α=0.25 – Maeder, 1990 <$ù 0.7001 0.4574 0.8801 0.127 • M 84.917 84.544 83.861 82.821 -log(- M ) 6.122 5.913 5.694 5.462 Log L 6.004 6.034 6.065 6.092 Log Teff 4.719 4.709 4.969 4.68 Qcc 0.819 0.793 0.767 0.744 Xat 0.7 0.7 0.7 0.7 Xc 0.695 0.622 0.54 0.46 logTc 7.635 7.635 7.636 7.642 Log ρc 0.283 0.271 0.266 0.274 88 0.162 0.1936 0.2229 0.2381 0.2639 0.2778 0.2855 0.2955 0.2993 0.2994 0.2996 0.2997 0.2999 0.3 0.3011 0.3016 0.3026 0.3041 0.3079 0.3106 0.3122 0.3146 0.3153 0.3173 0.3192 0.3213 0.3236 0.3261 0.3288 0.3317 0.335 0.3386 0.3426 0.3471 0.3522 0.3587 0.3614 0.3651 0.3686 0.3691 0.3696 0.3697 0.3697 0.3697 0.3698 0.3698 0.3698 81.169 78.489 74.163 71.013 65.094 61.912 60.098 56.089 54.582 54.534 54.455 54.416 54.352 54.29 53.879 53.658 53.279 52.648 51.128 50.077 49.431 48.461 43.481 29.358 23.076 19.065 16.205 14.031 12.397 11.102 9.969 9.017 8.187 7.463 6.802 6.145 5.909 5.628 5.392 5.36 5.33 5.325 5.321 5.321 5.32 5.32 5.32 5.207 4.959 4.73 4.654 4.631 4.652 4.398 4.398 4.398 4.398 4.398 4.398 4.398 4.398 4.398 4.398 4.398 4.398 4.398 4.398 4.398 3.11 3.218 3.346 3.606 3.81 3.989 4.147 4.283 4.402 4.519 4.629 4.734 4.836 4.937 5.049 5.091 5.145 5.192 5.198 5.205 5.206 5.207 5.207 5.207 5.207 5.208 6.117 6.14 6.161 6.174 6.199 6.213 6.221 6.228 6.243 6.256 6.292 6.307 6.321 6.327 6.33 6.332 6.333 6.326 6.29 6.275 6.272 6.268 6.208 5.971 5.82 5.697 5.59 5.484 5.4 5.324 5.25 5.18 5.114 5.051 4.988 4.923 4.9 4.875 4.924 4.991 5.104 5.127 5.148 5.152 5.156 5.157 5.167 4.654 4.618 4.559 4.511 4.546 4.577 4.555 4.641 4.761 4.784 4.711 4.645 4.571 4.449 4.426 4.394 4.565 4.717 4.867 4.909 4.923 4.39 4.428 4.432 4.52 4.586 4.643 4.688 4.728 4.761 4.791 4.819 4.845 4.868 4.892 4.918 4.93 4.948 5.005 5.032 5.05 5.053 5.055 5.056 5.05d 5.057 5.061 0.719 0.703 0.705 0.713 0.731 0.741 0.748 0.775 0.769 0.665 0.673 0.688 0.694 0.705 0.719 0.729 0.741 0.765 0.823 0.848 0.86 0.869 0.864 0.835 0.811 0.795 0.782 0.747 0.73 0.718 0.701 0.683 0.671 0.658 0.645 0.632 0.629 0.623 0 0 0 0 0 0.022 0.034 0 0 0.7 0.7 0.7 0.692 0.523 0.436 0.394 0.295 0.254 0.253 0.25 0.249 0.247 0.246 0.245 0.243 0.216 0.201 0.157 0.088 0.051 0.001 0 0.672 0.636 0.598 0.558 0.52 0.483 0.456 0.419 0.384 0.347 0.312 0.274 0.233 0.216 0.197 0.177 0.174 0.172 0.171 0.171 0.171 0.171 0.171 0.171 Qcc Xat 0.38 0.301 0.221 0.177 0.097 0.053 0.029 0.002 0 0.981 0.98 0.979 0.978 0.977 0.972 0.97 0.964 0.95 0.899 0.851 0.801 0.722 0.701 0.651 0.602 0.551 0.502 0.451 0.4 0.349 0.299 0.25 0.2 0.15 0.101 0.049 0.031 0.01 0 0 0 0 0 0 0 0 0 7.648 7.657 7.667 7.675 7.694 7.712 7.729 7.803 8.047 8.17 8.25 8.255 8.258 8.26 8.277 8.286 8.296 8.306 8.316 8.329 8.336 8.341 8.336 8.327 8.324 8.322 8.321 8.321 8.322 8.324 8.326 8.33 8.336 8.344 8.356 8.38 8.395 8.428 8.602 8.71 8.799 8.825 8.889 8.923 8.955 8.954 9.024 0.291 0.317 0.354 0.379 0.441 0.497 0.552 0.782 1.519 1.893 2.148 2.166 2.174 2.179 2.227 2.256 2.284 2.309 2.335 2.375 2.4 2.417 2.429 2.517 2.581 2.636 2.684 2.729 2.773 2.815 2.859 2.904 2.954 3.01 3.08 3.184 3.243 3.36 3.914 4.311 4.792 4.972 5.263 5.344 5.457 5.55 6.195 120M X = 0.7 - Z = 0.02 - α=0.25 - Maeder, 1990 <$ù 0.0700 0.3981 0.7522 ø 1.3872 1.5460 1.9403 2.1383 2.2475 2.4323 2.5522 2.6521 • M 119.727 118.596 116.534 113.364 108.306 104.231 93.500 88.366 85.475 78.086 73.287 69.288 -log(- M ) 5.585 5.356 5.136 4.916 4.658 4.537 4.590 4.582 4.398 4.398 4.398 4.398 Log L 6.252 6.275 6.295 6.313 6.329 6.337 6.362 6.377 6.387 6.401 6.408 6.408 Log Teff 4.739 4.727 4.712 4.693 4.663 4.044 4.665 4.675 4.636 4.674 4.711 4.780 0.854 0.825 0.802 0.782 0.775 0.780 0.802 0.810 0.814 0.844 0.872 0.904 0.694 0.62 0.54 0.461 0.382 0.338 0.222 0.159 0.123 0.059 0.021 0.001 Xc 0.700 0.700 0.700 0.700 0.700 0.692 0.506 0.424 0.378 0.252 0.164 0.091 logTc 7.649 7.647 7.648 7.652 7.659 7.663 7.677 7.688 7.696 7.718 7.748 7.834 Log ρc 0.206 0.194 0.192 0.204 0.227 0.244 0.297 0.335 0.361 0.438 0.535 0.805 89 2.6955 2.6971 2.6981 2.6996 2.7007 2.7007 2.7027 2.7038 2.7053 2.7234 2.7356 2.7477 2.7598 2.774 2.7772 2.8136 2.8346 2.8565 2.8806 2.9088 2.9425 2.9787 3.0149 3.06 3.1126 3.1701 3.2409 3.316 3.3558 3.3987 3.4448 3.4516 3.4575 3.4584 3.459 3.459 3.4591 3.4592 3.4593 67.555 67.493 67.452 67.390 67.348 67.348 67.266 67.225 67.163 66.438 65.952 65.467 64.982 64.415 59.673 26.266 20.919 17.537 15.067 13.074 11.379 10.071 9.086 8.146 7.309 6.608 5.941 5.395 5.152 4.920 4.698 4.667 4.64 4.636 4.634 4.634 4.633 4.633 4.633 4.398 4.398 4.398 4.398 4.398 4.398 4.398 4.398 4.398 4.398 4.398 4.398 4.398 2.8008 2.5768 3.4602 3.7114 3.8999 4.0673 4.2192 4.3673 4.5024 4.6159 4.7347 4.8527 4.9637 5.0819 5.1884 5.2386 5.2902 5.3416 5.3493 5.3554 5.3567 5.3574 5.3575 5.3575 5.3576 5.3577 6.415 6.423 6.430 6.430 6.429 6.429 6.429 6.429 6.429 6.436 6.434 6.433 6.432 6.431 6.39 5.899 5.754 5.639 5.537 5.432 5.335 5.248 5.174 5.097 5.019 4.946 4.871 4.807 4.777 4.753 4.79 4.883 5.024 5.051 5.069 5.071 5.073 5.076 5.091 4.878 4.903 4.925 4.930 4.931 4.931 4.932 4.933 4.934 4.951 4.955 4.959 4.962 4.278 4.158 4.47 4.554 4.613 4.665 4.708 4.748 4.748 4.812 4.84 4.866 4.889 4.913 4.936 4.949 4.966 5.023 5.057 5.072 5.072 5.072 5.072 5.072 5.072 5.078 0.849 0.881 0.849 0.878 0.880 0.880 0.876 0.876 0.875 0.868 0.876 0.883 0.885 0.891 0.860 0.825 0.806 0.785 0.769 0.738 0.717 0.698 0.682 0.667 0.652 0.636 0.622 0.609 0.605 0.599 0 0 0 0 0 0 0 0 0 0 0.981 0.98 0.979 0.978 0.978 0.977 0.976 0.975 0.95 0.902 0.852 0.803 0.747 0.738 0.651 0.6 0.551 0.502 0.449 0.399 0.349 0.303 0.251 0.200 0.151 0.100 0.051 0.030 0.010 0 0 0 0 0 0 0 0 0 0.060 0.058 0.058 0.057 0.056 0.056 0.055 0.054 0.053 0.040 0.031 0.019 0.009 0.001 0.000 0.676 0.637 0.6 0.563 0.525 0.483 0.445 0.414 0.382 0.346 0.311 0.268 0.231 0.215 0.198 0.179 0.175 0.175 0.175 0.175 0.175 0.174 0.174 0.174 8.076 8.164 8.246 8.262 8.264 8.264 8.267 8.268 8.271 8.333 8.339 8.342 8.345 8.348 8.336 8.324 8.321 8.319 8.318 8.318 8.318 8.32 8.322 8.326 8.331 8.339 8.352 8.374 8.392 8.424 8.583 8.703 8.797 8.829 8.878 8.895 8.904 8.909 9.036 1.535 1.799 2.046 1093 2.099 2.099 2.109 2.114 2.123 2.312 2.330 2.339 2.348 2.358 2.341 2.542 2.604 2.655 2.701 2.746 2.794 2.839 2.882 2.931 2.985 3.045 3.121 3.223 3.292 3.407 3.917 4.380 4.901 5.130 5.369 5.416 5.462 5.574 6.338 g%(.,,<,/',=/$5,ødø1(95ø002'(//(5ø 1.2M X = 0.7 - Z = 0.001 – Chiosi ve ark., 1987 L / L <$ù Log Teff Log g logTc Log ρc Xc 0 0.553 3.914 4.607 7.2513 2.024 0.7 555.693 0.606 3.92 4.578 7.2736 2.0796 0.602 697.646 0.656 3.925 4.552 7.2955 2.144 0.507 1569.73 0.74 3.935 4.505 7.3424 2.3156 0.305 2108.44 0.828 3.931 4.401 7.396 2.3661 0.203 2552.08 2709.94 0.907 1.032 3.911 3.953 4.244 4.288 7.4539 7.5543 2.4783 3.0288 0.045 0 2723.76 1.103 3.900 4.004 7.4905 3.8369 0 2767.8 1.127 3.848 3.773 7.4833 4.1519 0 2804.98 1.141 3.801 3.568 7.5321 4.3584 0 2910.06 1.203 3.732 3.230 7.6148 4.9439 0 90 2923.97 1.253 3.729 3.168 7.6143 4.994 0 2935.75 1.301 3.726 3.111 7.6147 5.0349 0 2956.45 1.401 3.722 2.994 7.6189 5.1062 0 2973.5 1.500 3.718 2.877 7.6264 5.1669 0 2987.74 1.601 3.713 2.759 7.6366 5.2217 0 3009.13 1.806 3.704 2.517 7.6627 5.3197 0 3049.08 2.598 3.665 1.569 7.7991 5.686 0 1.5M X = 0.7 - Z = 0.001 – Chiosi ve ark., 1987 L / L <$ù Log Teff Log g Log ρc logTc Xc 0 0.959 4.002 4.653 7.3158 2.0076 0.7 293.582 1.012 4.007 4.62 7.3377 2.0590 0.601 547.091 1.066 4.011 4.583 7.3635 2.1152 0.498 705.535 1.106 4.012 4.545 7.3807 2.1376 0.442 832.289 1.141 4.011 4.506 7.3936 2.1464 0.4 1054.11 1.201 4.004 4.417 7.4168 2.1773 0.3 1244.24 1.265 3.988 4.291 7.4406 2.2020 0.196 1476.49 1.366 3.955 4.057 7.5011 2.3408 0.03 1500.74 1.389 3.961 4.058 7.5284 2.4279 0.01 1512.56 1.503 3.990 4.059 7.6331 3.4367 0 1518.2 1.553 3.800 3.249 7.7367 4.2307 0 1523.7 1.505 3.732 3.026 7.8484 4.6625 0 1531.76 1.705 3.718 2.771 7.9014 5.0090 0 1539.77 1.903 3.708 2.533 7.8981 5.1935 0 1550.78 2.200 3.693 2.176 7.8862 5.3845 0 1553.88 2.300 3.688 2.056 7.8860 5.4391 0 1559.02 2.500 3.678 1.814 7.8926 5.5417 0 1563.19 2.600 3.673 1.694 7.9122 5.6426 0 1564.03 2.645 3.671 1.641 7.9941 5.6472 0 2M X = 0.7 - Z = 0.001 – Chiosi ve ark., 1987 <$ù 0 193.737 352.181 478.935 599.759 774.84 788.153 788.291 788.807 789.79 790.298 790.638 L / L 1.442 1.514 1.587 1.660 1.747 1.931 2.056 1.992 2.092 2.023 2.198 2.305 Log Teff 4.102 4.104 4.102 4.096 4.082 4.015 4.089 4.060 3.948 3.731 3.708 3.702 Log g 4.693 4.630 4.551 4.454 4.310 3.858 4.027 3.977 3.429 2.632 2.365 2.230 logTc 7.3853 7.4056 7.4241 7.4411 7.4617 7.5414 7.6903 7.6813 7.7255 7.8290 7.8846 7.9194 Log ρc 1.9397 1.9591 1.9714 1.9826 1.9972 2.1600 2.8480 3.1107 3.5543 4.0270 4.2238 4.3426 Xc 0.7 0.6 0.503 0.409 0.293 0.029 0 0 0 0 0 0 91 791.247 792.358 804.946 819.858 844.926 857.503 858.403 863.483 865.034 865.45 866.297 866.628 866.791 2.487 2.503 2.205 2.301 2.400 2.500 2.436 2.696 2.908 3.001 3.302 3.500 3.616 3.691 3.690 3.717 3.748 3.792 3.698 3.706 3.683 3.670 3.664 3.646 3.634 3.626 2.006 1.987 2.390 2.418 2.497 2.019 2.118 1.764 1.500 1.385 1.011 0.763 0.617 7.9811 8.0566 8.0794 8.0951 8.1412 8.3172 8.1772 8.1994 8.2366 8.2499 8.2691 8.2493 8.2144 4.5404 4.4064 4.1913 4.1149 4.0649 4.6474 4.9542 5.3233 5.5082 5.5850 5.8396 6.0248 6.1596 0.999 0.990 0.884 0.707 0.271 0 0 0 0 0 0 0 0 3M X = 0.7 - Z = 0.001 – Chiosi ve ark., 1987 <$ù L / L Log Teff Log g Log ρc logTc Xc 0 53.5686 136.195 191.156 265.255 299.64 302.514 302.684 2.082 2.136 2.239 2.329 2.503 2.636 2.679 2.740 4.215 4.215 4.211 4.203 4.165 4.116 4.149 4.182 4.681 4.627 4.511 4.388 4.060 3.732 3.821 3.890 7.4481 7.4571 7.4744 7.4904 7.5294 7.6004 7.6774 7.7546 1.7613 1.7587 1.7547 1.7564 1.7841 1.9468 2.1750 2.6359 0.7 0.637 0.518 0.412 0.191 0.02 0.001 0 302.845 302.999 303.051 2.780 2.805 2.792 4.049 3.855 3.745 3.320 2.519 2.095 7.8017 7.8747 7.9010 3.2706 3.6051 3.7030 0 0 0 303.161 303.233 303.445 304.259 310.493 320.455 320.860 320.892 321.26 321.979 322.247 2.904 3.001 3.169 3.100 3.004 3.101 3.093 3.134 3.206 3.498 3.704 3.689 3.682 3.671 3.675 3.749 3.803 3.686 3.684 3.672 3.632 3.64 1.755 1.630 1.418 1.506 1.894 2.015 1.556 1.509 1.387 1.016 0.759 7.9581 7.9936 8.1001 8.1065 8.1381 8.2804 8.3656 8.3346 8.3041 8.3779 8.4375 3.8986 4.0177 4.0831 3.9571 3.7704 3.9864 4.3434 4.4357 4.9459 5.4445 5.7513 0 0 0.994 0.96 0.705 0.017 0 0 0 0 0 322.403 322.505 322.565 322.581 3.900 4.102 4.301 4.100 3.627 3.618 3.612 3.619 0.514 0.276 0.052 0.281 8.4465 8.3367 8.1926 8.1609 6.0751 6.4434 6.7712 6.8695 0 0 0 0 322.592 4.204 3.614 0.158 8.1399 6.9185 0 5M X = 0.7 - Z = 0.001 – Chiosi ve ark., 1987 <$ù 0 L / L 2.848 Log Teff 4.336 Log g 4.622 logTc 7.5050 Log ρc 1.5021 Xc 0.7 92 29.3855 2.947 4.335 4.52 7.5191 1.4918 0.588 45.0853 3.012 4.332 4.443 7.5291 1.4863 0.512 76.3984 94.3404 3.205 3.404 4.308 4.242 4.154 3.689 7.5631 7.6346 1.4950 1.6277 0.288 0.041 96.5833 3.508 4.298 3.812 7.8220 2.2850 0 96.6807 3.603 3.886 2.067 8.0047 3.4284 0 96.6997 3.563 3.681 1.288 8.0465 3.5709 0.999 96.7099 3.712 3.663 1.068 8.0697 3.6429 0.999 96.7633 3.845 3.653 0.893 8.1481 3.6394 0.991 96.931 3.800 3.657 0.953 8.1530 3.5705 0.962 97.7112 3.727 3.670 1.081 8.1678 3.4770 0.858 100.676 3.796 4.061 2.573 8.2375 3.4663 0.217 101.612 3.829 3.827 1.603 8.3578 3.7987 0.006 101.658 3.793 3.670 1.013 8.4168 4.0307 0 101.672 3.849 3.665 0.938 8.4029 4.1823 0 101.854 4.104 3.639 0.577 8.5514 5.3091 0 101.904 4.200 3.633 0.457 8.6189 5.7773 0 101.939 101.943 4.306 4.415 3.626 3.627 0.326 0.221 8.6415 8.5773 6.639 6.8791 0 0 101.945 4.433 3.627 0.200 8.5377 6.9641 0 9M X = 0.7 - Z = 0.001 – Chiosi ve ark., 1987 L / L <$ù Log Teff Log g Log ρc logTc Xc 0 3.720 4.460 4.501 7.5674 1.2057 0.7 13.2998 18.7534 26.4075 30.4512 30.5095 30.5181 30.5311 30.6063 31.6887 32.0844 32.1000 32.1030 32.1296 32.1337 3.822 3.908 4.091 4.252 4.301 4.354 4.311 4.500 4.510 4.534 4.544 4.567 4.685 4.708 4.457 4.450 4.413 4.377 4.332 4.203 3.663 3.643 4.164 3.801 3.643 3.641 3.632 3.631 4.388 4.272 3.944 3.638 3.409 2.839 0.722 0.455 2.527 1.051 0.408 0.377 0.226 0.198 7.5819 7.5959 7.6336 7.7655 8.0232 8.0966 8.1998 8.2065 8.2782 8.4230 8.4905 8.5012 8.6362 8.6646 1.2000 1.2000 1.2412 1.5963 2.7171 3.0138 3.2395 . 3.1574 3.1747 3.5854 3.8178 3.9115 4.6741 4.8172 0.523 0.418 0.196 0.003 0 0.999 0.995 0.95 0.244 0.004 0 0 0 0 $1$.2/g1&(6ø(95ø0 1 M.h7/(/ø%ø5<,/',=,1$QDNRO|QFHVLHYULPL)LJXHLUHGRXQSXEOLVKHG =DPDQ\ÕO Log Teff Log L/L R/R Log Tc Log ρc 1.11595e+4 3.5777 1.3879 11.3560 5.8350 -2.1947 2.05936e+4 3.5796 1.3442 10.7100 5.8596 -2.1208 93 2.56673e+4 3.5805 1.3231 10.4130 5.8714 -2.0854 3.800676+4 4.48850e+4 6.07290e+4 6.54482e+4 8.03167e+4 9.09827e+4 1.16655e+5 1.58I41e+5 1.89778e+5 2.01401e+5 3.01187e+5 4.15419e+5 3.5823 3.5832 3.5849 3.5853 3.5865 3.5872 3.5887 3.5904 3.5914 3.5917 3.5937 3.5949 1.2775 1.2549 1.2086 1.1962 1.1601 1.1366 1.0869 1.0210 0.9792 0.9652 0.8665 0.7838 9.8040 9.5170 8.9590 8.8160 8.4140 8.1640 7.6620 7.0510 6.6920 6.5770 5.8220 5.2660 5.8963 5.9094 5.9349 5.9417 5.9614 5.9742 6.0011 6.0363 6.0585 6.0659 6.1177 6.1605 -2.0093 -1.9717 -1.8952 -1.8748 -1.8156 -1.7773 -1.6968 -1.5912 -1.5247 -1.5025 -1.3472 -1.2189 5.01631e+5 6.94507e+5 7.92080e+5 9.05225e+5 1.03750e+6 1.60251e+6 2.06874e+6 2.95811e+6 3.22337e+6 3.54167e+6 4.75824e+6 5.25140e+6 3.5955 3.5961 3.5963 3.5963 3.5962 3.5954 3.5944 3.5923 3.5917 3.5910 3.5884 3.5875 0.7335 0.6443 0.6075 0.5697 0.5306 0.4039 0.3284 0.2206 0.1943 0.1655 0.0749 0.0446 4.9580 4.4640 4.2770 4.0950 3.9170 3.4010 3.1330 2.7950 2.7190 2.6400 2.4070 2.3350 6.1861 6.2309 6.2492 6.2678 6.2867 6.3472 6.3822 6.4307 6.4417 6.4534 6.4876 6.4985 -1.1419 -1.0075 -0.9528 -0.8970 -0.8399 -0.6584 -0.5529 -0.4056 -0.3695 -0.3299 -0.2032 -0.1597 5.843 19e+6 3.5864 0.0120 2.2600 6.5099 -0.1124 6.44960e+6 8.05052e+6 8.94532e+6 1.00191e+7 1.13076e+7 1.63394e+7 2.09588e+7 3.27097e+7 4.03184e+7 5.76286e+7 7.90291e+7 9.01548e+7 1.04564e+8 3.5854 3.5832 3.5822 3.5811 3.5801 3.5784 3.5791 3.5875 3.5964 3.6251 3.6687 3.6901 3.7089 -0.0182 -0.0846 -0.1158 -0.1485 -0.1823 -0.2769 -0.3303 -0.3890 -0.3910 -0.3270 -0.1771 -0.1071 -0.0910 2.1930 2.0530 1.9910 1.9260 1.8610 1.6830 1.5780 1.4190 1.3590 1.2820 1.2460 1.2240 1.1430 6.5204 6.5430 6.5536 6.5648 6.5766 6.6134 6.6407 6.6998 6.7353 6.8176 6.9308 6.9941 7.0619 -0.0676 0.0342 0.0843 0.1390 0.1985 0.3910 0.5332 0.8252 0.9850 1.3113 1.6537 1.7811 1.8646 1.09508e+8 3.7116 -0.0980 1.1050 7.0765 1.8753 1.197636+8 3.7123 -0.1620 1.0370 7.0936 1.8840 (95ø0 M+ 8.1 M - P=3.133 g (Packet, 1988) Evre 6 <Dú \ÕO M1 Log L1 Log Teff 1 M2 Log L2 Log Teff 2 P (g) ZAMS 0.00 9.00 3.58 4.46 5.40 2.82 4.24 1.62 ZAMS Red point prim. Blue point prim. Begin RLOFI->2 0.00 2.61 2.72 2.73 9.00 9.00 9.00 9.00 3.58 3.85 3.91 3.92 4.36 4.27 4.31 4.26 8.10 8.10 8.10 8.10 3.43 3.65 3.66 3.66 4.33 4.26 4.26 4.26 3.13 3.13 3.13 3.13 94 Mass ratio reversal Min.Lumimosity Max.Lumimosity He ignition prim. End RLOF-min R 0.18 0.50 0.55 2.03 2.71 8.55 4.06 3.25 1.73 1.51 3.75 2.54 2.77 3.76 3.93 4.22 3.84 3.84 3.91 3.92 8.55 13.03 13.84 15.37 15.58 3.88 4.38 4.40 4.40 4.43 4.29 4.44 4.46 4.47 4.48 3.11 8.16 13.28 64.61 92.81 Max.Luminosity Min.Lum- min. R 2.76 2.91 1.51 1.51 3.95 3.07 4.07 4.73 15.58 15.58 4.43 4.49 4.48 4.47 92.81 92.81 End He burn. prim. Min L- Min R Begin RLOFl->2 3.32 3.33 3.36 1.51 1.51 1.51 3.67 3.54 4.08 4.82 4.83 3.95 15.58 15.58 15.58 4.62 4.63 4.64 4.42 4.41 4.41 92.81 92.81 92.81 Xat=0 3.36 1.43 4.12 3.95 15.85 4.67 4.42 107.58 (95ø0 M+ 5.4 M - P=2.983 g (Packet, 1988) Evre 6 <Dú \ÕO M1 Log L1 Log Teff 1 M2 Log L2 Log Teff 2 P (g) ZAMS 0.00 9.00 3.58 4.36 5.40 2.82 4.23 2.98 Red point prim. 2.68 9.00 3.85 4.27 5.40 2.91 4.21 2.98 Blue point prim. 2.93 9.00 3.91 4.31 5.40 2.92 4.21 2.98 Begin RLOF1->2 2.93 9.00 3.92 4.26 5.40 2.92 4.21 2.98 Begin contact 2.941 7.97 3.22 4.11 6.42 4.06 4.35 2.55 Mass ratio rev. 2.945 7.20 2.91 4.04 7.20 4.15 4.36 2.46 End contact 2.949 5.95 1.71 3.77 8.45 4.33 4.39 2.69 MinL 2.951 5.52 1.71 3.76 8.87 4.33 4.40 2.91 He ignition prim. 1.69 1.71 3.77 4.01 12.68 4.12 4.45 33.11 End RLOF 2.33 1.52 3.95 4.03 12.87 4.14 4.45 45.34 Min luminosity 3.09 1.52 3.08 4.73 12.87 4.18 4.45 45.34 End He bur.prim. 3.50 1.52 3.68 4.82 12.87 4.28 4.43 45.34 Begin RLOF1->2 3.54 1.52 4.08 4.06 12.87 4.29 4.43 45.34 End computations 3.57 1.21 4.15 4.00 13.19 4.37 4.45 84.31
Benzer belgeler
View/Open - Hakkari Üniversitesi
LOH EDúOD\DQ VUHo 0DUWLQ /XWKHU King¶H kadar X]DQPÕú YH DUGÕQGDQ GLQ VDYDúODUÕQD
G|QúPúWU :HVWIDO\D $QODúPDVÕ LOH de \HQL ELU G]HQLQ WHPHOOHULQLQ DWÕOPDVÕQÕ
VD÷ODPÕúWÕU. Ki...
L İ P P E İ Ç İ N E V İ Ç İ Ş İ D D E T E K A R Ş I
úLGGHWVRQXFXEHGHQVHO\DUDODQPD
V|]NRQXVX\VDNDQÕWROPDVÕLoLQIRWRJUDI
oHNLOHFHNWLU
øIDGHQL]HúLQL]WDUDIÕQGDQEDVNÕDOWÕQGD
NDOPDPDQÕ]LoLQHúLQL]GHQD\UÕELU
RUWDPGDDOÕQDFDNWÕU(÷HU...
Charlotte Anderson`ın Notlarından Alıntıdır
ELUKDOGHQEDûNDELUKDOHG|QûWUOHELOLU
HHU|øUHQFLQLQGQ\DQÖQNHQGLVLQLDQODPD\HWHQHøLJHOLûHFHNWLU
%XJHOLûLPHQL\LDQODGÖøÖPÖ] ûH\olan, insan bedenine (QHUML7HNQLNOHULQLX\JXODPD\Ö
|...
Abonelik Telefon
&R÷UDIL1XPDUD8OXVDOQXPDUDODQGÕUPDSODQÕQGDUDNDPODUÕFR÷UDILDQODPWDúÕ\DQYHúHEHNHVRQODQPD
QRNWDVÕQDoD÷UÕQÕQ\|QOHQGLULOPHVLQLVD÷OD\DFDNúHNLOGH\DSÕODQGÕUÕODQQXPDUD\Õ
&R÷UDIL2OPD...
Kolektifin Sesi - Yeni Demokrat Gençlik
GH RQODUÕ \DUDWDQ VLVWHPL GH HQ GHULQGHQ VDUVDQ NDOÕFÕHWNLOHU\DUDWDQúH\NLWOHOHULQVLVWHPLQoL]GL÷LVÕQÕUODU
GÕúÕQGDNLo|]PDUD\ÕúÕGÕU1HGHQEXROVDJHUHNVUHNOL
RODUDN NLWOHOHULQ...
NATURALBOND TEKNİK KATALOöU
1DWXUDOERQGX\JXODQÕUNHQED÷ODQWÕHOHPDQODUÕQÕQU]JDU\NQHGLUHQoOLROPDVÕJHUHNPHNWHGLU
.RQXLOHLOJLOLRODUDNGLNNDWHGLOPHVLJHUHNHQKXVXVODUDúD÷ÕGDYHULOPLúWLU
• %D÷ODQWÕLoLQDoÕODFD...
Technotes - Sulama Rehberi
(OFLKD]ÕQÕQED÷ÕPVÕ]SURJUDPÕYDUGÕU$%&+HUELUSURJUDPÕNHQGL
VXODPDJQOHULEDúODQJÕoVDDWOHULYHVXODPDVUHOHULRODQD\UÕELUNRQWURO
FLKD]ÕRODUDNGúQHELOLUVLQL]hoOSURJU...